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ABSTRACT  
A Mobile Ad hoc Network is a network of mobile nodes 

operating in an infrastructure-less network. These nodes not 

have the defense rendered by firewalls in infrastructure-based 

networks. Trust oriented system aids to improvise this 

situation. So, the incorporation of trust in routing decisions 

yields a more secure and reliable framework for such type of 

networks. As if any suggested model does not achieve as 

projected, it is reduced quality of service. The validation 

before deployment of any model leads to a more stable model. 

A good way to confirm a model is to use formal specification 

and verification techniques. In the present study, with the aim 

to include trust component in conventional OLSR protocol of 

ad hoc network and also to rule out invalid actions, formal 

specifications of the various procedures of trusted OLSR 

Protocol are given using ―Z‖ specification language. Z is a 

state-oriented formal specification language based on set 

theory and predicate logic. Z/EVES, a proof tool based on 

EVES and ZF set theory that supports the Z notation is used 

for the formal specifications. 
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1. INTRODUCTION 

Nodes in an ad-hoc network, an infrastructure less network, 

are more prone to attacks as there is no line of defense offered 

by firewalls, which is available to the counterpart, 

infrastructure-based networks. The conventional 

cryptographic approaches do not prove an effectual measure 

to defend against threats from internal compromised or 

malicious nodes. The operating environment of ad-hoc 

networks depends exclusively on the collaboration among 

nodes to provide connectivity and communication routes. This 

naive dependency on intermediate nodes makes the ad-hoc 

network vulnerable to passive and active attacks by malicious 

nodes. To alleviate the effect of malicious nodes and to 

achieve higher levels of security and even reliability, it is 

worthwhile to appraise the trustworthiness of other nodes in 

network before any operation or interaction. In the dominion 

of network security, the perception of trust is as a relation 

among entities that are involved in protocols. 

Trust and reputation have been suggested in the literature as a 

thriving security means for open environments such as the 

Internet, and substantial research has been made on modeling 

and administering trust and reputation. There is a widespread 

postulation in the routing protocols that all nodes are 

trustworthy and cooperative. Though, the actuality is unlike. 

Malicious nodes can make use of this assumption to corrupt 

the network. A bundle of attacks such as black hole, gray 

hole, flooding attack, Denial of Services may annihilate the 

network. Even though trust is extensively researched 

nowadays, even there is not a accord and systematic theory 

based on trust but it has affirmative effects on the security 

solutions for infrastructure-less networks. There might be 

some additional operating cost in terms of time and 

complexity by the inclusion of trustworthiness but it is 

marginal and that too at the cost of more security so this 

overhead can be disregarded.  

The reliability of critical systems is a grave concern. Formal 

methods have demonstrated their appeal in extending the 

reliability of such systems in this regard. All of these are 

based on mathematical representation and analysis of systems. 

The prime advantages [5] of applying formal methods in 

designing a system are in the lessening of the figure of errors 

in systems. More efforts have to spend in the initial phases of 

software development in the case of formal specifications. 

This lessens requirement errors, as it causes a comprehensive 

analysis of the requirements. Incompleteness and 

inconsistencies can be revealed and resolved. Hence, the 

amount of rework due to requirements problems is reduced. 

Formal specification is an element of a entire compilation of 

practices that are known as ‗formal methods‘. 

Keeping in mind all these concerns, in an attempt to include 

trust in the functioning of routing of OLSR protocol of ad hoc 

networks, formal specifications of the procedures of trusted 

OLSR protocol are presented in this paper. The novelty of the 

work is to give the abstract representation of the procedures 

with trust attribute base that are going to be used in making 

routing decisions and as well other decisions. This work is an 

integral part of the study to develop a trust oriented security 

framework for ad hoc networks. The intended readers are 

researchers interested in building abstract models and to use 

trust for security purposes. 

The paper is organized as follows. The section 2 is in relation 

to the review of literature. The section 3 gives a general idea 

of the protocol under study and the specification language 

used. The section 4 lists down the specification(s). The last 

section 5 concludes the paper.  

2. REVIEW OF LITERATURE 

There are numerous routing protocols for ad hoc networks are 

in literature, and every protocol has some worth on one aspect 

or the other. With the aim of to decide on a routing protocol 

for building a trust oriented framework for ad hoc networks, a 

study comprising the performance analysis of routing 

protocols [13] namely – DSR, AODV, OLSR and GRP has 

been done for common applications: email and ftp in a 

simulated environment. The observation is that, the OLSR 

protocol has the better response over others.  
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A highly secure, save node‘s power and even the time for 

communication is less was devised [6], that use trust which is 

based upon a node has on its neighbor, different trust level 

defined and security is applied accordingly A study [1] 

demonstrates the involvement of trust in making routing 

decisions results higher output, less amount of malicious 

drops and higher packet delivery ratio. A comprehensive 

review of the impact of trust in ad hoc network was presented 

[11]. The literature supports and emphasizes the need of 

inclusion of trust in ad hoc environments 

There are number of formal approaches and their applications 

in diverse areas for validation and for proving correctness the 

models in study. The formal verification techniques applicable 

to all areas of ad hoc network namely, authentication, access 

control, routing etc. An exhaustive review of the formal 

verification of adhoc network routing protocols [12] using the 

variety of formal specification languages, modeling 

techniques and verifying tools are quoted in early work.  

AVISPA, BAN Logic, Petri nets, SDL, SPIN, PROMELA 

and UPPAAL are some of the keywords of this study. The 

usage of SPIN, as model checker and PROMELA, as 

specification language found extensively, in studies related to 

ad hoc network. 

To demonstrate the methodology for formal verification of 

routing protocols of ad hoc network [2], a case study of OLSR 

protocol using PROMELA specification language and SPIN 

model checker is depicted. The OLSR protocol is also a 

subject of case study in the description of testing methodology 

for an ad hoc routing protocol [9].  

