
International Journal of Computer Applications (0975 – 8887)

Volume 37– No.11, January 2012

23

Enhancing Software Secureness in Public

ICT Applications

C. K. Raju

Indian Institute of Technology,
Kharagpur, 721 302

 INDIA

P. B. S. Bhadoria

Indian Institute of Technology,
Kharagpur 721 302

INDIA

ABSTRACT

Issues related to security and privacy of information under

processing have been topics of great public interest. A

perception of existence of an insecure channel of

communication is usually created, which needed attention by

experts. Most discussions also assume, among other issues,

neutrality of the operating environment under which the

principles of security or control for privacy are applied.

Additionally, a standard image of a sender and receiver is

posited to convey neutrality of the human agency involved in

trans-reception of secure information. This article purports to

view contradictions in the theme of security, when neutrality

of software environment is contested or when the interests of

human agency involved in trans-reception of information are

in conflict. A shift of this nature is necessary because a

proprietary software environment may be completely

transparent to its developer community, even while remaining

opaque or insecure to its user community.

General Terms

Software Security

Keywords

Software Secureness, Public ICT applications.

1. INTRODUCTION
Secureness of software has been discussed and debated on

identical terms with security of software. Why security-

related issues occur in the realm of software development

have been put forward by various researchers, and various

approaches on how these could be mitigated too have been

discussed. A few prominent ones are reproduced. The

presence of software defects has been identified as one

prominent reason for software to lose its security, allowing

intruders or attackers to take advantage of the vulnerability

[15]. There had also been studies where vulnerability to

software security had been attributed to inadequate methods in

hardware design [13]. Indications are given in such studies

whereby vulnerabilities would be reduced by following proper

design principles in hardware. There are also another set of

studies pertaining to software security which wants the project

manager or software developer to constantly keep thinking

like an attacker or intruder so that the vulnerable areas get

visible early onwards.

In one such study [11], it was proclaimed that keeping such an

orientation throughout the software development life cycle,

improved security in software could be attained. Software

processes differ from most other manufacturing processes, in

that the products and processes are capable of getting

modified, tested or developed by communities of users,

maintainers or developers. The users are usually not involved

in the process during which the attributes for quality are

tentatively fixed for the software to be developed or modified.

This means that the user community is relegated to lower

priority supervisory role, where the developer community gets

to decide most of the prerequisites of quality that is to be self-

imposed. In a citizen-centric democracy, software applications

that serve public needs, provides a pivotal role to citizens both

as users of their own information and as its masters, a

proposition mooted in Republic of Peru [23]. Thus, the human

agency that ought to stipulate conditions for quality and other

related parameters cannot be confined to choices from

developer community alone. Additionally, the software

environment under which software is developed and verified

for secureness also needs to be neutral without having any

inherent biases.

A proprietary software environment is often available as

closed binaries, without the facility to do any kind of

meaningful inspection. In public ICT (Information and

Communication Technologies) applications, this may be quite

inadequate, given the dual role that citizens get to involve in

applications that process public information. It is in this

context that this article attempts to understand the concept of

software secureness. Once the relationship between software

secureness, the role of software environment and varying

kinds of human agency get known, it may be possible to

devise means to improve software secureness for such public

ICT projects. This work attempts to define and view

secureness through correctness of software sources, fair

implementation of protocols and through the nature of data

formats that the software projects use. Initial reviews on

software quality measures on software products had prompted

detailed studies on issues like as-is utility, portability and

maintainability [1]. Significance of portability and

maintainability has also been stressed in another software

product quality model suggested by Dromey [4]. This

situation presupposed availability of software as sources and

details of protocols, as without accessibility to such sources,

maintainability could be ruled out and portability gets

impossible.

Manuals in software quality make adequate references to

adherence to use of data standards, fair implementation of

protocols and transparency in coding of their implementation

[8], [21], and [7]. These manuals, while laying out

specifications for achieving software quality, however, do not

insist on the dichotomies that arise while applying quality

conditions to user and developer domains. While developers

working within proprietary software establishments can claim

software quality by adhering to these manuals by virtue of

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.11, January 2012

24

having accessibility to software design and development

processes, a majority of users who are out of purview of the

development establishment and who would be the major

consumers of software, are not in a position to guarantee

software quality on their own. This unique contradictory

situation insofar as the software users are concerned has even

prompted a suggestion that open standards without insistence

of open source software would render the whole claim of

software quality inadequate [22]. Software sources often

undergo changes while catering to evolving demands. Its

management too would get complex, when the communities

of users, developers or maintainers are allowed varying

degree of permissions or restrictions in their access to

software sources.

