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ABSTRACT 

Starting from a weak concept of stability, introduced by 

Berinde [1] and called “weak stability”, in [27] we develop a 

weaker notion, named “w²-stability”. Therefore, in this paper 

we prove some results of this weaker stability concept for 

certain class of mappings and also we give some examples of 

w²-stable but not weak stable nor stable iterations.  

Because of the restriction of an “approximate” sequence, 

some fixed point iteration procedures are not weakly stable so 

if it is used a weaker type of sequence, the stability can be 

obtained in the meaning of a new concept. 

General Terms 

Fixed-point and coincidence theorems. 

Keywords 

Coincidence point, fixed point, stable iteration, weak stable 
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1. INTRODUCTION 
For the complete metric space (X, d), with x, y ∈ X and x ≠ y, 

Harder [7], [8] presented some mappings T: X →X satisfying 

various contraction conditions for which the associated Picard 

iteration is not stable.   

Their corresponding conditions in the case of two mappings S, 

T: X →X such that T(X) ⊆ S(X), with x, y ∈ X and x ≠ y, are in 

the following form:  

(1)  d(Tx,Ty)<max{d(Sx,Tx),d(Sy,Ty)} 

(2) d(Tx,Ty)<max{d(Sx,Tx),d(Sy,Ty),d(Sx,Sy)} 

(3) d(Tx,Ty)<max{d(Sx,Tx),d(Sy,Ty),d(Sx,Sy), d(Sx,Ty), 

d(Sy,Tx)} 

(4) d(Tx,Ty)<max{d(Sx,Tx),d(Sy,Ty),d(Sx,Sy), 
𝑑(𝑆𝑥,𝑇𝑦)+𝑑(𝑆𝑦 ,𝑇𝑥)

2
} 

Berinde [1] introduced the notion of weak stability and in [28] 

there is a study of weak stability of iterative procedures for 

some coincidence theorems. Moreover, Timis [27] introduced 

a weaker concept, called w²-stability, and gave weak stability 

results of Picard iteration for various contractive mappings 

defined by Harder [7], [8]. 

In this paper, we give w²-stability results of Picard iteration 

for mappings with a coincidence point satisfying conditions 

(1)-(4).   

2. WEAK STABILITY OF FIXED POINT 

ITERATION PROCEDURES 
One of the most general contractive definition for which 

corresponding stability results have been obtained in the case 

of Kirk, Mann and Ishikawa iteration procedures in arbitrary 

Banach spaces appears to be the following class of mappings: 

for (X, d) a metric space, T: X → X is supposed to satisfy the 

condition 

d(Tx,Ty) ≤ ad(x,y)+Ld(x,Tx), 

for some a ∈ [0,1), L ≥ 0 and for all x, y ∈ D ⊆ X. This 

condition appears in [15] and other related results may be 

found in [14], [19], [20]. 

The concept of stability is not very precise because of the 

sequence {𝑦𝑛}𝑛=0
∞  which is arbitrary taken. So, it would be 

more natural that {𝑦𝑛 } to be an approximate sequence of 

{𝑥𝑛} and Berinde [1] introduced the notion named “weak 

stability”. Therefore, any stable iteration will be also weakly 

stable but the reverse is not generally true. 

Because some contractive conditions are very strictly and the 

associated fixed point iteration is not weakly stable, Timis 

[27] used equivalent sequences in order to introduce the 

notion of w²-stability.  

In the following, we restate the definition of w²-stability for 

the case of two self-mappings with a coincidence point and 

using this, we establish stability results for common fixed 

point iterative procedures in the class of mappings that satisfy 

the above contraction conditions (1)-(4). 

Definition 2.1.  Let the map S: X →X and (X, d) to be a metric 

space. Two sequences {𝑥𝑛}𝑛=0
∞   and {𝑦𝑛 }𝑛=0

∞   are called S-

equivalent sequences if d(S𝑥𝑛 , 𝑆𝑦𝑛 ) → 0, as n → ∞. 

Definition 2.2. Let (X, d) be a metric space, S, T: X → X  be 

two maps such as T(X) ⊆ S(X) and z is a coincidence point of 

S and T, that is a point for which we have Sz = Tz = u ∈  X. 

Let {𝑆𝑥𝑛}  be an iteration procedure defined by 𝑥0 ∈ X and 

𝑆𝑥𝑛+1  = f(T, 𝑥𝑛 ),  n ≥ 0. 

