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ABSTRACT 

The key objective of NMPC is to find the best vector of control 

functions that minimize or maximize a performance index 

depending on a given process model (usually a nonlinear 

differential equation system) as equality constraints, and 

boundary conditions as inequality constraints on the states and 

controls.  The use of process optimization in the control of 

chemical reactors presents a useful tool for operating chemical 

reactors efficiently and optimally. Since batch reactors are 

generally applied to produce a wide variety of specialty 

products, there is a great deal of interest to enhance batch 

operation to achieve high quality and purity product while 

minimizing the conversion of undesired by-product. In this 

work, we consider a reactor system which consist of a batch 

reactor and jacket cooling system as a case study. Two different 

types of optimization problems, namely, maximum conversion 

and minimum time problems are formulated and solved and 

optimal operation policies in terms of reactor temperature or 

coolant flow rate are obtained. A path constraint such as on the 

reactor temperature is imposed for safe reactor operation and to 

minimize environmental impact. Here we employ the method of 

collocation on finite elements for discretizing the dynamic 

optimization problem. The numerical solution framework is 

implemented in MATLAB environment. 

Keywords 
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1. INTRODUCTION 

1.1 Dynamic optimization problem in batch 

processes 
For any problem we face two main issues. The first one is the 

problem definition and the last one is the problem solution. This 

is also valid for dynamic optimization problems.  

The aim of a dynamic optimization problem is to determine a 

control profile minimizing (or maximizing) a given objective 

function subject to process constraints. This objective function 

may include productivity, economical index and etc. Process 

constraints are considered in dynamic optimization problems to 

ensure safe operation and environmental regulations. Two types 

of dynamic optimization problems are considered in batch 

processes: maximization of product concentration in a fixed 

batch time and minimization of batch operation time given 

amount of desired product where these objectives can be 

achieved by determining the optimal control profile (for 

example temperature or flow rate). The first problem 

formulation is applied to a situation where we need to increase 

the amount of desired product while batch operation time is 

fixed. This is due to the limitation of complete production line in 

a sequential processing. However, in some circumstances, we 

need to reduce the duration of batch run to allow the operation 

of more runs per day. This requirement leads to the minimum 

time optimization problem [1]. 

There are several methods that can be used for solving dynamic 

optimization problems. Dynamic optimization problems can be 

solved either by the variational approach or by applying some 

level of discretization that converts the original continuous time 

problem into a discrete problem. The first approaches are 

focused on obtaining a solution to the classical necessary 

conditions for optimality. These approaches are also known as 

indirect methods. 

The methods that discretize the original continuous time 

formulation can be divided into two categories according to the 

level of discretization. Here we distinguish between the methods 

that discretize only the control profiles (partial discretization) 

and those that discretize the state and control profiles (full 

discretization). Basically, the partially discretized problem can 

be solved either by dynamic programming or by applying a 

nonlinear programming (NLP) strategy (direct -sequential). The 

methods that fully discretize the continuous time problem also 

apply NLP strategies to solve the discrete system and are known 

as direct-simultaneous methods. These methods can use 

different NLP and discretization techniques but the basic 

characteristic is that they solve the DAE system only once in 

order to find the optimum solution [2]. 

1.2 Batch reactors 
Batch reactor is an essential unit operation in almost all batch-

processing industries. It is used for small-scale operation; for 

testing new processes that have not been fully developed; for the 

manufacture of expensive products and for processes that are 

difficult to convert to continuous operations [3]. In a batch 

reactor, there is no inflow or outflow of reactants or products 

while the reaction is being carried out. The reactants are initially 

charged into a vessel, are well mixed and are left to react for a 

certain period. The resultant mixture is then discharged. This is 

an inherently unsteady-state operation, where composition and 
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temperature change with time; however, the common 

assumption is that at any instant the composition and 

temperature throughout the reactor is uniform. Batch processes 

offer some of the most interesting and challenging problems in 

modeling and control because of their inherent dynamic nature. 

Therefore, modeling of batch reactors results in differential and 

algebraic equations (DAEs) and optimization of such reactors 

requires the use of dynamic optimization technique [4]. 

