
International Journal of Computer Applications (0975 – 8887)

Volume 37– No.2, January 2012

25

Formal Specifications of Trusted OLSR Protocol of

Ad hoc Network in Z

Amandeep Verma
Punjabi University Regional Centre

for IT & Mgmt., Mohali

Manpreet Singh Gujral
University College of Engineering,

Punjabi University, Patiala

ABSTRACT
A Mobile Ad hoc Network is a network of mobile nodes

operating in an infrastructure-less network. These nodes not

have the defense rendered by firewalls in infrastructure-based

networks. Trust oriented system aids to improvise this

situation. So, the incorporation of trust in routing decisions

yields a more secure and reliable framework for such type of

networks. As if any suggested model does not achieve as

projected, it is reduced quality of service. The validation

before deployment of any model leads to a more stable model.

A good way to confirm a model is to use formal specification

and verification techniques. In the present study, with the aim

to include trust component in conventional OLSR protocol of

ad hoc network and also to rule out invalid actions, formal

specifications of the various procedures of trusted OLSR

Protocol are given using ―Z‖ specification language. Z is a

state-oriented formal specification language based on set

theory and predicate logic. Z/EVES, a proof tool based on

EVES and ZF set theory that supports the Z notation is used

for the formal specifications.

Keywords

Ad hoc Network; Formal Specification; OLSR; Z

Specification Language; Z Eves

1. INTRODUCTION

Nodes in an ad-hoc network, an infrastructure less network,

are more prone to attacks as there is no line of defense offered

by firewalls, which is available to the counterpart,

infrastructure-based networks. The conventional

cryptographic approaches do not prove an effectual measure

to defend against threats from internal compromised or

malicious nodes. The operating environment of ad-hoc

networks depends exclusively on the collaboration among

nodes to provide connectivity and communication routes. This

naive dependency on intermediate nodes makes the ad-hoc

network vulnerable to passive and active attacks by malicious

nodes. To alleviate the effect of malicious nodes and to

achieve higher levels of security and even reliability, it is

worthwhile to appraise the trustworthiness of other nodes in

network before any operation or interaction. In the dominion

of network security, the perception of trust is as a relation

among entities that are involved in protocols.

Trust and reputation have been suggested in the literature as a

thriving security means for open environments such as the

Internet, and substantial research has been made on modeling

and administering trust and reputation. There is a widespread

postulation in the routing protocols that all nodes are

trustworthy and cooperative. Though, the actuality is unlike.

Malicious nodes can make use of this assumption to corrupt

the network. A bundle of attacks such as black hole, gray

hole, flooding attack, Denial of Services may annihilate the

network. Even though trust is extensively researched

nowadays, even there is not a accord and systematic theory

based on trust but it has affirmative effects on the security

solutions for infrastructure-less networks. There might be

some additional operating cost in terms of time and

complexity by the inclusion of trustworthiness but it is

marginal and that too at the cost of more security so this

overhead can be disregarded.

The reliability of critical systems is a grave concern. Formal

methods have demonstrated their appeal in extending the

reliability of such systems in this regard. All of these are

based on mathematical representation and analysis of systems.

The prime advantages [5] of applying formal methods in

designing a system are in the lessening of the figure of errors

in systems. More efforts have to spend in the initial phases of

software development in the case of formal specifications.

This lessens requirement errors, as it causes a comprehensive

analysis of the requirements. Incompleteness and

inconsistencies can be revealed and resolved. Hence, the

amount of rework due to requirements problems is reduced.

Formal specification is an element of a entire compilation of

practices that are known as ‗formal methods‘.

Keeping in mind all these concerns, in an attempt to include

trust in the functioning of routing of OLSR protocol of ad hoc

networks, formal specifications of the procedures of trusted

OLSR protocol are presented in this paper. The novelty of the

work is to give the abstract representation of the procedures

with trust attribute base that are going to be used in making

routing decisions and as well other decisions. This work is an

integral part of the study to develop a trust oriented security

framework for ad hoc networks. The intended readers are

researchers interested in building abstract models and to use

trust for security purposes.

The paper is organized as follows. The section 2 is in relation

to the review of literature. The section 3 gives a general idea

of the protocol under study and the specification language

used. The section 4 lists down the specification(s). The last

section 5 concludes the paper.

2. REVIEW OF LITERATURE

There are numerous routing protocols for ad hoc networks are

in literature, and every protocol has some worth on one aspect

or the other. With the aim of to decide on a routing protocol

for building a trust oriented framework for ad hoc networks, a

study comprising the performance analysis of routing

protocols [13] namely – DSR, AODV, OLSR and GRP has

been done for common applications: email and ftp in a

simulated environment. The observation is that, the OLSR

protocol has the better response over others.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.2, January 2012

26

A highly secure, save node‘s power and even the time for

communication is less was devised [6], that use trust which is

based upon a node has on its neighbor, different trust level

defined and security is applied accordingly A study [1]

demonstrates the involvement of trust in making routing

decisions results higher output, less amount of malicious

drops and higher packet delivery ratio. A comprehensive

review of the impact of trust in ad hoc network was presented

[11]. The literature supports and emphasizes the need of

inclusion of trust in ad hoc environments

There are number of formal approaches and their applications

in diverse areas for validation and for proving correctness the

models in study. The formal verification techniques applicable

to all areas of ad hoc network namely, authentication, access

control, routing etc. An exhaustive review of the formal

verification of adhoc network routing protocols [12] using the

variety of formal specification languages, modeling

techniques and verifying tools are quoted in early work.

AVISPA, BAN Logic, Petri nets, SDL, SPIN, PROMELA

and UPPAAL are some of the keywords of this study. The

usage of SPIN, as model checker and PROMELA, as

specification language found extensively, in studies related to

ad hoc network.

To demonstrate the methodology for formal verification of

routing protocols of ad hoc network [2], a case study of OLSR

protocol using PROMELA specification language and SPIN

model checker is depicted. The OLSR protocol is also a

subject of case study in the description of testing methodology

for an ad hoc routing protocol [9].