The Z notation is used as a formal technique for formal 

Verification of Route Request procedure for AODV Protocol. 

The formal specification is analyzed and validated using Z 

Eves tool. Z specification language is used to describe the 

component in the proposal of conceptual component model 

[4]. The Z language seems more abstract, reasoned to choice 

of specification language for the present study. 

3. PRELIMINARIES 

The protocol under study is OLSR and the specification 

language used for formal specification is the ―Z‖ language. 

Outlines of these are as follows— 

3.1 OLSR Protocol 

Optimized Link State Routing (OLSR) [3] is proposed by 

IETF's MANET Group at 2003. Although, OLSR has newer 

and more precise narratives, with the purpose of to congregate 

our intents, agreed to its minimalism, we use the original 

version [3]. The Optimized Link State Routing Protocol 

(OLSR) is developed for mobile ad hoc networks.   

It operates as a table driven, proactive protocol, i.e., 

exchanges topology information with other nodes of the 

network regularly. Each node selects a set of its neighbor 

nodes as "multipoint relays" (MPR).  In OLSR, only nodes, 

selected as such MPRs are responsible for forwarding control 

traffic, intended for diffusion into the entire network. MPRs 

provide an efficient mechanism for flooding control traffic by 

reducing the number of transmissions required. A node selects 

MPRs from among its one hop neighbors with "symmetric", 

i.e., bi-directional, linkages.  The MPR nodes are chosen 

among the 1-hop neighbors in such a way that they are the 

minimum set that covers all the 2-hop neighbors In OLSR, 

each node is injecting topological information into the 

network through the transmission of HELLO messages and, 

for some nodes, TC messages. If some nodes (malicious or 

malfunctioning) inject invalid network traffic, network 

integrity may be compromised. 

3.2 The Z notation 

The Z (pronounced Zed) language [8] [14] is a formal 

specification language named after Zermelo–Fraenkel set 

theory, is a formal specification language used for describing 

and modeling computing systems. ―Z‖ language is a formal 

specification language, which is used for description and 

functions modeling of computer systems. This language 

enables to write formal specification of computer programs 

and to formulate evidences of system behavior.  

Z specification language is based on the standard 

mathematical notation used in axiomatic set theory, lambda 

calculus, and first-order predicate logic. All expressions in Z 

notation are typed, thereby avoiding some of the paradoxes of 

naive set theory. Z has a number of language constructs 

including given type, abbreviation type, axiomatic definition, 

state and operation schema definitions, etc. but the basic unit 

of the Z specification for the components is a boxed notation 

called ‗schema‘. 

3.3 Z/EVES 

Z/EVES [10][15] use state-of-the-art formal methods 

techniques from Europe and North America, integrating a 

leading specification notation with a leading automated 

deduction capability. Z/EVES support almost the entire Z 

notation; only the unique existence quantifier for schema 

expressions is not yet supported. The Z/EVES prover provides 

powerful automated support with user commands for directing 

the prover. Z/EVES consist of two parts. First part is virtual 

server, which insures syntactic propriety revision and 

activities for execution of theorems and paragraphs logic 

validation. Second part is graphical interface, which enables 

work with specification.  

4. THE SPECIFICATION(S) 

In order to develop a trust oriented framework for ad hoc 

network using OLSR routing protocol the approach that we 

are using is depicted in the Figure 1. This paper is in the 

direction of building an abstract model of the protocol under 

study. 

 
Figure 1: A General Trust Oriented Framework 

4.1  Terminology 

The terminology used in the specification of OLSR protocol 

[3] is as – 

main_address  

 

The main address of a node, which will be 

used in OLSR control traffic as the 

"originator address" of all messages 

emitted  

neighbor node A node X is a neighbor node of node Y if 
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node Y can hear node X 

2-hop neighbor A node heard by a neighbor. 

multipoint relay 

(MPR) 

 

 

A node which is selected by its 1-hop 

neighbor, node X, to "re-transmit" all the 

broadcast messages that it receives from 

X, provided that the message is not a 

duplicate, and that the time to live field of 

the message is greater than one. 

multipoint relay 

selector  

A node which has selected its 1-hop 

neighbor, node X, as its multipoint relay, 

will be called a multipoint relay selector of 

node X 

The information repositories record information 

about neighbors, 2-hop neighbors, MPRs and MPR selectors 

[3]. 

Neighbor Set 

 

A node records a set of "neighbor tuples" 

(N_neighbor_main_addr, N_willingness), 

describing neighbors 

2-hop Neighbor 

Set 

 

A node records a set of "2-hop tuples" 

(N_neighbor_main_addr, N_2hop_addr, 

N_time), describing symmetric links 

between its neighbors and the symmetric 2-

hop neighborhood. 

MPR Set 

 

A node maintains a set of neighbors which 

are selected as MPR.  Their main addresses 

are listed in the MPR Set. 

MPR Selector 

Set 

 

A node records a set of MPR-selector 

tuples (MS_main_addr, MS_time), 

describing the neighbors which have 

selected this node as a MPR.  

4.2 Assumptions 

In order to simplify the implementation two assumptions 

regarding the OLSR protocols have been made.  

 Every node has a single interface 

 If the connection exists between any two node 

then it is of symmetric type 

4.3 Formal Specifications 

The identifier of an object in ad hoc network is denoted by 

Node as given below. The power of battery is dead, low or 

normal denoted by Dead, Low and Normal respectively [7]. 

 [Node] 

Power ::Dead Low Normal Safe Full 

 
The Trust as in Figure 2 can be any value from 0 to 10 where 

0 indicates complete distrust and 10 signifies the full trust in 

the node and the willingness of node whose specifications are 

given in Figure 3, depicts the willingness of node to 

participate in the various decisions or operations of the ad hoc 

network. The value 1 is the lower level and 7 is the upper 

level of willingness. 