1.3 This work 
The intention of this paper is not to develop new numerical 

methods for dynamic optimization but to formulate optimization 

problems for batch reactors with design, operation and 

environmental constraints and to select a suitable and efficient 

method from existent techniques to solve such problems. Also, 

the aim is to study the effect of selection suitable control 

variable (for example temperature or coolant flow rate) on the 

optimal operation policies and on the objectives (maximum 

conversion and minimum time) of the optimization problems. 

In this work, we consider a reactor system which consists of a 

batch reactor and jacket cooling system as a case study that two 

parallel highly exothermic reactions are carrying out in the 

reactor [5]. We formulated two types of optimization problems. 

In order to operate the reactor safely, we impose a path 

constraint on the system to make sure that the reactor 

temperature throughout the processing period does not go 

beyond a certain temperature. 

In this work we considered both temperature and coolant flow 

rate as control variable. Results shows that choosing flow rate as 

control variable shows better results and we achieve more 

product concentration(in maximum concentration problem) or 

less batch time(in minimum batch time problem). Simultaneous 

approach is used in both cases as dynamic optimization solution 

which uses collocation on finite element technique.  

2. MODELING OF BATCH REACTOR 
A reactor system considered by [5] and [6] which consists of a 

batch reactor and jacket cooling system is chosen here as a case 

study (Figure 1). It is assumed that two parallel highly 

exothermic reactions are carried out in the reactor: 

1kA B C+ →  

2kA C D+ →  

where A , B are raw materials and C , D are product and by-

products (waste) respectively. The rate constants 1k  and 2k  are 

dependent on the reaction temperature through the Arrhenius 

relation given by equations 6 and 7. 

The batch reactor is modeled by the following equations: 

Material balances in the reactor: 
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Fig 1: Schematic diagram of a jacketed batch reactor. 
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2w
A

rρ
=

                                                                                

(14) 

where �� is the amount of mole of the component “i”,	�� is the 

reactor temperature ,	��  is the jacket temperature, and ���� is the 

inlet coolant temperature. The meanings of other variables are 

defined in nomenclature. Throughout this work the initial values 

for ��, �	, 	�
 and �� are 12, 12, 0 and 0 (kmol), 

respectively. The initial values for other variables are defined in 

the final section of this paper (results). 

3. DYNAMIC OPTIMIZATION 

STRATEGY 

3.1 Problem statements 
Here, two practical optimization problems related to batch 

operation: maximization of product concentration in a fixed 

batch time and minimization of batch operation time given an 

amount of the desired product, are considered to determine an 

optimal control variable profiles. The first problem formulation 

is applied to a situation where we need to increase the amount of 

desired product while batch operation time is fixed. This is due 

to the limitation of complete production line in a sequential 

processing. However, in some circumstances, we need to reduce 

the duration of batch run to allow the operation of more runs per 

day. This requirement leads to the minimum time optimization 

problem. These problems can be described in details as follows. 

3.1.1 P1—Maximum product concentration problem 

The problem can be described as 

Given the fixed volume of the reactor and the batch time; 

optimize the coolant flow rate or temperature profile; 

so as to maximize the conversion of the desired product; subject 

to constraints on the waste product, bounds on the reactor 

temperature, and bounds on the coolant flow rate. 

Mathematically, the optimization problem can be written as 

 

max	����	��	����� 	� = ����� 

s.t. 

���, � ���, ����, !���" = 0  (model) 

�� = ��
∗

 

��% ≤ �� ≤ ��'    or  ��% ≤ �� ≤ ��'   or 

 (�% ≤ (� ≤ (�' 
 

where X is the amount of the desired product at a given final 

batch time, �� is the reactor temperature, �� is the jacket 

temperature, (� is the coolant flow, �� is the batch time, �% and 

�' are the lower and upper bounds of the reactor and jacket 

temperature, (�% and  (�' are the lower and upper bounds of the 

coolant flow, and ��
∗  is the fixed batch time. 