Adherence to established protocols also requires that software

is programmed to do, what it claims to do. Even more

importantly, software should not be doing, what it is not

supposed to do. The task of validating secureness, therefore,

needs a fair amount of expertise in programming by the

inspecting agency. It is known that errors or deviations from

norms in software can be brought out if more people are

allowed to inspect the sources [20]. Therefore, access to

software sources is a critical factor in establishing secureness

of software, especially for those software applications serving

public interests or needs.

The properties and nature of data formats used in public

applications also need to be scrutinized for their linkages with

software secureness. Data formats could be either standards or

open formats where ownership has been relinquished. Data

formats could also be proprietary which may have owners.

When ownership of proprietary formats are in private

possession, encoded information risk getting under perpetual

control, especially if the private owners shun efforts to

convert them into legitimate standards relinquishing

ownership. In a draft legislation introduced in Republic of

Peru [23], a few issues were referred. It was argued that

public agencies have a natural obligation to guarantee

permanent availability of information encoded, processed and

stored while engaging with software applications. To ensure

this, proprietary formats were not desirable for public

systems. The significance, as per the bill was due to the fact

that private information of citizens gets processed in such

software systems, and the state as a legitimate custodian of

such information has an obligation to safeguard its

availability. Hence usage of data standards or open data

formats which do not have owners needs to be mandatory part

of any public software initiative. Software that has the data

formats encoded in open data formats or data standards will

enhance its secureness, as these could be retrieved or made

available at any time in future.

Accessibility to software sources allows inspection of the

sources for fair implementation of software protocols and

coding practices. The draft bill had promoted use of Free

Software in public institutions [23]. A study [22] on

effectiveness of open standards had pointed out that unless the

implementation of such standards are carried out with open

source projects, a precarious situation involving vendor lock-

in might follow. In a case taken up for study here, the twin

requirements that deal with accessibility to software sources

and adherence to established data standards or open data

formats were scrutinized and their suitability examined

towards enhancing software secureness. The public software

application is one that monitors a rural employment guarantee

scheme introduced on a national scale in India.

2. A RURAL EMPLOYMENT

GUARANTEE SCHEME
A government initiative to guarantee 100 days of employment

on an annual basis to all rural households in India was

legislated [5] in 2005. Commissioned as National Rural

Employment Guarantee Scheme (NREGS), the programme

was open to all households whose members were willing to

offer unskilled labour. Though initially the programme was

implemented in select areas, it later got extended to all rural

areas of India. The programme, rechristened as Mahatma

Gandhi National Rural Employment Guarantee Scheme

(MGNREGS), continues to be executed through all local self-

government institutions in the Panchayat Raj System which

predominantly addresses rural population. The enactment was

subsequently amended to place all in- formation about the

scheme in public domain through a website. It later became a

mandatory requirement [6] for the purpose of introducing

transparency in all the transactions within the system. This

monitoring scheme which has already commenced is planned

to be in operation at over 240,000 rural self-government

institutions in India.

The software that fulfills this requirement has been developed

by National Informatics Centre (NIC) and is made available to

the rural local self-government institutions. Here, the data

processed at rural local self-government institutions spread

across the country will be received and stored at a central

database repository. NREGASoft, the software developed for

monitoring these activities is capable of operating in 'online

mode' as well as in 'off-line mode' [16]. In the online mode of

operation, a dedicated internet connection needs to be

established between the local self-government institution and

the Ministry of Rural Development (Govt. of India) which

hosts the central server. In the online mode, details of all

activities are updated on a daily basis with the help of a

browser application at the nodes. However, due to the

enormity of data, the data-entry operations which even

include marking of attendance of the workers at the various

work sites are carried out in the off-line mode.

In the off-line mode, data related to MGNREGS are entered

by local self-government institutions and updated in a local

database repository. Later, at a convenient time or from an

alternate location, the incremental updates to local database

are synchronized with the remote central repository, which is

housed in the premises of Ministry of Rural Development,

Government of India. NIC has developed a web-server

application integrated with a hypertext scripting engine with

the central database server [8], which allows 'online mode' of

operation. According to its principal developer [14], the first

major award bagged by the project was Microsoft e-

Governance Award 2006.