 
Trust

N_trust:  


N_trust  10  N_trust  1 
 

 

Figure 2: Trust Specifications 

 

 
Willingness

N_willingness:  


N_willingness  7  N_willingness  1 
Figure 2: Willingness Specifications 

The Neighbor is specified as a node and the Neighbor_tuple 

that forms an entry for the neighborset of the object has the 

neighbor, its willingness to participate and trust of the host on 

that neighbor as shown in Figure 4.  



Neighbor 

N_neighbor_main_addr: Node 


Neighbor_tuple 

N_neighbor_tuple: Neighbor  Willingness  Trust 
 

Figure 4: Neighbor Set Specifications 

The TwoHopNeighbor is specified as a node and the 

Twohop_tuple that forms an entry for the twohopneighborset 

of the object has the neighbor, twohopneighbor , time till its 

live, and the rust of the host on that twohop neighbor as 

shown in Figure 5. 

TwoHopNeighbor 

N_2hop_addr: Node 
 
N_time ::Live Expired 

Twohop_tuple 

N_twohop_tuple: Neighbor  TwoHopNeighbor  

N_time  Trust 
 

Figure 5: TwoHop Neighborset Specifications 

The specification of the MPRSet and MPRSelectorSet is in 

Figure 6. It gives the address of the node which is MPR and 

the trust of the object on that MPR. In MPRSelectorSet the 

address of the node which selects host as MPR and validity 

time is stored.  

MPRSet 

N_mpr_tuple: Node  Trust 


MPRSelectorSet 

MS_main_addr: Node 

MS_time:  
 

 

Figure 6: MPRSet and MPRSelectorSet Specifications 

The specification of the object with basic attributes is given in 

Figure 7. The id gives the main address of the Object. The 

willingness indicates about that node in the participation of 

communication. The other attributes neighborset, 

twohopneighborset, mprset and mprselectorset are 

information repositories of the object. The duplicateset, 

linkset, topologyset are the sets used for operation of the ad 

hoc network and routing table is used for making routing 

entries. 
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Object 

id: Node  

battery: Power 

willingness:  

neighborset:  Neighbor_tuple 

twohopneighborset:  Twohop_tuple 

mprset:  MPRSet 

mprselectorset:  MPRSelectorSet 

duplicateset:  Duplicate_tuple 

linkset:  Link_Tuples 

topologyset:  Topology_Tuples 

routingtable:  RoutingTable 


Figure 7: An Object with attributes Specifications 

To avoid re-processing of some messages, each node 

maintains a Duplicate Set. For such a message, a node records 

a "Duplicate Tuple", where D_addr is the originator address , 

D_seq_num is the message sequence number of the message, 

D_retransmitted is a boolean indicating whether the message 

has been already retransmitted and its formal specifications 

are given in Figure 8.  

Duplicate_addr 

D_addr: Node 
 
Duplicate_seq_num

D_seq_num:  
 
Duplicate_retransmitted

D_retransmitted: Boolean 
 
Duplicate_time 

D_time:  
 
Duplicate_tuple

duplicate_tuple: Duplicate_addr  

Duplicate_seq_num  Duplicate_retransmitted    

Duplicate_time 
 

Figure 8: Duplicate Set Specifications 

The specification for local link base that stores information 

about links to neighbors is as shown in Figure 9. The 

LocalAddress is the address of the local node 

NeighborAddress is the address of the neighbor and L_time to 

indicate time till it is linked and the Link_Tuples is the 

structure of the tuple forming a link set for the object. 

LocalAddress 

L_local_iface_addr: Node 


NeighborAddress

L_neighbor_iface_addr: Node 


L_time ::Linked NotLinked 

Link_Tuples

link_tuple: LocalAddress  NeighborAddress  

L_time 
 

Figure 9: Link Set Specifications 

The formal specifications of the OLSR packet and their 

attributes are given in the Figure 10. The IP and the UDP 

headers are not considered in the specification.  

Packet_length

packet_length:  


Packet_seq_num 

packet_seq_num:  


Messages 

messages: iseq MessagePacket 


Packet 

packet: Packet_length Packet_seq_num  

Messages 
 

Figure10: Packet Specifications 

The specification of the procedure for processing the packet is 

shown in Figure 11. The packet is discarded if it is of short in 

length than the specified or if the trust on the packet is less as 

per the policy. In the present case, the trust value 5 is the at 

least requirement for the packet to process. 

PacketProcessing 

host?: Object 

packet?: IP_Packet 

status!: Status_of_message_or_packet 


if packet? . ip_packet . 2 . packet . 1 . packet_length 

 16     trust_on_packet host? packet?  5 

then status! = Discarded 

else status! = Accepted 
 

Figure 11: Processing of Packet 

The specification of the message packet is given in Figure 12. 

The formal specifications of the components of the message 

packet are also shown. 
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Message_type 

message_type: 1 .. 127 
 
Originator_address 

originator_address: Node 
 
Ttl

ttl:  
 
Hop_count

hop_count:  
 
Message_size 

message_size:  
 
Message_seq_num

message_seq_num:  
 
MessagePacket

msg_packet_tuple: Message_type  

Originator_address   Ttl  Hop_count 

   Message_size  Message_seq_num  Message 
 

Figure 12: Message Specifications 

 

The specification of the function to make decision to forward 

or discard a packet is shown in the Figure 13. The object and 

IP address are the inputs and the status is the output. Of this 

function 

forward_or_discard: Object  IP_Address  

Status_of_message_or_packet 


h: Object; n: IP_Address 

   if m: MPRSelectorSet 

           m  h . mprselectorset  n . ip_address 

=      m . MS_main_addr true 

     then forward_or_discard h n = Forwarded 

     else forward_or_discard h n = Discarded 

Figure 13: Function to forward or discard a 

message/packet 

A packet consist number of messages may be of different 

types. The message processing and forwarding messages are 

two different actions, conditioned by different rules. 