3.1.2 P2—minimum time problem 

The problem can be described as 

given the fixed volume of the reactor and the conversion to the 

desired product; optimize the coolant flow rate or temperature 

profile; so as to minimize the batch time; subject to constraints 

on the waste product,  bounds on the reactor temperature, and 

bounds on the coolant flow rate. 

Mathematically, the optimization problem can be written as    

 

min	����	��	����� 	� = ��  

s.t. 

���, � ���, ����, !���" = 0  (model) 

� = �∗
 

��% ≤ �� ≤ ��'    or  ��% ≤ �� ≤ ��'   or    (�% ≤
(� ≤ (�'  

 

where X* is the desired product concentration at the end of 

batch time and ��  is the batch time. Throughout this work 

conversion to the desired product refers to ‘net conversion’ to 

the desired product and excludes conversion of the desired 

product to by-products. 

3.2 SOLUTION OF DYNAMIC 

OPTIMIZATION PROBLEMS 
The transient behavior of many chemical engineering systems is 

described by DAEs (as can be seen from the models presented in 

the previous section). The optimization of such systems has 

received significant attention over the past decade [7] [8]. A 

number of different solution approaches to dynamic 

optimization problems for systems described by ordinary 

differential equations (ODEs) or DAEs have been proposed in 

the literature [9] [10]. 

In general, they are mainly classified into three classes. The first 

one is based on a classical variation method. This approach is 

also known as an indirect method as it focuses on obtaining the 

solution of the necessary conditions rather than solving the 

optimization directly. Solution of these conditions often results 

in a two-point boundary value problem (TPBVP) which is 

difficult to solve [11]. Although several numerical techniques 

have been developed to address the solution of TPBVP, e.g. 

control vector iteration (CVI) and single/multiple shooting 

method, these methods are generally based on an iterative 

integration of the state and adjoint equations and are usually 

inefficient [12].  

The second class of solutions is based on dynamic 

programming. Unlike the variation method, this approach 

applies the principle of optimality to formulate an optimization 

problem, leading to the development of the Hamilton–Jacobi–

Bellman partial equations that determine the solution of the 

optimal control problem. However, this approach is quite limited 

to a simple control problem because of a difficulty in obtaining 
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the solution of the optimality equations [13] [14]. The idea of 

the optimality principle can be extended to develop an 

alternative technique, named as iterative dynamic programming 

(IDP) [15]. 

The last approach is based on discretization techniques, received 

major attention and considered as an efficient solution method. 

The concept of this approach is to transform the original optimal 

control problem into a finite dimensional optimization problem, 

typically into a nonlinear programming problem (NLP). Then, 

the optimal control solution is given by applying a standard NLP 

solver to directly solve the optimization problem. For this 

reason, the method is known as direct method. The 

transformation of the problem can be made by using 

discretization technique on either only control variables (partial 

discretization) or both state and control variables (complete 

discretization). Based on this consideration, this approach can be 

divided into two categories: sequential and simultaneous 

strategy. 

In the sequential strategy, a control (manipulated) variable 

profile is discretized over a time interval. The discretized control 

profile can be represented as a piecewise constant, a piecewise 

linear, or a piecewise polynomial function. The parameters in 

such functions and the length of time subinterval become 

decision variables in optimization problem. This strategy is also 

referred to a control vector parameterization (CVP). 

In contrast to the sequential solution method, the simultaneous 

strategy solves the dynamic process model and the optimization 

problem at one step. This avoids solving the model equations at 

each iteration in the optimization algorithm as in the sequential 

approach [16]. To apply the simultaneous strategy, both state 

and control variable profiles are discretized by approximating 

functions and treated as the decision variables in optimization 

algorithms. There are mainly two different approaches to 

discretize the state variables in simultaneous strategy: multiple 

shooting and collocation on finite elements. In this study we 

utilize collocation on finite elements to solve the optimal control 

problem. The formulation of the optimal control problem as a 

nonlinear programming is described below. 