3. SOFTWARE SECURENESS

3.1 Role of Software Environment in

Determining Software Secureness
On analysis of NREGASoft it was observed that the central

server which received information from rural local bodies was

configured using proprietary software. The information

received was stored in database in a proprietary format.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.11, January 2012

25

Table 1. Ownership of Client Software Sources (Offline)

Software Nomenclature Ownership

Operating

System

Windows XP

SP-2
Microsoft Inc

Web Server IIS Server Microsoft Inc

Database

Management

System

MS SQL Server

2000
Microsoft Inc

Application NREGASoft NIC

 The minimum essential configuration for becoming the client

of the monitoring network, as per the manual [16], is listed in

Table 1. It can be seen that a software firm has exclusive

ownership over the software environment which embeds the

application software developed by NIC during execution.

Users of this rural software application do not have access to

software sources that are owned by this software firm, and

hence software secureness of the environment for the users

gets reduced.

Table 2. Ownership of Server Software Sources

Software Nomenclature Ownership

Operating

System

MS Windows

Server
Microsoft Inc

Web Server IIS Server Microsoft Inc

Database

Management

System

MS SQL Server

2000
Microsoft Inc

Application

Scripts
NREGASoft NIC

For both the off-line mode and the online mode of operation,

the server configuration is listed in Table 2. The secureness of

the scripts that make up NREGASoft is dependent on access

to its sources. NIC owns and maintains the scripts of

NREGASoft. Since these scripts are made available to local

self-government institutions, secureness of NREGASoft will

be dependent on the extent of access to the scripts that is made

available to the users. However, when a software application

is embedded inside an insecure software environment, the

software project will become insecure for its users. In a study

carried out by Jones, it was pointed out that at the user end, it

is almost impossible to build a meaningful software metrics

even for identifying its inadequacies or highlighting its

worthiness as good, bad or missing [9]. The study even went

ahead and claimed a metric as hazardous which was unrelated

to real economic productivity. Therefore for any software

project to be completely secure to its users, it should be

operated only in an environment that can extend secureness of

any software that is in execution. From the database

description used in the application, it is evident that

information related to public is encoded in proprietary data

format and is opaque to its users. Deprived of the neutrality

that is required in data standards or open data formats and

transparency in implementation of its encoding, the

secureness of data diminishes.

3.2 Role of Human Agency in Determining

Software Secureness
In NREGASoft, the community of users is mostly those from

the rural local bodies in India, belonging to different states

and union territories in India. The developers and maintainers

of the application of NREGASoft happen to be from National

Informatics Center (NIC), which is a public agency under the

administrative control of Government of India. The

developers of the software environment of NREGASoft

happen to be from a private software firm. In this proprietary

software project it can be seen that the communities of users,

developers and maintainers are not the same. NIC has some

definite control over the sources (server scripts) it develops

and maintains. The community of users, which happens to be

citizens in local self government institutions, does not enjoy

the same privileges for access to the sources as that of the

maintainers.

A proprietary developer of kernel and similar services related

to Operating System may have complete control over the

entire project. This is because user-level software applications

get embedded inside a proprietary operating environment,

where such an operating environment can oversee any aspect

of its functioning. A recent study suggested that exposure to

software sources would help in reducing the number of faults

which can be taken as an important factor while creating a

process metrics [12], but the dilemma of software secureness

would continue, so long as sources are not made available to

user community.

Secureness of software is directly related to access and control

over source code of software by the users. The software

project may be secure enough to Microsoft Inc., who has

access to all the code it develops. NIC's sense of secureness,

however, is limited to its control over the sources NIC has

developed. Still lesser sense of secureness will prevail on the

programmers and other users in rural local self-government

institutions, who may have access to some portions of the

program developed by NIC. For the common rural citizens in

whose service the application is created, however, the

application can never be declared secure. This is because there

are no legal provisions that facilitate rural citizens to inspect,

test or debug the code or entrust such inspection to third-

parties as brought out in the draft bill introduced in Peru [23].