Processing relates to using the content of the messages, while 

forwarding is related to retransmitting the same message for 

other nodes of the network. The formal specification of the 

procedure of default forwarding algorithm is presented in the 

Figure 14. The message is the part of the packet that is the 

payload of packet. 

MessageProcessing

Duplicate_tuple 

host?: Object 

sender_address?: IP_Address 

message?: MessagePacket 

status!: Status_of_message_or_packet 

dup_set:  Duplicate_tuple 

new_dup_tuple: Duplicate_tuple 


if message? . msg_packet_tuple . 4 . ttl  1     trust_on_message host? message?  5 

then status! = Discarded else if ds:  Duplicate_tuple    d: Duplicate_tuple ds = host? . duplicateset 

    d  host? . duplicateset    d . duplicate_tuple . 1 . D_addr 

      message? . msg_packet_tuple . 3 .   originator_address   d . duplicate_tuple . 2 . D_seq_num 

    message? . msg_packet_tuple . 7 . message_seq_num   d . duplicate_tuple . 3 . D_retransmitted = False true 

     then new_dup_tuple . duplicate_tuple . 1 . D_addr   = message? . msg_packet_tuple . 3 . originator_address 

     new_dup_tuple . duplicate_tuple . 2 . D_seq_num    = message? . msg_packet_tuple . 7 . message_seq_num 

 if forward_or_discard host? sender_address? =  Forwarded  then new_dup_tuple . duplicate_tuple . 3 . D_retransmitted 

= True  else new_dup_tuple . duplicate_tuple . 3 . D_retransmitted  = False

   new_dup_tuple . duplicate_tuple . 4 . D_time = 10    host? . duplicateset = host? . duplicateset  new_dup_tuple

           if forward_or_discard host? sender_address? = Forwarded 

             then message? . msg_packet_tuple . 4 . ttl  = message? . msg_packet_tuple . 4 . ttl - 1 

             else status! = Discarded   if forward_or_discard host? sender_address? = Forwarded 

          then message? . msg_packet_tuple . 5 . hop_count   = message? . msg_packet_tuple . 5 . hop_count + 1 

             else status! = Discarded else status! = Discarded 


Figure 14: MessageProcessing Specifications 

 

The formal specification of the function to determine the trust 

on message is presented in the Figure 15. The message packet 

and the object are the inputs and the trust value is the output.  

trust_on_message: Object MessagePacket     


h: Object; m: MessagePackettemp:  

        if t: Neighbor_tuple  t  h . neighborset 

       m . msg_packet_tuple . 3 . originator_address 

 = t . N_neighbor_tuple . 1 . N_neighbor_main_addr 

 true  temp = t .N_neighbor_tuple . 3 . N_trust 

          then trust_on_message h m = temp 

          else trust_on_message h m = 5 

Figure 15: Function to find trust on message 



International Journal of Computer Applications (0975 – 8887) 

Volume 37– No.2, January 2012 

30 

This is the formal specification of the function to determine 

the trust on a packet is given in Figure 16. The object and the 

IP packet are the input arguments and trust as an integer value 

is the output of this function. 

trust_on_packet: Object  IP_Packet   


h: Object; ip: IP_Packet  temp:  

 if t: Neighbor_tuple t  h . neighborset 

   ip . ip_packet . 1 . ip_address 

 = t . N_neighbor_tuple . 1 . N_neighbor_main_addr 

      true  temp = t . N_neighbor_tuple . 3 . N_trust 

          then trust_on_packet h ip = temp 

          else trust_on_packet h ip = 5 

Figure 16: Function to find trust on packet 

The mechanism [3] is employed for populating the local link 

information and the neighborhood information base is by the 

periodic exchange of HELLO messages.  Htime specifies the 

hello emission interval used by the node.  The LinkType 

specify the possibilities for various types of link and similarly 

the NeighborType enumerate the possible values for that.  The 

structure of the HelloMessage is specified as a tuple with 

Htime, willingness and LinkMessage. The specifications are 

as shown in following Figure 17. 

HelloMessageTime 

Htime:  
 
LinkType ::UNSPEC_LINK ASYM_LINK 

SYM_LINK LOST_LINK 

NeighborType ::SYM_NEIGH MPR_NEIGH 

NOT_NEIGH 

LinkMessageSize

linkmessagesize:  
 
LinkCode 

linkcode: NeighborType  LinkType 
 
Neighbors

neighbor: Node  Trust 
 
LinkMessage

link_message: LinkCode  LinkMessageSize   

Neighbors 
 
HelloMessage 

hello_message: HelloMessageTime  Willingness  

LinkMessage 
 

Figure 17: HelloMessage Specifications 

The formal specification for the generation of HelloMessage 

is depicted in the Figure 18.  The host uses the information 

available in their local linkset and neighborset to populate the 

various fields of HelloMessage.  The trust in neighbor(s) by 

host, listed in the HelloMessage, also get advertised with the 

address(es) of the neighbor(s) and this is the accumulation by 

the present study. Each HelloMessage generated is broadcast 

by the node to its neighbors. HelloMessage(s) must never be 

forwarded.  