3.2.1 Collocation on finite elements scheme 
Consider the following general control problem for	� ∈ [�0, ��	]: 
 

Min{/�����	�, 0, ��	�}                                                   (15)  

!���, 0 

such that 

��˙	��� 	= 	������, !���, 0, ��                                (16) 

���0� 	= 	�0�0�                                                              (17) 

ℎ�����, !���, 0, �� 	= 	0                                              (18) 

3�����, !���, 0, �� ≤ 	0                                               (19) 

����% ≤ ���� ≤ ����'                                                 (20) 

!���% ≤ !��� ≤ !���'                                                 (21) 

0% ≤ 0 ≤ 0'                                                                      (22) 

with the following nomenclature: 

ℎ�・� – equality design constraint vector, 

3�・� – inequality design constraint vector, 

����% , ����'  – state profile bounds, 

!���% , !���' – control profile bounds, 

0%, 0'– parameter bounds. 

 

In order to derive the NLP problem the differential equations are 

converted into algebraic equations using collocation on finite 

elements (Figure 2). Residual equations are then formed and 

solved as a set of algebraic equations. These residuals are 

evaluated at the shifted roots of Legendre polynomials [17]. The 

NLP formulation consists of the ODE model discredited on 

finite elements, continuity equation for state variables, and any 

other equality and inequality constraints that may be required. It 

is given by [18] 

min456,756,∆85 ,9:;��� , 0, ��"<                                       (23)

 �10	 − �0�0� 	= 	0                                                       (24) 

?��@A� = 	0				@	 = 	1, . . . , CDA	 = 	1, . . . , E�    (25) 

�@0	 − �F4
�GH�I@� = 	0				@	 = 	2, . . . , CD                (26)  

��– �F4
LM�ICD + 1� 	= 	0                                           (27) 

!�
% ≤ !F7

� �I�� ≤ !�
'@	 = 	1, . . . , CD                       (28) 

!�
% ≤ !F7

� �I�OH� ≤ !�
'@	 = 	1, . . . , CD                  (29) 

!�P
% ≤ !F7�QP" ≤ !�P

' @	 = 	1, . . . , CDR	 = 	1, . . . , E  

                                                                                                 (30)  

!F4�QP" ≤ !�P
' @	 = 	1, . . . , CDR	 = 	1, . . . , E       (31) 

I�
% ≤ ∆IS ≤ ∆I�

'				@	 = 	1, . . . , CD                         (32)  

0% ≤ 0 ≤ 0'
                                                                    (33) 

∑ ∆I�
LM
�UH = IVWVXY                                                             (34)  

( , , , ) 0ij ij ijh t x u p =
                                                         

(35)  

( , , , ) 0ij ij ijg t x u p ≤
                                                         

(36) 

where @ refers to the time-interval, R, A refers to the collocation 

point, ∆I@ represents finite element length of each time-interval 

@	 = 	1, . . . , CD, ��	 = 	����	�, and ��P 	, !�P are the collocation 

coefficients for the state and control profiles. The problem can 

now be solved by any large-scale nonlinear programming solver. 

3.2.1.1 Off-line and on-line strategy of orthogonal 

collocation on finite elements approach 
In this work we consider off-line and on-line strategies that can 

be employed in orthogonal collocation on finite elements 

approach. 

3.2.1.1.1 Off-line strategy 
In this approach optimization is carried out only at the start of 

the batch operation. Optimal profile is determined for all 

collocation points and boundaries and this control input is sent 

to the process during the operation. Also no measurement is 

carried out and as a consequence the control input will not be 

modified during the batch run. The optimal profile can be 

applied to the process either in the form of rectangular pulse or 

multi-stage staircase waveform between two consecutive points 

(collocation point or boundary). 
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                       !�GH,H           !�GH,Z                          !�,H            !�,Z                                                                                                                         

         ��GH,[      ��GH,H         ��GH,Z             ��,[         ��,H            ��,Z                                                                       

         I�GH                                                    I�               

                                                                                  ∆I�     

 

3.2.1.1.2 On-line strategy 
As mentioned before due to the lack of process measurements 

during the batch cycle, the process response is highly affected 

by the disturbances and model mismatch. So in order to 

compensate the effect of disturbances and model mismatch on-

line dynamic optimization is utilized. 