The Z notation is used as a formal technique for formal

Verification of Route Request procedure for AODV Protocol.

The formal specification is analyzed and validated using Z

Eves tool. Z specification language is used to describe the

component in the proposal of conceptual component model

[4]. The Z language seems more abstract, reasoned to choice

of specification language for the present study.

3. PRELIMINARIES

The protocol under study is OLSR and the specification

language used for formal specification is the ―Z‖ language.

Outlines of these are as follows—

3.1 OLSR Protocol

Optimized Link State Routing (OLSR) [3] is proposed by

IETF's MANET Group at 2003. Although, OLSR has newer

and more precise narratives, with the purpose of to congregate

our intents, agreed to its minimalism, we use the original

version [3]. The Optimized Link State Routing Protocol

(OLSR) is developed for mobile ad hoc networks.

It operates as a table driven, proactive protocol, i.e.,

exchanges topology information with other nodes of the

network regularly. Each node selects a set of its neighbor

nodes as "multipoint relays" (MPR). In OLSR, only nodes,

selected as such MPRs are responsible for forwarding control

traffic, intended for diffusion into the entire network. MPRs

provide an efficient mechanism for flooding control traffic by

reducing the number of transmissions required. A node selects

MPRs from among its one hop neighbors with "symmetric",

i.e., bi-directional, linkages. The MPR nodes are chosen

among the 1-hop neighbors in such a way that they are the

minimum set that covers all the 2-hop neighbors In OLSR,

each node is injecting topological information into the

network through the transmission of HELLO messages and,

for some nodes, TC messages. If some nodes (malicious or

malfunctioning) inject invalid network traffic, network

integrity may be compromised.

3.2 The Z notation

The Z (pronounced Zed) language [8] [14] is a formal

specification language named after Zermelo–Fraenkel set

theory, is a formal specification language used for describing

and modeling computing systems. ―Z‖ language is a formal

specification language, which is used for description and

functions modeling of computer systems. This language

enables to write formal specification of computer programs

and to formulate evidences of system behavior.

Z specification language is based on the standard

mathematical notation used in axiomatic set theory, lambda

calculus, and first-order predicate logic. All expressions in Z

notation are typed, thereby avoiding some of the paradoxes of

naive set theory. Z has a number of language constructs

including given type, abbreviation type, axiomatic definition,

state and operation schema definitions, etc. but the basic unit

of the Z specification for the components is a boxed notation

called ‗schema‘.

3.3 Z/EVES

Z/EVES [10][15] use state-of-the-art formal methods

techniques from Europe and North America, integrating a

leading specification notation with a leading automated

deduction capability. Z/EVES support almost the entire Z

notation; only the unique existence quantifier for schema

expressions is not yet supported. The Z/EVES prover provides

powerful automated support with user commands for directing

the prover. Z/EVES consist of two parts. First part is virtual

server, which insures syntactic propriety revision and

activities for execution of theorems and paragraphs logic

validation. Second part is graphical interface, which enables

work with specification.

4. THE SPECIFICATION(S)

In order to develop a trust oriented framework for ad hoc

network using OLSR routing protocol the approach that we

are using is depicted in the Figure 1. This paper is in the

direction of building an abstract model of the protocol under

study.

Figure 1: A General Trust Oriented Framework

4.1 Terminology

The terminology used in the specification of OLSR protocol

[3] is as –

main_address

The main address of a node, which will be

used in OLSR control traffic as the

"originator address" of all messages

emitted

neighbor node A node X is a neighbor node of node Y if

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.2, January 2012

27

node Y can hear node X

2-hop neighbor A node heard by a neighbor.

multipoint relay

(MPR)

A node which is selected by its 1-hop

neighbor, node X, to "re-transmit" all the

broadcast messages that it receives from

X, provided that the message is not a

duplicate, and that the time to live field of

the message is greater than one.

multipoint relay

selector

A node which has selected its 1-hop

neighbor, node X, as its multipoint relay,

will be called a multipoint relay selector of

node X

The information repositories record information

about neighbors, 2-hop neighbors, MPRs and MPR selectors

[3].

Neighbor Set

A node records a set of "neighbor tuples"

(N_neighbor_main_addr, N_willingness),

describing neighbors

2-hop Neighbor

Set

A node records a set of "2-hop tuples"

(N_neighbor_main_addr, N_2hop_addr,

N_time), describing symmetric links

between its neighbors and the symmetric 2-

hop neighborhood.

MPR Set

A node maintains a set of neighbors which

are selected as MPR. Their main addresses

are listed in the MPR Set.

MPR Selector

Set

A node records a set of MPR-selector

tuples (MS_main_addr, MS_time),

describing the neighbors which have

selected this node as a MPR.

4.2 Assumptions

In order to simplify the implementation two assumptions

regarding the OLSR protocols have been made.

 Every node has a single interface

 If the connection exists between any two node

then it is of symmetric type

4.3 Formal Specifications

The identifier of an object in ad hoc network is denoted by

Node as given below. The power of battery is dead, low or

normal denoted by Dead, Low and Normal respectively [7].

 [Node]

Power ::Dead Low Normal Safe Full

The Trust as in Figure 2 can be any value from 0 to 10 where

0 indicates complete distrust and 10 signifies the full trust in

the node and the willingness of node whose specifications are

given in Figure 3, depicts the willingness of node to

participate in the various decisions or operations of the ad hoc

network. The value 1 is the lower level and 7 is the upper

level of willingness.

Trust

N_trust: 


N_trust  10  N_trust  1


Figure 2: Trust Specifications

Willingness

N_willingness: 


N_willingness  7  N_willingness  1
Figure 2: Willingness Specifications

The Neighbor is specified as a node and the Neighbor_tuple

that forms an entry for the neighborset of the object has the

neighbor, its willingness to participate and trust of the host on

that neighbor as shown in Figure 4.