Suppose that {𝑆𝑥𝑛}   converges to u. If for any equivalent 

sequence {𝑆𝑦𝑛}  ∈ X of {𝑆𝑥𝑛},     

lim𝑛→∞ d(Syn+1, Tyn) = 0,  implies that lim𝑛→∞ Syn = 𝑢, 

then we shall say that the iteration procedure is w²-stable with 

respect to (S,T).  
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We mention that the concept of (S,T)-stability was used in 

[26] and the transposition to (S,T)-weak stability in a metric 

space was introduced in [28]. 

3. MAIN RESULTS 
The basic results of this paper are the following theorems: 

Theorem 3.1. Let (X,d) be a complete metric space and S, T: 

X → X  be two maps such that T(X) ⊆ S(X), satisfying (1), i.e., 

d(Tx,Ty)<max{d(Sx,Tx),d(Sy,Ty)}, for all x, y ∈ X and x ≠ y. 

Let {𝑆𝑥𝑛}𝑛=0
∞   be an iterative procedure defined by 𝑥0 ∈ X  

and 𝑆𝑥𝑛+1  = T𝑥𝑛 , for all n ≥ 0 and the sequence {𝑆𝑥𝑛 }   
converges to u, where u is a coincidence point of S and T. 

Then, the Picard iteration is w²-stable.  

Proof. Consider {𝑆𝑦𝑛}𝑛=0
∞   to be an equivalent sequence of 

{𝑆𝑥𝑛} . Then, according to Definition 2.2., if 

lim𝑛→∞ 𝑑(𝑆𝑦𝑛+1 , 𝑇𝑦𝑛) = 0 implies that limn→∞ Syn = u, 
then the Picard iteration is w²-stable. 

In order to prove this, we suppose that 

limn→∞ 𝑑(𝑆𝑦𝑛+1, 𝑇𝑦𝑛) = 0. Therefore, for all 𝜀>0, there 

exists 𝑛0 = 𝑛(𝜀) such that 𝑑 𝑆𝑦𝑛+1 , 𝑇𝑦𝑛 <  𝜀, for all n ≥ 𝑛0.  

So, 𝑑 𝑆𝑦𝑛+1 , 𝑢 ≤ 𝑑 𝑆𝑦𝑛+1, 𝑆𝑥𝑛+1 + 𝑑 𝑆𝑥𝑛+1, 𝑢  ≤
𝑑 𝑆𝑦𝑛+1 , 𝑇𝑦𝑛 + 𝑑 𝑇𝑦𝑛 , 𝑇𝑥𝑛 + 𝑑 𝑆𝑥𝑛+1, 𝑢 <
𝑑 𝑆𝑦𝑛+1 , 𝑇𝑦𝑛 + 𝑚𝑎𝑥 𝑑 𝑆𝑥𝑛 , 𝑇𝑥𝑛 , 𝑑 𝑆𝑦𝑛 , 𝑇𝑦𝑛  +
𝑑 𝑆𝑥𝑛+1, 𝑢 . 

From the hypothesis, by 𝑆𝑥 → 𝑢, we have that 𝑑 𝑆𝑥𝑛 , 𝑇𝑥𝑛 =
 𝑑 𝑆𝑥𝑛 , 𝑆𝑥𝑛+1 ≤ 𝑑 𝑆𝑥𝑛 , 𝑢 + 𝑑 𝑢, 𝑆𝑥𝑛+1  → 0. 

If 𝑚𝑎𝑥 𝑑 𝑆𝑥𝑛 , 𝑇𝑥𝑛 , 𝑑 𝑆𝑦𝑛 , 𝑇𝑦𝑛  = 𝑑 𝑆𝑥𝑛 , 𝑇𝑥𝑛 , by taking 

to the limit, we obtain that 𝑑 𝑆𝑦𝑛+1, 𝑢 → 0. 

If 𝑚𝑎𝑥 𝑑 𝑆𝑥𝑛 , 𝑇𝑥𝑛 , 𝑑 𝑆𝑦𝑛 , 𝑇𝑦𝑛  = 𝑑 𝑆𝑦𝑛 , 𝑇𝑦𝑛 , we have 

that 𝑑 𝑆𝑦𝑛 , 𝑇𝑦𝑛  ≤ 𝑑 𝑆𝑦𝑛 , 𝑆𝑥𝑛 + 𝑑 𝑆𝑥𝑛 , 𝑆𝑥𝑛+1 +
𝑑 𝑆𝑥𝑛+1, 𝑆𝑦𝑛+1 +  𝑑 𝑆𝑦𝑛+1 , 𝑇𝑦𝑛 . 