HelloMessageGeneration 
host?: Object 
hello!: HelloMessage 
mpr_link:  Node 
neighbor_link:  Node 


if lt: Link_Tuples lt  host? . linkset  lt . link_tuple . 3 = Linked true 
then hello! . hello_message . 3 . link_message . 1 . linkcode . 2 = SYM_LINK 
else hello! . hello_message . 3 . link_message . 1 . linkcode . 2 = LOST_LINK 
m: MPRSet m  host? . mprset  mpr_link = m . N_mpr_tuple . 1
   if lt: Link_Tuples     lt  host? . linkset   lt . link_tuple . 2 . L_neighbor_iface_addr  mpr_link    true 
 then hello! . hello_message . 3 . link_message . 1 . linkcode . 1  = MPR_NEIGH 
        else m: Neighbor_tuple m  host? . neighborset neighbor_link= m . N_neighbor_tuple . 1 . 
N_neighbor_main_addr
     if lt: Link_Tuples     lt  host? . linkset   lt . link_tuple . 2 . L_neighbor_iface_addr neighbor_link true 
     then hello! . hello_message . 3 . link_message . 1 . linkcode  . 1 = SYM_NEIGH 
                      else hello! . hello_message . 3 . link_message . 1. linkcode    . 1 = NOT_NEIGH
nt: Neighbor_tuple; n: Neighbors nt  host? . neighborset n . neighbor . 1 = nt . N_neighbor_tuple . 1 . 
N_neighbor_main_addr 
  n . neighbor . 2 . N_trust = nt . N_neighbor_tuple . 3 . N_trust    hello! . hello_message . 1 . Htime = htime? 
        hello! . hello_message . 2 . N_willingness = 4   hello! . hello_message . 3 . link_message . 3 = n
 

Figure 18: HelloMessageGeneration Specifications 

A node process incoming Hello messages for the purpose of 

conducting link sensing, neighbor detection and 

MPRSelectorSet population. Link sensing populates the local 

link information base. Neighbor detection populates the 

neighbor information base and Twohop neighbor detection 

populates the twohop information base and both of them are 

populated through the periodic exchange of Hello Message. 

The processing specification of HelloMessage is shown in the 

Figure 19.  
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HelloMessageProcessing 

msg?: MessagePacket 

host?: Object 

new_link: Link_Tuples 

new_neighbor: Neighbor_tuple 

hello: HelloMessage 

new_twohop_neighbor: Twohop_tuple 



if lt: Link_Tuples 

      lt  host? . linkset   lt . link_tuple . 2 . L_neighbor_iface_addr  = msg? . msg_packet_tuple . 3 . originator_address true 

then ns:  Neighborst: Neighbors  ns = hello . hello_message . 3 . link_message . 3  t  ns   t  neighbor . 1  host? . 

id 

     new_twohop_neighbor . N_twohop_tuple . 1 . N_neighbor_main_addr  = msg? . msg_packet_tuple . 3 . originator_address 

                  new_twohop_neighbor . N_twohop_tuple . 2 . N_2hop_addr  = t . neighbor . 1 

                  new_twohop_neighbor . N_twohop_tuple . 4 . N_trust  = t . neighbor . 2 . N_trust 

                  new_twohop_neighbor . N_twohop_tuple . 3 = Live

      if hello . hello_message . 3 . link_message . 1 . linkcode . 1 = SYM_NEIGH 

            hello . hello_message . 3 . link_message . 1 . linkcode . 1 = MPR_NEIGH 

        then host? . twohopneighborset   = host? . twohopneighborset  new_twohop_neighbor

        else host? . twohopneighborset  = host? . twohopneighborset \ new_twohop_neighbor

else host? . twohopneighborset = host? . twohopneighborset 

if lt: Link_Tuples  lt  host? . linkset  

  lt . link_tuple . 2 . L_neighbor_iface_addr   msg? . msg_packet_tuple . 3 . originator_addresstrue 

         new_link . link_tuple . 1 . L_local_iface_addr = host? . id 

     new_link . link_tuple . 2 . L_neighbor_iface_addr = msg? . msg_packet_tuple . 3 . originator_address 

            new_link . link_tuple . 3 = Linked

         new_neighbor . N_neighbor_tuple . 1 . N_neighbor_main_addr = new_link . link_tuple . 2 . L_neighbor_iface_addr 

        new_neighbor . N_neighbor_tuple . 2 . N_willingness = hello . hello_message . 2 . N_willingness 

           new_neighbor . N_neighbor_tuple . 3 . N_trust = 5 

then host? . linkset = host? . linkset  new_link host? . neighborset = host? . neighborset  new_neighbor

else lt: Link_Tuples  lt  host? . linkset   lt . link_tuple . 2 . L_neighbor_iface_addr 

              = msg? . msg_packet_tuple . 3 . originator_address 

        if hello . hello_message . 3 . link_message . 1 . linkcode . 2 = LOST_LINK 

          then lt . link_tuple . 3 = NotLinked  else lt . link_tuple . 3 = Linked 

 

Figure 19: HelloMessageProcessing Specifications 

Any host while in operation may need to know the trust of 

other nodes in the network in order to populate their own 

entries in the neighborset and twohopneighborset for trust 

values. In order to accomplish this host sends a 

TREQMessage to other nodes. In response, other nodes 

generate TREPMessage with trust value if known otherwise 

with value 1 indicating unknown to it. The specification 

shown in Figure 20 for the TREQMessage with first node is 

address of the host and the other is node in question. In 

TREPMessage, first node is the address of the object 

recommending trust of the node specified by the second 

component with value given in third component.  

TREQMessage

treq_message: Node  Node 
 
TREPMessage

trep_message: Node  Node  Trust 
 

Figure20: TREQ and TREP Message Specifications 
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The specification of the procedure to generate a message for 

the trust query is given in the Figure 21. The host is the Object 

asking for the trust value of the node_in_query to the other 

nodes in the network. 
TREQMessageGeneration

host?: Object 

node_in_query?: Node 

treqmessage!: TREQMessage 


treqmessage! . treq_message . 1 = host? . id 

 treqmessage! . treq_message . 2 = node_in_query? 
 