Neighbor 

N_neighbor_main_addr: Node


Neighbor_tuple 

N_neighbor_tuple: Neighbor  Willingness  Trust


Figure 4: Neighbor Set Specifications

The TwoHopNeighbor is specified as a node and the

Twohop_tuple that forms an entry for the twohopneighborset

of the object has the neighbor, twohopneighbor , time till its

live, and the rust of the host on that twohop neighbor as

shown in Figure 5.

TwoHopNeighbor 

N_2hop_addr: Node

N_time ::Live Expired

Twohop_tuple 

N_twohop_tuple: Neighbor  TwoHopNeighbor 

N_time  Trust


Figure 5: TwoHop Neighborset Specifications

The specification of the MPRSet and MPRSelectorSet is in

Figure 6. It gives the address of the node which is MPR and

the trust of the object on that MPR. In MPRSelectorSet the

address of the node which selects host as MPR and validity

time is stored.

MPRSet 

N_mpr_tuple: Node  Trust


MPRSelectorSet 

MS_main_addr: Node

MS_time: 


Figure 6: MPRSet and MPRSelectorSet Specifications

The specification of the object with basic attributes is given in

Figure 7. The id gives the main address of the Object. The

willingness indicates about that node in the participation of

communication. The other attributes neighborset,

twohopneighborset, mprset and mprselectorset are

information repositories of the object. The duplicateset,

linkset, topologyset are the sets used for operation of the ad

hoc network and routing table is used for making routing

entries.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.2, January 2012

28

Object 

id: Node

battery: Power

willingness: 

neighborset:  Neighbor_tuple

twohopneighborset:  Twohop_tuple

mprset:  MPRSet

mprselectorset:  MPRSelectorSet

duplicateset:  Duplicate_tuple

linkset:  Link_Tuples

topologyset:  Topology_Tuples

routingtable:  RoutingTable


Figure 7: An Object with attributes Specifications

To avoid re-processing of some messages, each node

maintains a Duplicate Set. For such a message, a node records

a "Duplicate Tuple", where D_addr is the originator address ,

D_seq_num is the message sequence number of the message,

D_retransmitted is a boolean indicating whether the message

has been already retransmitted and its formal specifications

are given in Figure 8.

Duplicate_addr 

D_addr: Node

Duplicate_seq_num

D_seq_num: 

Duplicate_retransmitted

D_retransmitted: Boolean

Duplicate_time 

D_time: 

Duplicate_tuple

duplicate_tuple: Duplicate_addr 

Duplicate_seq_num  Duplicate_retransmitted 

Duplicate_time


Figure 8: Duplicate Set Specifications

The specification for local link base that stores information

about links to neighbors is as shown in Figure 9. The

LocalAddress is the address of the local node

NeighborAddress is the address of the neighbor and L_time to

indicate time till it is linked and the Link_Tuples is the

structure of the tuple forming a link set for the object.

LocalAddress 

L_local_iface_addr: Node


NeighborAddress

L_neighbor_iface_addr: Node


L_time ::Linked NotLinked

Link_Tuples

link_tuple: LocalAddress  NeighborAddress 

L_time


Figure 9: Link Set Specifications

The formal specifications of the OLSR packet and their

attributes are given in the Figure 10. The IP and the UDP

headers are not considered in the specification.

Packet_length

packet_length: 


Packet_seq_num 

packet_seq_num: 


Messages 

messages: iseq MessagePacket


Packet 

packet: Packet_length Packet_seq_num 

Messages


Figure10: Packet Specifications

The specification of the procedure for processing the packet is

shown in Figure 11. The packet is discarded if it is of short in

length than the specified or if the trust on the packet is less as

per the policy. In the present case, the trust value 5 is the at

least requirement for the packet to process.

PacketProcessing 

host?: Object

packet?: IP_Packet

status!: Status_of_message_or_packet


if packet? . ip_packet . 2 . packet . 1 . packet_length

 16   trust_on_packet host? packet?  5

then status! = Discarded

else status! = Accepted


Figure 11: Processing of Packet

The specification of the message packet is given in Figure 12.

The formal specifications of the components of the message

packet are also shown.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.2, January 2012

29

Message_type 

message_type: 1 .. 127

Originator_address 

originator_address: Node

Ttl

ttl: 

Hop_count

hop_count: 

Message_size 

message_size: 

Message_seq_num

message_seq_num: 

MessagePacket

msg_packet_tuple: Message_type 

Originator_address  Ttl  Hop_count

  Message_size  Message_seq_num  Message


Figure 12: Message Specifications

The specification of the function to make decision to forward

or discard a packet is shown in the Figure 13. The object and

IP address are the inputs and the status is the output. Of this

function

forward_or_discard: Object  IP_Address 

Status_of_message_or_packet


h: Object; n: IP_Address

 if m: MPRSelectorSet

 m  h . mprselectorset  n . ip_address

= m . MS_main_addr true

 then forward_or_discard h n = Forwarded

 else forward_or_discard h n = Discarded

Figure 13: Function to forward or discard a

message/packet

A packet consist number of messages may be of different

types. The message processing and forwarding messages are

two different actions, conditioned by different rules.

Processing relates to using the content of the messages, while

forwarding is related to retransmitting the same message for

other nodes of the network. The formal specification of the

procedure of default forwarding algorithm is presented in the

Figure 14. The message is the part of the packet that is the

payload of packet.