From Definition 2.1., 𝑑 𝑆𝑦𝑛 , 𝑆𝑥𝑛 → 0  and by taking to the 

limit, we obtain that 𝑑 𝑆𝑦𝑛+1, 𝑢 → 0. 

This shows that the Picard iteration is w²-stable with respect 

to (S,T).  

Theorem 3.2. Let (X,d)  be a complete metric space and S, T: 

X → X such that T(X) ⊆ S(X), satisfying (2), i.e.,  

d(Tx,Ty)<max{d(Sx,Tx),d(Sy,Ty),d(Sx,Sy)}, for all x, y ∈ X and 

x ≠ y. 

Let {𝑆𝑥𝑛}𝑛=0
∞   be an iterative procedure defined by 𝑥0 ∈ X  

and 𝑆𝑥𝑛+1  = T𝑥𝑛 , for all n ≥ 0 and the sequence {𝑆𝑥𝑛 }   
converges to u, where u is a coincidence point of S and T. 

Then, the Picard iteration is w²-stable.  

Proof. We follow the same assumptions as in Theorem 3.1., 

by taking {𝑆𝑦𝑛}𝑛=0
∞   to be an equivalent sequence of {𝑆𝑥𝑛} . 

By Definition 2.2, if  lim𝑛→∞ 𝑑(𝑆𝑦𝑛+1, 𝑇𝑦𝑛) = 0 implies that 

limn→∞ 𝑆𝑦𝑛 = 𝑢, then the Picard iteration is w²-stable. 

Theorem 3.1. shows this result if we consider 

max{d(Sx,Tx),d(Sy,Ty)}. In this case, there is a new situation, 

when max could be d(Sx,Sy).  

Therefore, following the same steps, we get that 

max{d(S𝑥𝑛 ,T𝑥𝑛 ),d(S𝑦𝑛 ,T𝑦𝑛 ),d(S𝑥𝑛 ,S𝑦𝑛 )}= d(S𝑥𝑛 ,S𝑦𝑛 ). From 

Definition 2.1., we have that 𝑑 𝑆𝑦𝑛 , 𝑆𝑥𝑛 → 0 and by taking 

to the limit as it is shown in the above theorem, we obtain the 

conclusion. 

Theorem 3.3. Let (X,d)  be a complete metric space and S, T: 

X → X such that T(X) ⊆ S(X), satisfying (3), i.e., 

d(Tx,Ty)<max{d(Sx,Tx),d(Sy,Ty),d(Sx,Sy), d(Sx,Ty), d(Sy,Tx)}, 

for all x, y ∈ X and x ≠ y. 

Let {𝑆𝑥𝑛}𝑛=0
∞   be an iterative procedure defined by 𝑥0 ∈ X  

and 𝑆𝑥𝑛+1  = T𝑥𝑛 , for all n ≥ 0 and the sequence {𝑆𝑥𝑛 }   
converges to u, where u is a coincidence point of S and T. 

Then, the Picard iteration is w²-stable.  

Proof. We follow the same assumptions as in Theorem 3.2., 

where is shown this result if we consider 

max{d(Sx,Tx),d(Sy,Ty),d(Sx,Sy)}.  In this case, there are new 

situations, when max could be d(Sx,Ty) or d(Sy,Tx). Again, we 

follow the same steps.   

If max is 𝑑 𝑆𝑥𝑛 , 𝑇𝑦𝑛 , we have that 𝑑 𝑆𝑥𝑛 , 𝑇𝑦𝑛 ≤
𝑑 𝑆𝑥𝑛 , 𝑆𝑦𝑛 + 𝑑 𝑆𝑦𝑛 , 𝑇𝑦𝑛 . From Definition 

2.1.,\ref{Def_S_ech}, 𝑑 𝑆𝑦𝑛 , 𝑆𝑥𝑛 → 0   and the expression 

of 𝑑 𝑆𝑦𝑛 , 𝑇𝑦𝑛  was treated in Theorem 3.1.  

On the other hand, if max is 𝑑 𝑆𝑦𝑛 , 𝑇𝑥𝑛 , then  

𝑑 𝑆𝑦𝑛 , 𝑇𝑥𝑛  ≤ 𝑑 𝑆𝑦𝑛 , 𝑆𝑥𝑛 + 𝑑 𝑆𝑥𝑛 , 𝑇𝑥𝑛 .  

By taking to the limit in a same way as in above theorems, we 

obtain the conclusion. 