The first optimization run is executed at t = 0. The optimal 

control input is determined on all collocation points and 

boundaries. The first element of the control vector is applied to 

the process. After the time interval between starting point and 

the next collocation point is elapsed the process measurements 

should be available. These data are then used in an EKF 

parameter estimation algorithm [19] in order to update the 

uncertain model parameters and optimization is carried out from 

the current point to the end of the batch time based on the 

modified model. The first element of the control input is applied 

to the system again and this procedure is repeated. The last 

optimization run is carried out between the last collocation point 

and the final time (
ft ). 

4. RESULTS 
In this section we will consider four different cases and will 

present all results and simulation obtained from dynamic 

optimization problem. The batch reactor was described in 

section 2 is used as a case study in all cases. In each case we 

have a dynamic optimization problem that is solved by the 

orthogonal collocation on finite elements approach. The 

numerical solution framework is implemented in the MATLAB 

environment. 

4.1 Case 1 
Here, the aim of the optimization algorithm is to determine the 

inlet jacket temperature profile so as to maximize the 

concentration of the desired product (�
) while the constraints 

have being satisfied. The dynamics of the bath reactor has been 

described in section 2. The initial values for ��, 	�	, 	�
 and 

�� are 12, 12, 0 and 0 kmol, respectively. The initial values for 

the reactor temperature (��) and jacket temperature (�P) are both 

considered to be equal to 20	℃. The final batch time is equal to 

200 min. Here the inlet jacket temperature (�P��) is considered as 

the manipulating variable.  

The reactor temperature, jacket temperature, and inlet jacket 

temperature are bounded according to the following equations: 

20 ( ) 120rT C≤ ≤
o

                                                          (37)        

 

 

              !�OH,H           !�OH,Z 

��OH,[      ��OH,H            ��OH,Z        ��OZ,[ 

 

  I�OH                                             I�OZ 

 

 

                                                                                                 

0 ( ) 120jT C≤ ≤o
                                                             (38)                                                                                                    

0 ( ) 120jinT C≤ ≤o
                                                           (39)                                                                                                        

Other parameter values are listed in table 1. 

Table 1: Parameter values 

AMW = 30 /kg kmol  U
240.842 / (min )kJ m C= o

 

BMW = 100

/kg kmol
 

ACp = 75.31

/ ( )kJ kmol Co  

CMW = 130 /kg kmol
 BCp = 167.36

/ ( )kJ kmol Co
 

DMW = 160 /kg kmol
 CCp = 217.57

/ ( )kJ kmol Co
 

1

1k = 20.9057
 DCp = 334.73

/ ( )kJ kmol Co
 

2

1k = 10000
 

1H∆ = 41840 /kJ kmol−
 

1

2k = 38.9057
 

2H∆ 25105 /kJ kmol= −  

2

2k = 17000
 

ρ =
31000 /kg m  

r = 0.5 m
 jρ =

31000 /kg m
 

jF = 0.348
3 / minm  jCp = 1.8828 / ( )kJ kg Co

 

jV =
30.6912m

 

Fig 2: Collocation method on finite elements for state profiles, control profiles and element lengths ( 2x uK K= = ) 
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It should be mentioned that in the dynamic optimization 

algorithm of orthogonal collocation method, constraints are 

satisfied only at the specified points (collocation points and 

boundaries), so there is no guaranty that the constraint don’t 

violate between these points. In all simulations that off-line 

strategy is used,n  = 5, ^4= 4 and ^7= 3 are considered (in order 

to having 20 time interval). 

The optimal control input is applied to the process in the form of 

rectangular pulse which is extended between any two 

consecutive points. The optimization results are illustrated in 

Figure 3. The value of product concentration (�
) achieved at 

the end of operation is 5.821kmol. 

In the next stage the optimal profile is applied to the process in 

the form of staircase waveform (the average length of intervals 

is 3 min.) The optimization results are shown in Figure 4. Since 

the staircase waveform is closer to the actual optimal profile 

than the rectangular waveform. Therefore, the product 

concentration has been increased slightly (�
=6.002 kmol). 