In a democracy, where state serves its people, excluding

people from accessing software sources is akin to excluding

masters of the state. The secureness of software vis-a-vis

ordinary citizens, whose information is getting processed, is

therefore not prominent in NREGASoft.

3.3 Secureness through adherence to Data

Standards
Software scenario is replete with instances of multiple choices

for data formats available for the purposes of storage or

processing in certain application domains. Wherever data

formats have been declared as data standards or open data

formats, it can be presumed that issues over ownership over

such data standards too have been settled. This is primarily

because data standards or open data formats are devoid of

owners claiming exclusive rights over such formats.

Data standards or open data formats play a vital role in

ensuring interoperability of encoded data between systems as

they become neutral to applications that use them. Retention

of ownership or rights over some or all parts of standards

would dent this neutrality, in the process rendering it a non-

standard. Its status then would be as a proprietary data format.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.11, January 2012

26

The scope of discussion on proprietary formats in which data

are encoded and other related protocols used in NREGASoft

is limited, as their implementation details are not available for

inspection by any user, other than the firm that developed it.

Additionally, there cannot be a fool-proof mechanism for

validating any claims of adherence to protocols, as these are

available only in binaries, mostly in a non-decodable format

whose ownership entirely lies with a single agency. The

licensing conditions, under which these utilities are made

available to users, strictly prohibit any attempts to reverse-

engineer or decode. Thus, the existing state of the art is

severely limited in its scope for evaluation or scrutiny, from a

technological perspective. The data encoded cannot be

guaranteed to be available permanently [23]. Secureness of

the system, therefore, is further compromised through the

usage of proprietary formats and non-verifiable protocols.

Operations from client-side have been categorized into two

modes. In the off-line mode, a local database is created and

updated, from where data is updated with the central database

server. Most of the software utilities are available only in

binary formats. The state of client in off-line mode is almost

the same as that of server. Secureness of client, therefore, is

poor as in the case with secureness of server. In the online

mode, it will be a web-application which will be used to

update the remote database. Here too, the encoding of data for

storage in remote database will be carried out in proprietary

formats.

The tendency of software secureness to vary can be gauged

from the interest shown by the owner of proprietary format to

have it converted into a legitimate standard, relinquishing any

kind of ownership. Absence of ownership over any part of

format, if published as a standard, and made available for

public use, would naturally mean that everyone has an equal

share of ownership, enforcing neutrality. In the event of non-

neutrality of encoding process, the format may need alteration

to become a standard. In the case of NREGASoft, Microsoft

Inc currently holds the ownership of proprietary data formats

used in its systems. Hence, software secureness is severely

restricted with regard to encoding of information.

3.4 A framework that indicates secureness

of software
In a similar description, one can find a range associated with

accessibility of software. At one end of the spectrum is

making available software source codes with freedom to

inspect, modify and publish, to the community that uses them.

At the other end of the spectrum lie software, extended as

binaries with two different variants. One variant is a type of

software binaries with access to their respective sources with

varying degrees of freedom over their usage to inspect,

modify, alter, distribute or publish as in the case with Free

Software or other Open Source projects. The other is

extension of mere binaries of software with no access to their

sources, denying the user community to build the binaries

from their respective sources. Thus, inspection, modification,

alteration etc are impossible.

A framework that adequately represents this model of

arrangement is produced in Figure 1. The first and fourth

quadrants deal with sources of software code, with a

difference. While sources and standards are available in

public domain in the case of first quadrant, the sources and

data formats used in the fourth quadrant are available only

within the proprietary establishments that develop them. The

secureness in the first quadrant is highest, which are enjoyed

by users, developers, maintainers and testers. The secureness

for software in fourth quadrant is however enjoyed by only

developers and testers of proprietary software. Since users of

proprietary software deal only with software binaries and

proprietary formats, secureness of software is absent for users

of proprietary software.

Cases that deal with standards and binaries (with no access to

source code) as well as cases that deal with proprietary

formats and binaries (with access to source code) are both

deviations from the usual norm, and hence their representation

is not considered important in this framework. They are not

testable too, by virtue of having binaries or proprietary

formats, often legally protected from any detailed scrutiny.