Theorem 3.4. Let (X,d)  be a complete metric space and S, T: 

X → X such that T(X) ⊆ S(X), satisfying (4), i.e.,  

d(Tx,Ty)<max{d(Sx,Tx),d(Sy,Ty),d(Sx,Sy), 
𝑑(𝑆𝑥 ,𝑇𝑦)+𝑑(𝑆𝑦 ,𝑇𝑥)

2
} 

for all x, y ∈ X and x ≠ y. 

Let {𝑆𝑥𝑛}𝑛=0
∞   be an iterative procedure defined by 𝑥0 ∈ X  

and 𝑆𝑥𝑛+1  = T𝑥𝑛 , for all n ≥ 0 and the sequence {𝑆𝑥𝑛 }   
converges to u, where u is a coincidence point of S and T. 

Then, the Picard iteration is w²-stable. 

Proof. We follow the same assumptions as in Theorem 3.3., 

where is shown this result if we consider 

max{d(Sx,Tx),d(Sy,Ty),d(Sx,Sy), d(Sx,Ty), d(Sy,Tx)}.  

In this case, this is a new situation, when max could be 
𝑑(𝑆𝑥,𝑇𝑦)+𝑑(𝑆𝑦 ,𝑇𝑥)

2
. Then, following the same steps as in 

Theorem 3.3., we obtain that 𝑑(𝑆𝑥𝑛 , 𝑇𝑦𝑛) → 0 and 

𝑑(𝑆𝑦𝑛 , 𝑇𝑥𝑛) → 0, so, by taking to the limit in the whole 

expression, we get the result. 

From Theorem 3.3., we obtain the following stability result. 

Corollary 3.5. Let (X,d)  be a complete metric space and S, T: 

X → X two mappings such that T(X) ⊆ S(X), satisfying  

(5) d(Tx,Ty)<max{ d(Sx,Ty), d(Sy,Tx)},  

for all x, y ∈ X and x ≠ y. 

Let {𝑆𝑥𝑛}𝑛=0
∞   be an iterative procedure defined by 𝑥0 ∈ X  

and 𝑆𝑥𝑛+1  = T𝑥𝑛 , for all n ≥ 0 and the sequence {𝑆𝑥𝑛 }   
converges to u, where u is a coincidence point of S and T. 

Then, the Picard iteration is w²-stable. 

4. EXAMPLES 
In the following, we present some examples of mappings that 

satisfy contraction conditions and for which the associated 

Picard iteration is not (S,T)-stable, it is not (S,T)-weakly stable 

but it is (S,T)- w²-stable. 
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Example 4.1. Let S, T: [0,1] → [0,1] be given by  

Tx= 
0,   𝑥 ∈  0,

1

2
 

1

2
,   𝑥 ∈  

1

2
, 1 

    and   Sx= 

1

2
− 𝑥,   𝑥 ∈  0,

1

2
 

𝑥 −
1

4
,   𝑥 ∈  

1

2
, 1 

  ,   where  

[0,1] is endowed with the usual metric. S and T are 

continuous at every point of [0,1] except at 
1

2
 , which is their 

coincidence point, i.e., 𝑇  
1

2
 = 𝑆  

1

2
 = 0 = 𝑢  and 

𝑇  0,1  =  0,
1

2
 ⊆ 𝑆  0,1  =  0,

1

2
 ∪  

1

4
,

3

4
 =  0,

3

4
 . 

For each x, y ∈ [0,1], x ≠ y, T and S satisfy the condition (5), 

i.e.,  d(Tx,Ty)<max{ d(Sx,Ty), d(Sy,Tx)}.  

Indeed, first let 𝑥 ∈  0,
1

2
 , 𝑦 ∈  0,

1

2
  and x ≠ y.  

Then,  𝑇𝑥 − 𝑇𝑦 = 0 < max   
1

2
− 𝑥 − 0 ,  

1

2
− 𝑥 − 0  .  

If 𝑥 ∈  
1

2
, 1 , 𝑦 ∈  

1

2
, 1  and x ≠ y, then  

 𝑇𝑥 − 𝑇𝑦 = 0 < max   𝑥 −
1

4
−

1

2
 ,  𝑦 −

1

4
−

1

2
  .  

If  𝑥 ∈  0,
1

2
  and 𝑦 ∈  

1

2
, 1 , then  

 𝑇𝑥 − 𝑇𝑦 =  0 −
1

2
 =

1

2
< max   

1

2
− 𝑥 −

1

2
 ,  𝑦 −

1

4
−

0  = max   𝑥 ,  𝑦 −
1

4
  .   