MessageProcessing

Duplicate_tuple

host?: Object

sender_address?: IP_Address

message?: MessagePacket

status!: Status_of_message_or_packet

dup_set:  Duplicate_tuple

new_dup_tuple: Duplicate_tuple


if message? . msg_packet_tuple . 4 . ttl  1  trust_on_message host? message?  5

then status! = Discarded else if ds:  Duplicate_tuple d: Duplicate_tuple ds = host? . duplicateset

  d  host? . duplicateset  d . duplicate_tuple . 1 . D_addr

  message? . msg_packet_tuple . 3 . originator_address  d . duplicate_tuple . 2 . D_seq_num

  message? . msg_packet_tuple . 7 . message_seq_num  d . duplicate_tuple . 3 . D_retransmitted = False true

 then new_dup_tuple . duplicate_tuple . 1 . D_addr = message? . msg_packet_tuple . 3 . originator_address

  new_dup_tuple . duplicate_tuple . 2 . D_seq_num = message? . msg_packet_tuple . 7 . message_seq_num

 if forward_or_discard host? sender_address? = Forwarded then new_dup_tuple . duplicate_tuple . 3 . D_retransmitted

= True else new_dup_tuple . duplicate_tuple . 3 . D_retransmitted = False

  new_dup_tuple . duplicate_tuple . 4 . D_time = 10  host? . duplicateset = host? . duplicateset  new_dup_tuple

  if forward_or_discard host? sender_address? = Forwarded

 then message? . msg_packet_tuple . 4 . ttl = message? . msg_packet_tuple . 4 . ttl - 1

 else status! = Discarded  if forward_or_discard host? sender_address? = Forwarded

 then message? . msg_packet_tuple . 5 . hop_count = message? . msg_packet_tuple . 5 . hop_count + 1

 else status! = Discarded else status! = Discarded


Figure 14: MessageProcessing Specifications

The formal specification of the function to determine the trust

on message is presented in the Figure 15. The message packet

and the object are the inputs and the trust value is the output.

trust_on_message: Object MessagePacket  


h: Object; m: MessagePackettemp: 

 if t: Neighbor_tuple t  h . neighborset

  m . msg_packet_tuple . 3 . originator_address

 = t . N_neighbor_tuple . 1 . N_neighbor_main_addr

 true  temp = t .N_neighbor_tuple . 3 . N_trust

 then trust_on_message h m = temp

 else trust_on_message h m = 5

Figure 15: Function to find trust on message

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.2, January 2012

30

This is the formal specification of the function to determine

the trust on a packet is given in Figure 16. The object and the

IP packet are the input arguments and trust as an integer value

is the output of this function.

trust_on_packet: Object  IP_Packet  


h: Object; ip: IP_Packet temp: 

 if t: Neighbor_tuple t  h . neighborset

  ip . ip_packet . 1 . ip_address

 = t . N_neighbor_tuple . 1 . N_neighbor_main_addr

 true  temp = t . N_neighbor_tuple . 3 . N_trust

 then trust_on_packet h ip = temp

 else trust_on_packet h ip = 5

Figure 16: Function to find trust on packet

The mechanism [3] is employed for populating the local link

information and the neighborhood information base is by the

periodic exchange of HELLO messages. Htime specifies the

hello emission interval used by the node. The LinkType

specify the possibilities for various types of link and similarly

the NeighborType enumerate the possible values for that. The

structure of the HelloMessage is specified as a tuple with

Htime, willingness and LinkMessage. The specifications are

as shown in following Figure 17.

HelloMessageTime 

Htime: 

LinkType ::UNSPEC_LINK ASYM_LINK

SYM_LINK LOST_LINK

NeighborType ::SYM_NEIGH MPR_NEIGH

NOT_NEIGH

LinkMessageSize

linkmessagesize: 

LinkCode 

linkcode: NeighborType  LinkType

Neighbors

neighbor: Node  Trust

LinkMessage

link_message: LinkCode  LinkMessageSize  

Neighbors

HelloMessage 

hello_message: HelloMessageTime  Willingness 

LinkMessage


Figure 17: HelloMessage Specifications

The formal specification for the generation of HelloMessage

is depicted in the Figure 18. The host uses the information

available in their local linkset and neighborset to populate the

various fields of HelloMessage. The trust in neighbor(s) by

host, listed in the HelloMessage, also get advertised with the

address(es) of the neighbor(s) and this is the accumulation by

the present study. Each HelloMessage generated is broadcast

by the node to its neighbors. HelloMessage(s) must never be

forwarded.

HelloMessageGeneration 
host?: Object
hello!: HelloMessage
mpr_link:  Node
neighbor_link:  Node


if lt: Link_Tuples lt  host? . linkset  lt . link_tuple . 3 = Linked true
then hello! . hello_message . 3 . link_message . 1 . linkcode . 2 = SYM_LINK
else hello! . hello_message . 3 . link_message . 1 . linkcode . 2 = LOST_LINK
m: MPRSet m  host? . mprset mpr_link = m . N_mpr_tuple . 1
  if lt: Link_Tuples lt  host? . linkset  lt . link_tuple . 2 . L_neighbor_iface_addr  mpr_link true
 then hello! . hello_message . 3 . link_message . 1 . linkcode . 1 = MPR_NEIGH
 else m: Neighbor_tuple m  host? . neighborset neighbor_link= m . N_neighbor_tuple . 1 .
N_neighbor_main_addr
  if lt: Link_Tuples lt  host? . linkset  lt . link_tuple . 2 . L_neighbor_iface_addr neighbor_link true
 then hello! . hello_message . 3 . link_message . 1 . linkcode . 1 = SYM_NEIGH
 else hello! . hello_message . 3 . link_message . 1. linkcode . 1 = NOT_NEIGH
nt: Neighbor_tuple; n: Neighbors nt  host? . neighborset n . neighbor . 1 = nt . N_neighbor_tuple . 1 .
N_neighbor_main_addr
  n . neighbor . 2 . N_trust = nt . N_neighbor_tuple . 3 . N_trust  hello! . hello_message . 1 . Htime = htime?
  hello! . hello_message . 2 . N_willingness = 4  hello! . hello_message . 3 . link_message . 3 = n


Figure 18: HelloMessageGeneration Specifications

A node process incoming Hello messages for the purpose of

conducting link sensing, neighbor detection and

MPRSelectorSet population. Link sensing populates the local

link information base. Neighbor detection populates the

neighbor information base and Twohop neighbor detection

populates the twohop information base and both of them are

populated through the periodic exchange of Hello Message.