Figure 21: Trust Request Message Generation 

Specifications 

Whenever any node received a TREQMessage, it is processed 

with specification given in Figure 22 and generates the 

appropriate TREPMessage as per the specifications.  

TREQMessageProcessing

treqmessage?: TREQMessage 

host?: Object 

trepmessage!: TREPMessage 

trust:  


ns:  Neighbor_tuple 

   nt: Neighbor_tuple ns = host? . neighborset  nt 

 ns  if n: Neighbor_tuple  n  ns  n . 

N_neighbor_tuple . 1 . N_neighbor_main_addr 

                      = treqmessage? . treq_message . 2 true  

trust = n . N_neighbor_tuple . 3 .N_trust 

    then trepmessage! . trep_message . 1 =host? . id 

                trepmessage! . trep_message . 2 = 

treqmessage? . treq_message . 2 

    trepmessage! . trep_message . 3 . N_trust = trust 

     else trepmessage! . trep_message . 3 .N_trust =  1 
 

Figure 22: TREQ Processing Specifications 

As whenever any node sends the TREQMessage to other 

objects in the network, in reponse, it gets a number of 

TREPMessages. In order to weight differently the 

recommendation provided by neighbors, twohopneighbors 

and other, they are categorized depending on the originator 

address of the TREPMessage. The specifications are shown in 

Figure 23. 

TREPMessageProcessing 

host?: Object 

trust_from_neighbors:  

trust_from_twohop_neighbors:  

trust_from_others:  



ns:  Neighbor_tuple; ts:  Twohop_tuple 

   nt: Neighbor_tuple; tt: Twohop_tuple 

        ns = host? . neighborset   nt  ns  ts = host? . 

twohopneighborset    tt  ts if n: 

Neighbor_tuplenns  

                   n . N_neighbor_tuple . 1 . 

N_neighbor_main_addr = trepmessage? . trep_message . 

1 true   then trust_from_neighbors = 

trust_from_neighbors  +trepmessage? . trep_message . 3 . 

N_trust   else if t: Twohop_tuple  t  ts 

                        t . N_twohop_tuple . 2 . N_2hop_addr  

=trepmessage? . trep_message . 1 true   then 

trust_from_twohop_neighbors 

  = trust_from_twohop_neighbors  +   trepmessage? . 

trep_message . 3 . N_trust  else 

trust_from_others  = trust_from_others  + trepmessage? 

.trep_message . 3 . N_trust 

 

Figure 23: Trust Reply Message Processing Specifications 

The MPR Selection procedure involves the procedures – Find 

Isolated Nodes, Other than Partia lMprs, Find Uncovered 

Twohops, Neighbor Covering, Find Neighbor Covering, 

Remove2hop Neighbors, Find Maximum. The Find Isolated 

Nodes given in Figure 24 searches the isolated twohops t, 

these are partial MPRs of the object. The invariants are i) the 

isolated object should not be connected to any other object 

other than the neighbor of given object. 

FindIsolatedNodes 

host?: Object 

isolated_2hop_nodes!:  Node 

trust: Trust 


x:  Twohop_tuple  ob1: Object; ob2: Object; y: 

Twohop_tuple; m: MPRSet  x = host? . 

twohopneighborset   y  x   ob1 ob2  connection  

 ob1 . id = y . N_twohop_tuple . 2 . N_2hop_addr 

 m . N_mpr_tuple  = y . N_twohop_tuple . 1 . 

N_neighbor_main_addr trust

    host? . mprset = host? . mprset  m

   isolated_2hop_nodes! = y . N_twohop_tuple . 2 . 

N_2hop_addr


Figure 24: Search of Isolated TwoHop Nodes 

The OtherthanPartialMprs procedure shown in Figure 25 finds 

the neighbors that are not selected as MPRs by the 

FindIsolatedNodes procedure. The invariants are i) the others 

should be equal to the set difference between all neighbor 

identities and neighbor selected as MPR by the above 

procedure.  
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OtherthanPartialMprs 

others!:  Node 

host?: Object 


x:  Neighbor_tuple; neighbor_ids:  Node; mpr_ids:  

Node; t:  MPRSet 

   y: Neighbor_tuple; m: MPRSet 

        x = host? . neighborset  y  x  t = host? . 

mprset  m  t neighbor_ids = y . N_neighbor_tuple . 

1 . N_neighbor_main_addr mpr_ids = m 

.N_mpr_tuple .1

           others! = neighbor_ids \ mpr_ids 


Figure 25: Search Neighbors other than MPR 

The procedure FindUncoveredTwohops of Figure 26 is to find 

the twohop nodes still not covered by any of the MPR in the 

MPRSet of the given object. The invariants is i) the set 

difference between the twohopneighborset and the set of 

tuples of twohopneighborset whose twohopneighbors are 

given by isolated_hops- one of the output of 

FindIsolatedNodes. 

FindUncoveredTwohops 

host?: Object 

isolated_2hops?:  Node 

temptwohopset!:  Twohop_tuple 


x:  Twohop_tuple 

 y:Twohop_tuplex=host?. twohopneighborset  y  x 

    y . N_twohop_tuple . 2 . N_2hop_addr  

isolated_2hops? 

        temptwohopset! = host?. twohopneighborset \ 

y


Figure 26: Search TwoHop Neighbors not covered by 

MPR 

The specification of the tuple for NeighborCovering is given 

in Figure 27. The components are the identity of the neighbor, 

the number of twohops covered by that neighbor and the set 

of identities of twohop neighbors covered by it. 

NeighborCovering 

covered_by_neighbors: Node     Node 
 

Figure 27: Structure of Neighbor Covering 

The procedure FindNeighborCovering given in Figure 28 is to 

build the neighbor covering by neighbors. The purpose of the 

procedure is to find the neighbor covering of uncovered 

twohops given by the above procedure.  