We will show that the Picard iteration is not (S,T)-stable, it is 

not (S,T)-weakly stable but it is (S,T)- w²-stable. 

In order to prove the first claim, let (S𝑦𝑛 ), with S𝑦𝑛 =
𝑛+2

2𝑛
,

𝑛 ≥ 1. Then 𝜀𝑛 =  𝑆𝑦𝑛+1 − 𝑇𝑦𝑛  =  
𝑛+3

2 𝑛+1 
−

1

4
−

1

2
 , because 

S𝑦𝑛 > 
1

2
, for n≥1. 

According to (S,T)-stability definition of [26], assuming that 

limn→∞ 𝜀𝑛 = 0, we should obtain that limn→∞ 𝑆𝑦𝑛 =
3

4
 , but in 

fact, limn→∞ 𝑆𝑦𝑛 =
1

2
, so the Picard iteration is not (S,T)-

stable. 

In order to study the (S,T)-weak stability, from the (S,T)-weak 

stability definition of [28], we take an approximate sequence 

{S𝑦𝑛 } of (S𝑥𝑛 ). Then, there exists a decreasing sequence of 

nonnegative numbers {𝜂𝑛 } converging to some 𝜂 ≥0, for 

n→∞, such that  𝑆𝑥𝑛 − 𝑆𝑦𝑛  ≤ 𝜂𝑛 , 𝑛 ≥ 𝑘. 

Then, −𝜂𝑛 ≤ 𝑆𝑥𝑛 − 𝑆𝑦𝑛 ≤ 𝜂𝑛  and it results that 0 ≤ 𝑆𝑦𝑛 ≤
𝑆𝑥𝑛 + 𝜂𝑛 , 𝑛 ≥ 𝑘.  

If 𝑥0 ∈  0,
1

2
 , 𝑆𝑥1 = 𝑇𝑥0 = 0, therefore 𝑆𝑥𝑛 = 0, n≥1. On the 

other hand, if 𝑥0 ∈  
1

2
, 1 , then 𝑆𝑥1 = 𝑇𝑥0 =

1

2
 and 𝑆𝑥2 =

𝑇𝑥1 = 0, so 𝑆𝑥𝑛 = 0, n≥2. 

If 𝑥𝑛 ∈  0,
1

2
 , then 𝑆𝑥𝑛 =

1

2
− 𝑥𝑛 . So, 0 ≤ 𝑥𝑛 ≤

1

2
 ⇔   0 ≥

−𝑥𝑛 ≥ −
1

2
 ⇔  

1

2
≥

1

2
− 𝑥𝑛 ≥ 0 ⇔   0 ≤  

1

2
− 𝑥𝑛 = 𝑆𝑥𝑛 ≤ 

1

2
. 

Hence, in this situation, 𝑆𝑥𝑛  can have the value of 0.  

If 𝑥𝑛 ∈  
1

2
, 1 , then 𝑆𝑥𝑛 = 𝑥𝑛 −

1

4
. So, 

1

2
< 𝑥𝑛 ≤ 1 ⇔   

1

4
<

𝑥𝑛 −
1

4
= 𝑆𝑥𝑛 ≤

3

4
. In this case, 𝑆𝑥𝑛  can not be 0.  

Therefore, 𝑥𝑛 ∈  0,
1

2
  and then, 𝑇𝑥𝑛 = 0.  

Since 𝑆𝑥𝑛 = 0, for n≥2, we obtain that 0 ≤ 𝑆𝑦𝑛 ≤ 𝜂𝑛 , 𝑛 ≥

𝑘1 = max⁡{2, 𝑘}. We can choose {𝜂𝑛} such that 𝜂𝑛 ≤ 
1

2
 , 

n≥ 𝑘1 and therefore 0 ≤  𝑆𝑦𝑛 ≤ 
1

2
, ∀ n ≥ 𝑘1 . 

If 𝑦𝑛 ∈  0,
1

2
 , then 𝑆𝑦𝑛 =

1

2
− 𝑦𝑛 , so, 0 ≤ 𝑦𝑛 ≤

1

2
 ⇔   0 ≥

−𝑦𝑛 ≥ −
1

2
 ⇔  −

1

2
≤ −𝑦𝑛 ≤ 0 ⇔   0 ≤  

1

2
− 𝑦𝑛 = 𝑆𝑦𝑛 ≤ 

1

2
, 

situation that can be possible. In this case, we have that 

𝑇𝑦𝑛 = 0.  