The processing specification of HelloMessage is shown in the

Figure 19.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.2, January 2012

31

HelloMessageProcessing 

msg?: MessagePacket

host?: Object

new_link: Link_Tuples

new_neighbor: Neighbor_tuple

hello: HelloMessage

new_twohop_neighbor: Twohop_tuple



if lt: Link_Tuples

 lt  host? . linkset  lt . link_tuple . 2 . L_neighbor_iface_addr = msg? . msg_packet_tuple . 3 . originator_address true

then ns:  Neighborst: Neighbors ns = hello . hello_message . 3 . link_message . 3  t  ns  t neighbor . 1  host? .

id

 new_twohop_neighbor . N_twohop_tuple . 1 . N_neighbor_main_addr = msg? . msg_packet_tuple . 3 . originator_address

  new_twohop_neighbor . N_twohop_tuple . 2 . N_2hop_addr = t . neighbor . 1

  new_twohop_neighbor . N_twohop_tuple . 4 . N_trust = t . neighbor . 2 . N_trust

  new_twohop_neighbor . N_twohop_tuple . 3 = Live

  if hello . hello_message . 3 . link_message . 1 . linkcode . 1 = SYM_NEIGH

  hello . hello_message . 3 . link_message . 1 . linkcode . 1 = MPR_NEIGH

 then host? . twohopneighborset = host? . twohopneighborset  new_twohop_neighbor

 else host? . twohopneighborset = host? . twohopneighborset \ new_twohop_neighbor

else host? . twohopneighborset = host? . twohopneighborset

if lt: Link_Tuples lt  host? . linkset

  lt . link_tuple . 2 . L_neighbor_iface_addr  msg? . msg_packet_tuple . 3 . originator_addresstrue

  new_link . link_tuple . 1 . L_local_iface_addr = host? . id

  new_link . link_tuple . 2 . L_neighbor_iface_addr = msg? . msg_packet_tuple . 3 . originator_address

  new_link . link_tuple . 3 = Linked

  new_neighbor . N_neighbor_tuple . 1 . N_neighbor_main_addr = new_link . link_tuple . 2 . L_neighbor_iface_addr

  new_neighbor . N_neighbor_tuple . 2 . N_willingness = hello . hello_message . 2 . N_willingness

  new_neighbor . N_neighbor_tuple . 3 . N_trust = 5

then host? . linkset = host? . linkset  new_link host? . neighborset = host? . neighborset  new_neighbor

else lt: Link_Tuples lt  host? . linkset  lt . link_tuple . 2 . L_neighbor_iface_addr

 = msg? . msg_packet_tuple . 3 . originator_address

 if hello . hello_message . 3 . link_message . 1 . linkcode . 2 = LOST_LINK

 then lt . link_tuple . 3 = NotLinked else lt . link_tuple . 3 = Linked



Figure 19: HelloMessageProcessing Specifications

Any host while in operation may need to know the trust of

other nodes in the network in order to populate their own

entries in the neighborset and twohopneighborset for trust

values. In order to accomplish this host sends a

TREQMessage to other nodes. In response, other nodes

generate TREPMessage with trust value if known otherwise

with value 1 indicating unknown to it. The specification

shown in Figure 20 for the TREQMessage with first node is

address of the host and the other is node in question. In

TREPMessage, first node is the address of the object

recommending trust of the node specified by the second

component with value given in third component.

TREQMessage

treq_message: Node  Node

TREPMessage

trep_message: Node  Node  Trust


Figure20: TREQ and TREP Message Specifications

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.2, January 2012

32

The specification of the procedure to generate a message for

the trust query is given in the Figure 21. The host is the Object

asking for the trust value of the node_in_query to the other

nodes in the network.
TREQMessageGeneration

host?: Object

node_in_query?: Node

treqmessage!: TREQMessage


treqmessage! . treq_message . 1 = host? . id

 treqmessage! . treq_message . 2 = node_in_query?


Figure 21: Trust Request Message Generation

Specifications

Whenever any node received a TREQMessage, it is processed

with specification given in Figure 22 and generates the

appropriate TREPMessage as per the specifications.

TREQMessageProcessing

treqmessage?: TREQMessage

host?: Object

trepmessage!: TREPMessage

trust: 


ns:  Neighbor_tuple

 nt: Neighbor_tuple ns = host? . neighborset  nt

 ns if n: Neighbor_tuple n  ns  n .

N_neighbor_tuple . 1 . N_neighbor_main_addr

 = treqmessage? . treq_message . 2 true 

trust = n . N_neighbor_tuple . 3 .N_trust

 then trepmessage! . trep_message . 1 =host? . id

  trepmessage! . trep_message . 2 =

treqmessage? . treq_message . 2

  trepmessage! . trep_message . 3 . N_trust = trust

 else trepmessage! . trep_message . 3 .N_trust = 1


Figure 22: TREQ Processing Specifications

As whenever any node sends the TREQMessage to other

objects in the network, in reponse, it gets a number of

TREPMessages. In order to weight differently the

recommendation provided by neighbors, twohopneighbors

and other, they are categorized depending on the originator

address of the TREPMessage. The specifications are shown in

Figure 23.

TREPMessageProcessing

host?: Object

trust_from_neighbors: 

trust_from_twohop_neighbors: 

trust_from_others: 



ns:  Neighbor_tuple; ts:  Twohop_tuple

 nt: Neighbor_tuple; tt: Twohop_tuple

 ns = host? . neighborset  nt  ns  ts = host? .

twohopneighborset  tt  ts if n:

Neighbor_tuplenns

  n . N_neighbor_tuple . 1 .

N_neighbor_main_addr = trepmessage? . trep_message .

1 true then trust_from_neighbors =

trust_from_neighbors +trepmessage? . trep_message . 3 .