In order to guarantee the path constraint satisfaction and 

consequently maximizing the product concentration, the on-line 

strategy is utilized. The on-line optimization algorithm has been 

explained in section (3.2.1.1.2). In this problem the number of 

collocation points for both states and control are fixed at 4 

during the optimization. In order to reduce the computational 

effort, the number of elements at the start of operation is 5 and 

after elapsing four time intervals (equivalent to one element) the 

number of elements will be decreased by one. The optimization 

results are shown in Figure 5. As it can be seen, the path 

constraint on the reactor temperature is satisfied and as going 

forward through the operation the product concentration is 

moved toward its optimum (�
=6.326 kmol). 

4.2 Case 2 
In this case, the aim of the optimization algorithm is to 

determine the coolant flow rate profile so as to maximize the 

concentration of the desired product (�
) while the constraints 

have being satisfied. The difference between this case and the 

previous one is that here we are using coolant flow rate as the 

manipulated variable instead of the inlet jacket temperature. The 

initial values for ��,	�	 ,	�
 and ��are the same as case 1 and 

also the initial values for the reactor temperature (��) and jacket 

temperature (�P) are both considered to be equal to 20℃. The 

final batch time is equal to 200 min. Here the coolant flow rate 

((P) is considered as the manipulating variable. The inlet jacket 

temperature is considered to be equal to �P��=60 . The reactor 

temperature, jacket temperature, and coolant flow rate are 

bounded according to the following equations: 

20 ≤ ���℃� ≤ 120                                                      (40)                                                                                                        

20 ≤ �P�℃� ≤ 120                                                       (41)                                                                                                        

0 ≤ (P�_`/_@^� ≤ .5                                                (42)                                                                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: Optimization results of case 1 using the off-line 

strategy (Rectangular control input). 
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Fig 4: Optimization results of case 1 using the off-line 

strategy (Staircase control input). 

Fig 5: Optimization results of case 1 using the on-line 

 strategy (cdef=5, cf=4, cg=4). 
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Other parameter values are the same as those listed in table 1. 

Here   (P is the manipulated variable and �P�� is equal to 60℃. 

Similar to case 1, in off-line strategy we consider: ^=5, ^4=4 

and ^7=3 (20 time interval). The first (top) curve of Figure 6 

shows the optimal coolant flow rate (in m3/min) profile in the 

form of rectangular pulse which is applied to the process. The 

second and third curves in this figure show the optimization 

results. As seen the jacket and reactor temperature are not 

exceeding from their bounds. In addition, we will achieve 

�
 = 6.194	A_kl for the product concentration at the end of 

operation. 

If we apply the optimal profile to the process in the form of 

staircase waveform (the average length of intervals is 3 min.) we 

will obtain the optimization results that are shown in Figure 7. 

As seen in this figure the product concentration is �
=6.232 

kmol at the final batch time that is more than �
=6.194 

obtained in the previous section. 

Here, the on-line dynamic optimization is compared to the off-

line dynamic optimization. In this case, the values of desired 

product (�
) obtained from the on-line strategy is equal to 6.543 

kmol. This results from the fact that in online strategy we have 

more information of the process and so we will be able to find 

better control profile to achieve our wishes. The optimization 

results are shown in Figure 8. 

4.3 Case 3 
Sometimes we want to reduce the batch time that is needed to 

achieve a desired final product concentration (�
���" =
6.5	A_kl	) so the optimization problem is to determine the 

optimal control input profile to minimize the batch time.  

In this case also, the optimization problem of the batch reactor 

will be solved using the orthogonal collocation method. The 

initial values for ��,	�	 ,	�
 and �� are 12, 12, 0 and 0 kmol, 

respectively. The initial values for the reactor temperature (��) 

and jacket temperature (�P) are both considered to be equal to 

20℃. Under best conditions in case 1 and case 2 a maximum 

product concentration of �
���" = 6.5	A_kl	 can be obtained.  

Therefore, in this case the final product concentration is 

considered to be equal to6.5	A_kl. Here the inlet jacket 

temperature (�P��) is considered as the manipulating variable. 

The reactor temperature, jacket temperature, and inlet jacket 

temperature are bounded as in case 1. 