If 𝑦𝑛 ∈  
1

4
,  

3

4
 ⋂  

1

2
,  1 =  

1

2
,  

3

4
 , then 𝑆𝑦𝑛 = 𝑦𝑛 −

1

4
, so, 

1

2
< 𝑦𝑛 ≤

3

4
 ⇔   

1

4
< 𝑦𝑛 −

1

4
= 𝑆𝑦𝑛 ≤  

1

2
 ,  

and this can be possible, too. Hence, for 𝑦𝑛 ∈  
1

2
,  

3

4
 , we have 

that 𝑇𝑦𝑛 =  
1

2
.  

If 𝑑 𝑆𝑦𝑛+1 , 𝑇𝑦𝑛 → 0 implies that 𝑑 𝑆𝑦𝑛 , 𝑢 → 0, for n →  ∞, 

the (S,T)-weak stability should be obtained.  

If 𝑦𝑛 ∈  0,
1

2
 , then from 𝑑 𝑆𝑦𝑛+1 , 𝑇𝑦𝑛 = 𝑑 𝑆𝑦𝑛+1, 0 → 0, 

we obtain that 𝑆𝑦𝑛+1 → 0 but if 𝑦𝑛 ∈  
1

2
,  

3

4
 , then from 

𝑑 𝑆𝑦𝑛+1 , 𝑇𝑦𝑛 = 𝑑  𝑆𝑦𝑛+1,
1

2
 → 0, we obtain that 𝑆𝑦𝑛+1 →

1

2
, so 𝑆𝑦𝑛 →

1

2
. Therefore, the Picard iteration is not (S,T)-

weakly stable. 

In order to study the w²-stability with respect to (S,T), from 

Definition 2.2., we should have that lim𝑛→∞ d(Syn+1 , Tyn) =
0,  implies that lim𝑛→∞ Syn = 𝑢.   

Let an equivalent sequence {S𝑦𝑛 } of S𝑥𝑛   and by Definition 

2.1.,  d(S𝑥𝑛 , 𝑆𝑦𝑛 ) → 0,  as n → ∞.  

So, d(𝑆𝑦𝑛 , 𝑢)≤ d(S𝑦𝑛 , 𝑆𝑥𝑛 )+ d(𝑆𝑥𝑛 , 𝑢)= d(S𝑦𝑛 , 𝑆𝑥𝑛 ) → 0 and 

this proves the w²-stability with respect to (S,T).  

Example 4.2.  Let S, T: [0,1] → [0,1] be given by  

Tx= 

𝑥+1

2
,   𝑥 ∈  0,

1

2
 

1

2
,   𝑥 ∈  

1

2
, 1 

    and   Sx= 

1

2
− 𝑥,   𝑥 ∈  0,

1

2
 

𝑥 −
1

4
,   𝑥 ∈  

1

2
, 1 

  ,   where  

[0,1] is endowed with the usual metric.  

S and T have two coincidence points, i.e., 𝑇 0 = 𝑆 0 =

𝑇  
3

4
 = 𝑆  

3

4
 =

1

2
= 𝑢  and 𝑇  0,1  =  

1

2
,

1

2
+1

2
 ∪  

1

2
 =

 
1

2
,

3

4
 ⊆ 𝑆  0,1  =  0,

1

2
 ∪  

1

4
,

3

4
 =  0,

3

4
 . 

For each x, y ∈ [0,1], x ≠ y, T and S satisfy the condition (5), 

i.e.,  d(Tx,Ty)<max{ d(Sx,Ty), d(Sy,Tx)}.  

Indeed, first let 𝑥 ∈  0,
1

2
 , 𝑦 ∈  0,

1

2
  and x ≠ y.  

Then,  𝑇𝑥 − 𝑇𝑦 =  
𝑥

2
+

1

2
−

𝑦

2
−

1

2
 =

1

2
 𝑥 − 𝑦 =  0,

1

4
 <

max   
1

2
− 𝑥 −

𝑦

2
−

1

2
 ,  

1

2
− 𝑦 −

𝑥

2
−

1

2
  = max   𝑥 +

𝑦

2
 ,  𝑦 +

𝑥

2
  = max   0,

1

2
 +  0,

1

4
 ,  0,

1

2
 +  0,

1

4
  =

max   0,
3

4
 ,  0,

3

4
  =  0,

3

4
 .  