N_trust else if t: Twohop_tuple t  ts

  t . N_twohop_tuple . 2 . N_2hop_addr

=trepmessage? . trep_message . 1 true then

trust_from_twohop_neighbors

 = trust_from_twohop_neighbors + trepmessage? .

trep_message . 3 . N_trust else

trust_from_others = trust_from_others + trepmessage?

.trep_message . 3 . N_trust



Figure 23: Trust Reply Message Processing Specifications

The MPR Selection procedure involves the procedures – Find

Isolated Nodes, Other than Partia lMprs, Find Uncovered

Twohops, Neighbor Covering, Find Neighbor Covering,

Remove2hop Neighbors, Find Maximum. The Find Isolated

Nodes given in Figure 24 searches the isolated twohops t,

these are partial MPRs of the object. The invariants are i) the

isolated object should not be connected to any other object

other than the neighbor of given object.

FindIsolatedNodes

host?: Object

isolated_2hop_nodes!:  Node

trust: Trust


x:  Twohop_tuple ob1: Object; ob2: Object; y:

Twohop_tuple; m: MPRSet x = host? .

twohopneighborset  y  x  ob1 ob2  connection

 ob1 . id = y . N_twohop_tuple . 2 . N_2hop_addr

 m . N_mpr_tuple = y . N_twohop_tuple . 1 .

N_neighbor_main_addr trust

  host? . mprset = host? . mprset  m

  isolated_2hop_nodes! = y . N_twohop_tuple . 2 .

N_2hop_addr


Figure 24: Search of Isolated TwoHop Nodes

The OtherthanPartialMprs procedure shown in Figure 25 finds

the neighbors that are not selected as MPRs by the

FindIsolatedNodes procedure. The invariants are i) the others

should be equal to the set difference between all neighbor

identities and neighbor selected as MPR by the above

procedure.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.2, January 2012

33

OtherthanPartialMprs 

others!:  Node

host?: Object


x:  Neighbor_tuple; neighbor_ids:  Node; mpr_ids: 

Node; t:  MPRSet

 y: Neighbor_tuple; m: MPRSet

 x = host? . neighborset  y  x  t = host? .

mprset  m  t neighbor_ids = y . N_neighbor_tuple .

1 . N_neighbor_main_addr mpr_ids = m

.N_mpr_tuple .1

  others! = neighbor_ids \ mpr_ids


Figure 25: Search Neighbors other than MPR

The procedure FindUncoveredTwohops of Figure 26 is to find

the twohop nodes still not covered by any of the MPR in the

MPRSet of the given object. The invariants is i) the set

difference between the twohopneighborset and the set of

tuples of twohopneighborset whose twohopneighbors are

given by isolated_hops- one of the output of

FindIsolatedNodes.

FindUncoveredTwohops 

host?: Object

isolated_2hops?:  Node

temptwohopset!:  Twohop_tuple


x:  Twohop_tuple

 y:Twohop_tuplex=host?. twohopneighborset  y  x

  y . N_twohop_tuple . 2 . N_2hop_addr 

isolated_2hops?

 temptwohopset! = host?. twohopneighborset \

y


Figure 26: Search TwoHop Neighbors not covered by

MPR

The specification of the tuple for NeighborCovering is given

in Figure 27. The components are the identity of the neighbor,

the number of twohops covered by that neighbor and the set

of identities of twohop neighbors covered by it.

NeighborCovering 

covered_by_neighbors: Node     Node


Figure 27: Structure of Neighbor Covering

The procedure FindNeighborCovering given in Figure 28 is to

build the neighbor covering by neighbors. The purpose of the

procedure is to find the neighbor covering of uncovered

twohops given by the above procedure.

FindNeighborCovering 

host?: Object

neighbor_covering!: NeighborCovering


x:  Twohop_tuple; z: Neighbor

 y: Twohop_tuple x = host? . twohopneighborset 

yx

  z  y . N_twohop_tuple . 1 z = y .

N_twohop_tuple . 1 neighbor_covering! .

covered_by_neighbors

 = z . N_neighbor_main_addr

 # y . N_twohop_tuple . 2 . N_2hop_addr

 y . N_twohop_tuple . 2 . N_2hop_addr


Figure 28: Serach Covering by Neighbor

The procedure given below in Figure 29,

Remove2hopNeighbors is to find the twohopneighborset

without the twohop neighbors that are covered by any of the

entry of the MPRSet of the given object.

Remove2hopNeighbors

host?: Object

modi_2hop_set?:  Twohop_tuple

reduced_2hop_set!:  Twohop_tuple

twohop_nodes?:  Node



x, z:  Twohop_tuple

 y: Node; t: Twohop_tuple x = modi_2hop_set?

  x  host? . twohopneighborset  y 

twohop_nodes?  t . N_twohop_tuple . 2 . N_2hop_addr

 twohop_nodes?  z = t reduced_2hop_set! = x \

z



Figure 29: Removal of TwoHop Neighbors

The procedure FindMaximum given in Figure 30, is to find

the neighbor with maximum covering of twohop neighbors

and then update the MPRSet of the object This procedure gets

repeated till all twohop nodes get covered by any of the

selected MPR.

 FindMaximum

host?: Object

covering_neighbors?:  NeighborCovering

twohop_covered!:  Node

reduced_covering_neighbors!:  NeighborCovering

trust: Trust


y: NeighborCovering

 x: NeighborCovering; m: MPRSet

 x  covering_neighbors?  y  covering_neighbors?

  x  yx . covered_by_neighbors.2 

 y. covered_by_neighbors . 2

 m .N_mpr_tuple = x . covered_by_neighbors . 1

trust

  twohop_covered! = x . covered_by_neighbors . 3

  host? . mprset = host? . mprset  m

 reduced_covering_neighbors!=covering_neighbors?\x


Figure30: Select MPR from Neighbor Covering Tuples

The topology information is dispersed through the network.

The information given by the link sensing and neighbor

detection is disseminated to the entire network through this

and it is used to construct routes [3]. The formal specification

for the structure of topology tuple is given in Figure 31.