At first, the optimal control input is applied to the process in the 

form of rectangular pulses. Results in this case shows that the 

final batch time that is needed to achieve the specified value of 

product concentration (�
) is �� = 183	_@^. Results of this 

case are illustrated in figure 9. 

Although it is not necessary but we can also employ a staircase 

form of optimal control input and apply it to the process. In this 

case we see that at the final batch time the level of product 

concentration achieved is equal to �
=6.715 kmol.  This value 

is greater than the concentration obtained when a rectangular 

control profile is used. Figure 10 shows the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 6: Optimization results of case 2 using the off-line 

strategy (rectangular control input). 
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Fig 7: Optimization results of case 2 using the off-line 

strategy (Staircase control input). 

Fig 8: Optimization results of case 2 using the on-line 

strategy (cdef=5, cf=4, cg=4). 
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Fig 9: Optimization results of case 3 using the off-line 

strategy (rectangular control input). 

Fig 10: Optimization results of case 3 using the off-line 

strategy (staircase control input). 
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Similar to the preceding cases, in the current case we can 

consider the online dynamic optimization strategy. Figure 11 

shows the corresponding results. Here, the batch time is reduced 

to �� = 166	_@^ that is better than the offline strategy because 

in less time we achieved the same product concentration. 

4.4 Case 4 
This case is similar to the previous one but, here the aim of the 

optimization is to determine the optimal coolant flow rate profile 

so as to achieve the desired final product concentration 

(�
���" = 6.5	A_kl) in a minimum batch time while the 

constraints have being satisfied. All initial values are the same 

as the previous case. Here the coolant flow rate ((P) is 

considered as the manipulating variable instead of inlet jacket 

temperature. The reactor temperature, jacket temperature, and 

inlet jacket temperature are bounded by the same values as in 

case 2. 

At first, the computed optimal control input is applied to the 

process in the form of rectangular pulses. The optimization 

results are illustrated in Figure 12. Results in this case show that 

the final bath time that is needed to achieve the specified value 

of product concentration (�
) is �� = 171	_@^. We can also use 

staircase form of the optimal control input and apply it to the 

process. In this case we will see that at final batch time we 

achieve more product concentration (�
=6.535 kmol) than the 

concentration obtained with the rectangular control input. Figure 

13 shows the corresponding results. 

Similar to the above cases, in this case we consider the online 

dynamic optimization strategy. The results in Figure 14 show a 

reduction of the final batch time to �� = 140	_@^. 

5. CONCLUSION 
Optimal operation policies in batch reactors were obtained using 

dynamic optimization techniques. Optimization problems for 

two different types of performance measures (maximum 

conversion and minimum batch time) were formulated and the 

solutions of such problems were presented using orthogonal 

collocation on finite elements techniques. A batch reactor is 

used in the optimization framework as a case study. In this work 

the effects of using different manipulated variables (coolant flow 

rate & inlet jacket temperature) on the optimal operation of the 

batch reactor were studied. Also for each optimization problem, 

we considered the off-line and on-line strategies to demonstrate 

the point that in the on-line case we have more and accurate 

information of the process than the off-line case, therefore, we 

will obtain a better optimal profile of the control variable. The 

on-line dynamic optimization is performed using the idea of 

receding horizon scheme. This approach employs the updated 

current information of the system to estimate the states. The 

states are estimated from the delayed measurement of the values 

of reactants in the reactor using the Extended Kalman Filter 

(EKF) technique. Results show that instead of using the 

temperature profile if we use coolant flow rate as the control 

variable we will obtain more product concentration at the final 

batch time for the maximum conversion problem (p1). In 

addition we need less time to achieve a predetermined product 

concentration in the minimum time problem (p2). The optimal 

operation policies that are obtained in this work can be 

implemented by designing the appropriate controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig 11: Optimization results of case 3 using the on-line 

strategy (cdef=5, cf=4, cg=4). 
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Fig 12: Optimization results of case 4 using the off-line 

strategy (rectangular control input). 

Fig 13: Optimization results of case 4 using the off-line 

strategy (staircase control input). 
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