If 𝑥 ∈  
1

2
, 1 , 𝑦 ∈  

1

2
, 1  and x ≠ y, then  

 𝑇𝑥 − 𝑇𝑦 = 0 < max   𝑥 −
1

4
−

1

2
 ,  𝑦 −

1

4
−

1

2
  =

max   𝑥 −
3

4
 ,  𝑦 −

3

4
  =  0,

1

4
 .  



International Journal of Computer Applications (0975 – 8887) 

Volume 37– No.4, January 2012 

12 

If  𝑥 ∈  0,
1

2
  and 𝑦 ∈  

1

2
, 1 , then  

 𝑇𝑥 − 𝑇𝑦 =  
𝑥

2
+

1

2
−

1

2
 =

1

2
 𝑥 =  0,

1

4
 < max   

1

2
− 𝑥 −

1

2
 ,  𝑦 −

1

4
−

𝑥

2
−

1

2
  = max   𝑥 ,  𝑦 −

𝑥

2
−

3

4
  =

max   0,
1

2
 ,  

1

2
, 1 −  0,

1

4
 −

3

4
=  0,

1

4
  =  0,

1

2
 .   

We will show that the Picard iteration is not (S,T)-stable, it is 

not (S,T)-weakly stable but it is (S,T)- w²-stable. 

In order to prove the first claim, let (S𝑦𝑛 ), with S𝑦𝑛 =
𝑛+2

2𝑛
,

𝑛 ≥ 1. Then 𝜀𝑛 =  𝑆𝑦𝑛+1 − 𝑇𝑦𝑛  =  
𝑛+3

2 𝑛+1 
−

1

4
−

1

2
 , because 

S𝑦𝑛 > 
1

2
, for n≥1. 

According to (S,T)-stability definition of [26], assuming that 

limn→∞ 𝜀𝑛 = 0, we should obtain that limn→∞ 𝑆𝑦𝑛 =
3

4
 , but in 

fact, limn→∞ 𝑆𝑦𝑛 =
1

2
, so the Picard iteration is not (S,T)-

stable. 

For the (S,T)-weak stability, from the (S,T)-weak stability 

definition of [28], for any 𝑥0 ∈  0,1 , the sequence { 𝑆𝑥𝑛} 

generated by the iterative procedure 𝑆𝑥𝑛+1 = 𝑇𝑥𝑛 , 𝑛 > 0, 

converges to u = 
1

2
. 

Indeed, if 𝑥0 ∈  0,
1

2
 , then 𝑆𝑥1 = 𝑇𝑥0 =

𝑥0+1

2
∈

 0,
1

2
 +1

2
=

 1,
3

2
 

2
=  

1

2
,

3

4
 .  Now, if 𝑥1 ∈  0,

1

2
 , then 𝑆𝑥1 =

1

2
− 𝑥1 ∈

1

2
−

 0,
1

2
 =  0,

1

2
 .  Only for 𝑥1 = 0,  we have that 𝑆𝑥2 = 𝑇𝑥1 =

1

2
, 

so,   𝑆𝑥𝑛 = 𝑇𝑥𝑛 =
1

2
, ∀ n≥2. 

On the other hand, if  𝑥1 ∈  
1

2
,  1 , then 𝑆𝑥1 = 𝑥1 −

1

4
∈

 
1

2
,  1 −

1

4
=  

1

4
,  

3

4
  .  Only for 𝑥1 ∈  

3

4
,  1  ,  we have that 

𝑆𝑥1 ∈  
1

2
,  

3

4
  . Hence, 𝑆𝑥2 = 𝑇𝑥1 =

1

2
 , so, 𝑆𝑥𝑛 = 𝑇𝑥𝑛 =

1

2
, ∀ 

n≥2. 

If 𝑥0 ∈  
1

2
,  1 , then 𝑆𝑥1 = 𝑇𝑥0 =

1

2
 , so, 𝑆𝑥𝑛 = 𝑇𝑥𝑛 =

1

2
, ∀ 

n≥1. 

We take an approximate sequence {S𝑦𝑛 } of S𝑥𝑛 . Then, there 

exists a decreasing sequence of nonnegative numbers {𝜂𝑛 } 

converging to some 𝜂 ≥0, for n→∞, such that  𝑆𝑥𝑛 − 𝑆𝑦𝑛  ≤
𝜂𝑛 , 𝑛 ≥ 𝑘. 