TopologyDestinationAddress 

T_dest_addr: Node

DestinationLastAddress 

T_last_addr: Node

TopologySequenceNumber 

T_seq_num: 

TopologyTime 

T_time: 1 .. 10

Topology_Tuples

topology_tuple: TopologyDestinationAddress 

DestinationLastAddress 

 TopologySequenceNumber  TopologyTime  Trust



Figure 31: Topology Tuple Specifications

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.2, January 2012

34

The specification of the Topology Control Message is

presented in Figure 32. A TC message is sent by a node in the

network to declare a set of links, called advertised link set

which MUST include at least the links to all nodes of its MPR

Selector set. This is sent as the data-portion of the general

message format with the "Message Type" set to

TC_MESSAGE. A sequence number is associated with the

advertised neighbor set.

ANSN 
ansn: 

AdvertisedNeighbor 
advertised_neighbor: Node  Trust

AdvertisedNeighborSet
advertised_neighbor_tuple:  AdvertisedNeighbor

TopologyControlMessage 

tc_message: ANSN  AdvertisedNeighborSet


Figure 32: TC Message Specifications

TC messages are broadcast and retransmitted by the MPRs in

order to diffuse the messages in the entire network. The

formal specification of the updation of topology set is given in

Figure 33. TC messages MUST be forwarded according to the

"default forwarding algorithm".

Status_tc_message ::process discard

TCMessageProcess 

host?: Object

msg?: MessagePacket

tcmsg: TopologyControlMessage

status!: Status_tc_message

new_topology_tuple: Topology_Tuples


ts:  Topology_Tuples tc: Topology_Tuples; an: AdvertisedNeighbor

 ts = host? . topologyset  tc  ts  an  tcmsg . tc_message . 2 . advertised_neighbor_tuple

 if tc . topology_tuple . 2 . T_last_addr = msg? . msg_packet_tuple . 3 . originator_address

  tc . topology_tuple . 3 . T_seq_num  tcmsg . tc_message . 1 . ansn then status! = discard

 else if tc . topology_tuple . 2 . T_last_addr = msg? . msg_packet_tuple . 3 . originator_address

  tc . topology_tuple . 3 . T_seq_num  tcmsg . tc_message . 1 . ansn

 then host? . topologyset = host? . topologyset \ tc

 else if tc . topology_tuple . 2 . T_last_addr = msg? . msg_packet_tuple . 3 . originator_address

  tc . topology_tuple . 1 . T_dest_addr = an . advertised_neighbor . 1

 then tc . topology_tuple . 4 . T_time = 10

 else if tc . topology_tuple . 2 . T_last_addr = msg? . msg_packet_tuple . 3 . originator_address

  tc . topology_tuple . 1 . T_dest_addr = an . advertised_neighbor . 1

  tc . topology_tuple . 5 . N_trust  an . advertised_neighbor . 2 . N_trust

 then tc . topology_tuple . 5 . N_trust = an . advertised_neighbor . 2 . N_trust

 else new_topology_tuple . topology_tuple . 1 . T_dest_addr = an . advertised_neighbor . 1

  new_topology_tuple . topology_tuple . 2 . T_last_addr = msg? . msg_packet_tuple . 3 . originator_address

  new_topology_tuple . topology_tuple . 3 . T_seq_num = tcmsg . tc_message . 1 . ansn

  new_topology_tuple . topology_tuple . 4 . T_time = 10  new_topology_tuple . topology_tuple . 5 . N_trust

 = an . advertised_neighbor . 2 . N_trust  host? . topologyset = host? . topologyset  new_topology_tuple


Figure 33: Formal Specifications of TC Message Processing

In order to build the topology information base, each node,

which has been selected as MPR, broadcasts Topology

Control (TC) messages. TC messages are flooded to all nodes

in the network and take advantage of MPRs. MPRs enable a

better scalability in the distribution of topology information.

The formal specification of the procedure of generating

topology control message is shown in Figure 34.

TCMessageGeneration

host?: Object

an_sn?: 

tcmsg!: TopologyControlMessage

adv_neigh: AdvertisedNeighbor

adv_neigh_set:  AdvertisedNeighbor


ns:  Neighbor_tuple n: Neighbor_tuple ns =

host? . neighborset  n  ns

 adv_neigh . advertised_neighbor . 1 = n .

N_neighbor_tuple . 1 . N_neighbor_main_addr

  adv_neigh . advertised_neighbor . 2 . N_trust

= n . N_neighbor_tuple . 3 . N_trust

  adv_neigh_set = adv_neigh  tcmsg! .

tc_message . 1 . ansn = an_sn? + 1

  tcmsg! . tc_message . 2 .

advertised_neighbor_tuple = adv_neigh_set


Figure 34: TC Message Generation Specifications

Each node maintains a routing table which allows it to route

data, destined for the other nodes in the network. The routing

table is based on the information contained in the link set and

the topology set[3]. Each entry in the table consists of

R_dest_addr, R_next_addr, R_dist. Such entry specifies that

the node identified by R_dest_addr is estimated to be R_dist

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.2, January 2012

35

hops away from the local node, that the symmetric neighbor

node with interface address R_next_addr is the next hop node

in the route to R_dest_addr. The specification of the Route

Table is shown in the following Figure 35.

Routing_destination

R_dest_addr: Node

Routing_next 

R_next_addr: Node

Routing_distance 

R_dist: 

RoutingTable 

routing_table_tuple: Routing_destination 

Routing_next  Routing_distance Trust


Figure 35: Formal Specifications of TC Message

Processing

The routing table is recalculated in case of neighbor

appearance or loss, when a 2-hop tuple is created or removed,

when a topology tuple is created or removed or when multiple

interface association information changes [3]. The update of

this routing information does not generate or trigger any

messages to be transmitted, neither in the network, nor in the

1-hop neighborhood. The formal specification of the routing

table procedure is presented in Figure 36.