FindNeighborCovering 

host?: Object 

neighbor_covering!: NeighborCovering 


x:  Twohop_tuple; z: Neighbor 

 y: Twohop_tuple x = host? . twohopneighborset  

yx 

           z  y . N_twohop_tuple . 1 z = y . 

N_twohop_tuple . 1 neighbor_covering! . 

covered_by_neighbors 

 = z . N_neighbor_main_addr

               # y . N_twohop_tuple . 2 . N_2hop_addr

               y . N_twohop_tuple . 2 . N_2hop_addr
 

Figure 28: Serach Covering by Neighbor 

The procedure given below in Figure 29, 

Remove2hopNeighbors is to find the twohopneighborset 

without the twohop neighbors that are covered by any of the 

entry of the MPRSet of the given object.  

Remove2hopNeighbors

host?: Object 

modi_2hop_set?:  Twohop_tuple 

reduced_2hop_set!:  Twohop_tuple 

twohop_nodes?:  Node 



x, z:  Twohop_tuple 

   y: Node; t: Twohop_tuple  x = modi_2hop_set? 

           x  host? . twohopneighborset   y  

twohop_nodes?   t . N_twohop_tuple . 2 . N_2hop_addr 

 twohop_nodes?    z = t reduced_2hop_set! = x \ 

z 

 

Figure 29: Removal of TwoHop Neighbors 

The procedure FindMaximum given in Figure 30, is to find 

the neighbor with maximum covering of twohop neighbors 

and then update the MPRSet of the object This procedure gets 

repeated till all twohop nodes get covered by any of the 

selected MPR. 

 FindMaximum  

host?: Object 

covering_neighbors?:  NeighborCovering 

twohop_covered!:  Node 

reduced_covering_neighbors!:  NeighborCovering 

trust: Trust 


y: NeighborCovering 

   x: NeighborCovering; m: MPRSet 

   x  covering_neighbors?  y  covering_neighbors? 

   x  yx . covered_by_neighbors.2 

              y. covered_by_neighbors . 2 

  m .N_mpr_tuple = x . covered_by_neighbors . 1 

trust

    twohop_covered! = x . covered_by_neighbors . 3 

           host? . mprset = host? . mprset  m

 reduced_covering_neighbors!=covering_neighbors?\x
 

Figure30: Select MPR from Neighbor Covering Tuples 

The topology information is dispersed through the network. 

The information given by the link sensing and neighbor 

detection is disseminated to the entire network through this 

and it is used to construct routes [3]. The formal specification 

for the structure of topology tuple is given in Figure 31.  

 

TopologyDestinationAddress 

T_dest_addr: Node 

DestinationLastAddress 

T_last_addr: Node 

TopologySequenceNumber 

T_seq_num:  

TopologyTime 

T_time: 1 .. 10 

Topology_Tuples

topology_tuple: TopologyDestinationAddress  

DestinationLastAddress  

     TopologySequenceNumber  TopologyTime  Trust 

 

Figure 31: Topology Tuple Specifications 
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The specification of the Topology Control Message is 

presented in Figure 32. A TC message is sent by a node in the 

network to declare a set of links, called advertised link set 

which MUST include at least the links to all nodes of its MPR 

Selector set. This is sent as the data-portion of the general 

message format with the "Message Type" set to 

TC_MESSAGE. A sequence number is associated with the 

advertised neighbor set.  

 

 

 

 

 

 

 

ANSN 
ansn:  
 
AdvertisedNeighbor 
advertised_neighbor: Node  Trust 
 
AdvertisedNeighborSet
advertised_neighbor_tuple:  AdvertisedNeighbor 
 
TopologyControlMessage 

tc_message: ANSN  AdvertisedNeighborSet 
 

Figure 32: TC Message Specifications 

TC messages are broadcast and retransmitted by the MPRs in 

order to diffuse the messages in the entire network. The 

formal specification of the updation of topology set is given in 

Figure 33. TC messages MUST be forwarded according to the 

"default forwarding algorithm". 

Status_tc_message ::process discard 

TCMessageProcess 

host?: Object 

msg?: MessagePacket 

tcmsg: TopologyControlMessage 

status!: Status_tc_message 

new_topology_tuple: Topology_Tuples 


ts:  Topology_Tuples  tc: Topology_Tuples; an: AdvertisedNeighbor 

        ts = host? . topologyset    tc  ts   an  tcmsg . tc_message . 2 . advertised_neighbor_tuple 

        if tc . topology_tuple . 2 . T_last_addr = msg? . msg_packet_tuple . 3 . originator_address 

              tc . topology_tuple . 3 . T_seq_num   tcmsg . tc_message . 1 . ansn   then status! = discard 

          else if tc . topology_tuple . 2 . T_last_addr  = msg? . msg_packet_tuple . 3 . originator_address 

                   tc . topology_tuple . 3 . T_seq_num   tcmsg . tc_message . 1 . ansn 

               then host? . topologyset = host? . topologyset \ tc

               else if tc . topology_tuple . 2 . T_last_addr = msg? . msg_packet_tuple . 3 . originator_address 

                        tc . topology_tuple . 1 . T_dest_addr  = an . advertised_neighbor . 1 

           then tc . topology_tuple . 4 . T_time = 10 

           else if tc . topology_tuple . 2 . T_last_addr   = msg? . msg_packet_tuple . 3  . originator_address 

                           tc . topology_tuple . 1 . T_dest_addr  = an . advertised_neighbor . 1 

                             tc . topology_tuple . 5 . N_trust   an . advertised_neighbor . 2 . N_trust 

           then tc . topology_tuple . 5 . N_trust  = an . advertised_neighbor . 2 . N_trust 

                         else new_topology_tuple . topology_tuple . 1 . T_dest_addr = an . advertised_neighbor . 1 

                  new_topology_tuple . topology_tuple . 2 . T_last_addr = msg? . msg_packet_tuple . 3   . originator_address 

                     new_topology_tuple . topology_tuple . 3 . T_seq_num = tcmsg . tc_message . 1 . ansn 

                     new_topology_tuple . topology_tuple . 4  . T_time = 10  new_topology_tuple . topology_tuple . 5  . N_trust 

                     = an . advertised_neighbor . 2 . N_trust    host? . topologyset   = host? . topologyset  new_topology_tuple
 

Figure 33: Formal Specifications of TC Message Processing 

In order to build the topology information base, each node, 

which has been selected as MPR, broadcasts Topology 

Control (TC) messages. TC messages are flooded to all nodes 

in the network and take advantage of MPRs. MPRs enable a 

better scalability in the distribution of topology information. 