Then, −𝜂𝑛 ≤ 𝑆𝑥𝑛 − 𝑆𝑦𝑛 ≤ 𝜂𝑛  and it results that 0 ≤ 𝑆𝑦𝑛 ≤
𝑆𝑥𝑛 + 𝜂𝑛 , 𝑛 ≥ 𝑘.  

Since 𝑆𝑥𝑛 =
1

2
, for n≥2, we obtain that 0 ≤ 𝑆𝑦𝑛 ≤

1

2
+ 𝜂𝑛 ,

𝑛 ≥ 𝑘1 = max⁡{2, 𝑘}. We can choose {𝜂𝑛} such that 𝜂𝑛 ≤ 
1

4
 , 

n≥ 𝑘1 and therefore 0 ≤  𝑆𝑦𝑛 ≤ 
3

4
, ∀ n ≥ 𝑘1 . 

If 𝑑 𝑆𝑦𝑛+1 , 𝑇𝑦𝑛 → 0 implies that 𝑑 𝑆𝑦𝑛 , 𝑢 → 0, for n →  ∞, 

the (S,T)-weak stability should be obtained.  

If 𝑦𝑛 ∈  
1

2
,  1 ⋂  

1

4
,  

3

4
 =  

1

2
,  

3

4
 , then 𝑆𝑦𝑛 = 𝑦𝑛 −

1

4
 ∈  

1

2
,  

3

4
 −

1

4
=  

1

4
,  

1

2
 ∈  0,

3

4
  and 𝑇𝑦𝑛 =  

1

2
. From 𝑑 𝑆𝑦𝑛+1, 𝑇𝑦𝑛 =

𝑑  𝑆𝑦𝑛+1 ,
1

2
 → 0, we obtain that 𝑆𝑦𝑛+1 →

1

2
, so 𝑆𝑦𝑛 →

1

2
= 𝑢, 

but if 𝑦𝑛 ∈  0,
1

2
 , then 𝑆𝑦𝑛 =

1

2
− 𝑦𝑛 =

1

2
−  0,

1

2
 =  0,

1

2
 ∈

[0,  
3

4
  and 𝑇𝑦𝑛 =  

𝑦𝑛 +1

2
∈

1

2
 1,

3

2
 =  

1

2
,

3

4
 . 

Therefore, 𝑑 𝑆𝑦𝑛+1 , 𝑇𝑦𝑛 =   0,
1

2
 −  

1

2
,

3

4
  =  

1

4
,

1

2
  and then 

lim𝑛→∞ d(Syn+1, Tyn) can not be 0. Therefore, the Picard 

iteration is not (S,T)-weakly stable. 

In order to study the w²-stability with respect to (S,T), from 

Definition 2.2., we should have that lim𝑛→∞ d(Syn+1 , Tyn) =
0,  implies that lim𝑛→∞ Syn = 𝑢.   

Let an equivalent sequence {S𝑦𝑛 } of S𝑥𝑛   and by Definition 

2.1.,  d(S𝑥𝑛 , 𝑆𝑦𝑛 ) → 0,  as n → ∞.  

So, d(𝑆𝑦𝑛 , 𝑢)≤ d(S𝑦𝑛 , 𝑆𝑥𝑛 )+ d(𝑆𝑥𝑛 , 𝑢)= d(S𝑦𝑛 , 𝑆𝑥𝑛 ) → 0 and 

this proves the w²-stability with respect to (S,T).  

5. CONCLUSIONS 
The concept of stability is slightly not very precise because of 

the sequence {𝑆𝑦𝑛}𝑛=0
∞   which is arbitrary taken. From a 

numerical point of view, {𝑆𝑦𝑛}𝑛=0
∞   must be an approximate 

sequence of  {𝑆𝑥𝑛}𝑛=0
∞ .   

By adopting a concept of such kind of approximate sequences, 

Berinde [1] introduced a weaker and more natural concept of 

stability, called weak stability. So, any stable iteration will be 

also weakly stable but the reverse is not generally true. 

But using an approximate sequence in the definition of weak 

stability, some fixed point iteration procedures are not weakly 

stable but if it is used a weaker type of sequence, the stability 

can be obtained in the meaning of a new concept, named w²-

stability. 

Therefore, here we proved that for the class of mappings 

which satisfy some contraction conditions presented by 

Harder and Hicks [8] and for the class of mappings with a 

coincidence point, the associated Picard iterations are w²-

stable.  

We also gave some illustrative examples of mappings that 

satisfy contraction conditions and for which the associated 

Picard iteration is not (S,T)-stable, it is not (S,T)-weakly stable 

but it is (S,T)- w²-stable. 
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