RoutingTableCalculation

host?: Object

new_entry: RoutingTable



rt:  RoutingTable lt: Link_Tuples lt  host? . linkset  rt = host? . routingtable

 new_entry . routing_table_tuple . 1 . R_dest_addr= lt . link_tuple . 2 . L_neighbor_iface_addr

  new_entry . routing_table_tuple . 2 . R_next_addr = lt . link_tuple . 2 . L_neighbor_iface_addr

  new_entry . routing_table_tuple . 3 . R_dist = 1  new_entry . routing_table_tuple . 4 . N_trust = lt . link_tuple . 4 .

N_trust

  host? . routingtable = host? . routingtable  new_entry

tt: Twohop_tuple tt  host? . twohopneighborset

 new_entry . routing_table_tuple . 1 . R_dest_addr= tt . N_twohop_tuple . 2 . N_2hop_addr

  new_entry . routing_table_tuple . 2 . R_next_addr = tt . N_twohop_tuple . 1 . N_neighbor_main_addr

  new_entry . routing_table_tuple . 3 . R_dist = 2  new_entry . routing_table_tuple . 4 . N_trust= tt . N_twohop_tuple . 4 .

N_trust

  host? . routingtable = host? . routingtable  new_entry

te: Topology_Tuples; rt: RoutingTable; h: te  host? . topologyset rt  host? . routingtable

  te . topology_tuple . 1 . T_dest_addr rt . routing_table_tuple . 1 . R_dest_addr

  te . topology_tuple . 2 . T_last_addr = rt . routing_table_tuple . 1 . R_dest_addr

  rt . routing_table_tuple . 3 . R_dist = h

 new_entry . routing_table_tuple . 1 . R_dest_addr = te . topology_tuple . 1 . T_dest_addr

  new_entry . routing_table_tuple . 2 . R_next_addr = te . topology_tuple . 2 . T_last_addr

  new_entry . routing_table_tuple . 3 . R_dist = h + 1  new_entry . routing_table_tuple . 4 . N_trust = te . topology_tuple . 5 .

N_trust  host? . routingtable = host? . routingtable  new_entry



Figure 36: Formal Specifications of Routing Table Calculation

5. CONCLUSIONS

The formal specifications of the structures/classes and the

procedures for a trust oriented OLSR protocol of ad hoc

network are presented in the paper. The inclusion of trust in

the specifications of the protocols is the contribution of this

paper. The trust value is used for packet processing, message

processing, routing decisions. The invariants are used rather

than exhaustive functional analysis. These invariants,

represented in the form of logical formulas, are checked in

order to find any violation in their behavior. In this approach,

invariants are checked that describe properties in order to

identify behaviors that violate them. The future work is to

compare the approach adopted in this paper with the other

formal approaches.

6. REFERENCES

[1] Bhalaji, N., Sivaramkrishnan, A. R., Banerjee, S.,

Sundar, V., and Shanmugam, A. ―Trust Enhanced

Dynamic Source Routing Protocol for Adhoc Networks‖

World Academy of Science, Engineering and

Technology, pp. 1074-1079, 2009

[2] Camara, D., Loureiro, A. A. F., and Filali F.,

―Methodology for Formal Verification of Routing

Protocols for Ad Hoc Wireless Networks‖, In

Proceedings of the IEEE Conference on Global

Communications, pp. 705 – 709. 2007.

[3] Clausen, T. Ed., Jacquet, P. Ed., ―Optimized Link State

Routing Protocol (OLSR)‖, IETF INTERNET DRAFT,

RFC 3626, 2003.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.2, January 2012

36

[4] Fu, L., Sun, G. and Chen J. ―An Approach for

Component-Based Software Development‖ International

Forum on Information Technology and Applications.

Vol. 1, pp. 22-25, 2010.

[5] Ian Sommerville, ―Software engineering‖, Addison

Wesley 7th edition 2004

[6] Nekkanti, R. K. and Lee, Chung-wei. ―Trust Based

Adaptive on Demand Ad Hoc Routing Protocol‖ In

Proceedings of the ACM Southeast Regional Conference,

pp. 88-93, 2004

[7] Shakeel A., Ramani, A. K. and Nazir A. Z. ―Verifying

Route Request Procedure of AODV Using Graph Theory

and Formal Methods‖ International Journal On

Applications Of Graph Theory In Wireless Ad Hoc

Networks And Sensor Network. Vol. 2, No. 2, pp. 1-13.

2011.

[8] Spivey J M, ―The Z Notation: A Reference Manual,‖

Prentice Hall, 1989.

[9] Stéphane, M. and Faitha, Z., ―Testing Methodology for

an Ad Hoc Routing Protocol‖, Proceedings of the ACM

international workshop on Performance monitoring,

measurement, and evaluation of heterogeneous wireless

and wired networks, pp. 48-55, 2006.

[10] Švec, J. and Zahradník, J., ―Formal Specification in ―Z‖

Language By Software Z/Eves‖, International Journal

on Advances in Electrical and Electronic Engineering,

pp. 166-168.

[11] Verma, A. and Gujral, M. S., “Impact of Trust Usage in

Routing, Authentication and Access Control of Adhoc

Network‖, International Journal of Advance in

Communication Engineering, Vol. 2, No.1, pp. 1-7, 2010

[12] Verma, A., ―Formal Verification of Ad Hoc Network

Routing Protocols‖, International Journal of Advanced

Research in Computer Science‖, Vol 2, No. 4, pp. 526 -

530, July-August 2011.

[13] Verma, A. and Gujral, M S , ―Performance Analysis of

Routing Protocols for Ad hoc Networks‖, International

Journal of Computer Science and Emerging

Technologies, , Vol 2, No. 4, pp. 484 – 487 , August

2011

[14] Woodcock, J. and Davies, J., ―UsingZ: Specification,

Refinement and Proof‖,

www.cs.cmu.edu/~15819/zedbook.pdf

[15] Z/EVES Reference manual, available at:

http://www.oracanada.com/pub/doc/97-5493-03d.pdf