The formal specification of the procedure of generating 

topology control message is shown in Figure 34. 

 

TCMessageGeneration

host?: Object 

an_sn?:  

tcmsg!: TopologyControlMessage 

adv_neigh: AdvertisedNeighbor 

adv_neigh_set:  AdvertisedNeighbor 


ns:  Neighbor_tuple n: Neighbor_tuple ns = 

host? . neighborset  n  ns 

        adv_neigh . advertised_neighbor . 1 = n . 

N_neighbor_tuple . 1 . N_neighbor_main_addr 

            adv_neigh . advertised_neighbor . 2 . N_trust    

= n . N_neighbor_tuple . 3 . N_trust 

            adv_neigh_set = adv_neigh  tcmsg! . 

tc_message . 1 . ansn = an_sn? + 1 

             tcmsg! . tc_message . 2 . 

advertised_neighbor_tuple  = adv_neigh_set 
 

 

Figure 34: TC Message Generation Specifications 

Each node maintains a routing table which allows it to route 

data, destined for the other nodes in the network. The routing 

table is based on the information contained in the link set and 

the topology set[3]. Each entry in the table consists of 

R_dest_addr, R_next_addr, R_dist. Such entry specifies that 

the node identified by R_dest_addr is estimated to be R_dist 
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hops away from the local node, that the symmetric neighbor 

node with interface address R_next_addr is the next hop node 

in the route to R_dest_addr. The specification of the Route 

Table is shown in the following Figure 35. 

Routing_destination

R_dest_addr: Node 
 
Routing_next 

R_next_addr: Node 
 
Routing_distance 

R_dist:  
 
RoutingTable 

routing_table_tuple: Routing_destination  

Routing_next  Routing_distance Trust 
 

Figure 35: Formal Specifications of TC Message 

Processing 

The routing table is recalculated in case of neighbor 

appearance or loss, when a 2-hop tuple is created or removed, 

when a topology tuple is created or removed or when multiple 

interface association information changes [3]. The update of 

this routing information does not generate or trigger any 

messages to be transmitted, neither in the network, nor in the 

1-hop neighborhood. The formal specification of the routing 

table procedure is presented in Figure 36.  

 

 

 

 

 

 

 

 

 

RoutingTableCalculation

host?: Object 

new_entry: RoutingTable 



rt:  RoutingTable  lt: Link_Tuples lt  host? . linkset  rt = host? . routingtable 

    new_entry . routing_table_tuple . 1 . R_dest_addr= lt . link_tuple . 2 . L_neighbor_iface_addr 

      new_entry . routing_table_tuple . 2 . R_next_addr = lt . link_tuple . 2 . L_neighbor_iface_addr 

       new_entry . routing_table_tuple . 3 . R_dist = 1  new_entry . routing_table_tuple . 4 . N_trust = lt . link_tuple . 4 . 

N_trust 

           host? . routingtable = host? . routingtable  new_entry

tt: Twohop_tuple tt  host? . twohopneighborset 

  new_entry . routing_table_tuple . 1 . R_dest_addr= tt . N_twohop_tuple . 2 . N_2hop_addr 

  new_entry . routing_table_tuple . 2 . R_next_addr = tt . N_twohop_tuple . 1 . N_neighbor_main_addr 

  new_entry . routing_table_tuple . 3 . R_dist = 2  new_entry . routing_table_tuple . 4 . N_trust= tt . N_twohop_tuple . 4 . 

N_trust 

      host? . routingtable = host? . routingtable  new_entry

te: Topology_Tuples; rt: RoutingTable; h: te  host? . topologyset rt  host? . routingtable 

     te . topology_tuple . 1 . T_dest_addr rt . routing_table_tuple . 1 . R_dest_addr 

     te . topology_tuple . 2 . T_last_addr = rt . routing_table_tuple . 1 . R_dest_addr 

     rt . routing_table_tuple . 3 . R_dist = h 

   new_entry . routing_table_tuple . 1 . R_dest_addr = te . topology_tuple . 1 . T_dest_addr 

  new_entry . routing_table_tuple . 2 . R_next_addr = te . topology_tuple . 2 . T_last_addr 

   new_entry . routing_table_tuple . 3 . R_dist = h + 1  new_entry . routing_table_tuple . 4 . N_trust = te . topology_tuple . 5 . 

N_trust   host? . routingtable = host? . routingtable  new_entry

 
 

Figure 36: Formal Specifications of Routing Table Calculation 

5. CONCLUSIONS 

The formal specifications of the structures/classes and the 

procedures for a trust oriented OLSR protocol of ad hoc 

network are presented in the paper. The inclusion of trust in 

the specifications of the protocols is the contribution of this 

paper. The trust value is used for packet processing, message 

processing, routing decisions. The invariants are used rather 

than exhaustive functional analysis. These invariants, 

represented in the form of logical formulas, are checked in 

order to find any violation in their behavior. In this approach, 

invariants are checked that describe properties in order to 

identify behaviors that violate them. The future work is to 

compare the approach adopted in this paper with the other 

formal approaches. 
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