NREGASoft as a product independent of its environment lie

in third quadrant, and the software environment that facilitates

its functioning lie in the fourth quadrant. It is pertinent to note

that users of NREGASoft have their software secureness

seriously compromised. This analysis sets off an inquiry

whether it is possible to elevate the secureness of software,

and if so, what should be conditions that favour this transition.

Fig 1. A framework highlighting the differing environments for Users, Developers and Maintainers

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.11, January 2012

27

3.5 Software Monitoring Application with

Enhanced Secureness
A scalable prototype for a local database management system

that captures and stores information pertaining to MGNREGS

was developed using Free Software applications during late

2009 and early 2010.

Table 3. Alternate Software Specifications

Software Nomenclature

Operating System
GNU/Linux (Ubuntu

9.10)

Web Server Apache 1.3.42

Database Management

System
MySQL 5.1.31

Webserver Script Engine PHP 5.2.12

Content Management

Software
Drupal 6.15

The following software components described in Table 3 were

deployed. A scalable prototype was developed with Drupal

and the essential functions of a work-activity were captured

and made available as reports. Assessment of work

requirements and its processing was carried out at Panskura-I,

a block panchayat in East Medinipore district, West Bengal.

Information generated through the reports, validated the

functional aspects of the prototype at the developer's level. In

a rural application developed with Free Software, the

transparency of the solution would be highest if the rural

citizens are allowed to inspect the code that processes their

information. This meant that making available packages in

Free Software over an Operating System built over Free

Software is inadequate.

The entire sources of the database that created the application

too need to be made transparent. The new conditions made the

publishing of the Structured Query Language (SQL) database

dump for the application under a GNU General Public

License (GPLv3), imperative. A mere replication of a

database, too, is inadequate if inspections are to be carried

out. The metadata design pertaining to the database that

processed all work activities of MGNREGS were made part

of the original design. This meant that the application

displayed, as part of its features, the database design too, with

relations, entity relationship diagrams and detailed description

of every attribute in all relations, and the forms that invoke

these relations. Moreover, all future transactions that are

committed on this database would also retain the same

openness and transparency, when copied for distribution. An

SQL dump would then cause not only the data captured

through the application available for inspection, but also the

semantics of its usage. Since access privileges are controlled

by the MySQL database which is separated from the database

meant for storing information related to MGNREGS,

unauthorized intrusions are blocked. Releasing the SQL dump

under a GNU General Public License would ensure that every

amendment incorporated would need to be published if the

solution is made available to another party. These measures

would in no way affect the operational capabilities of the

monitoring software and would enhance the relationship

between software design quality, development e ort and

governance in open source projects as carried out in a study

[2]. Rather, it would reinforce the requirements for

transparency in all its operational details, which had been a

condition for setting up an information processing and

monitoring system [6]. The new way for replication was, thus,

to install all the packages mentioned in Table 3 above,

superimpose the SQL dump of backed up Drupal application

database and install MGNREGS database in MySQL. The

entire application would be recreated that would not only have

the application, but also one that contains the design aspects

too of the database. By implementing such a design,

secureness of software was enhanced with ease of

reproduction for the purpose of analysis or modification. The

authentication codes were the only elements that were not part

of the transparent package, for obvious reasons.

For developers, updating of software tools as and when new

releases are distributed is essential, as most Free Software

projects evolve continuously. A new challenge, therefore,

would be to make available newer releases of software to all

the nodes. A version control system would ensure seamless

integration of the application to any versions of the software

environment. Software projects may involve user, developer,

tester and maintainer communities. Here, one can find that

the privileges of all the communities are almost the same with

regard to access to software sources, which is crucial to

ascertain adherence to established protocols and adherence to

open data formats or data standards.

The privileges of user communities, here, are better than those

in NREGASoft. For the user community, secureness of

software has been enhanced in Free Software application

when compared to secureness of NREGASoft. To enhance the

software secureness of NREGASoft, therefore, the conditions

require that the solution be re-designed in a Free Software

environment. Additionally, the proprietary formats in which

encoding of public information is currently being carried out

are to be abandoned in favour of open data formats or data

standards, devoid of any ownership. To ensure that the

application scripts too can never be closed for inspection, they

too should be released under an open public license that

prevents its closure in future. By having the software

secureness of NREGASoft enhanced considerably to the user

community, it can be safely presumed that software quality

too would be improved as depicted in Fig 2.

The authors would like to point out that while this software

development work merely validates the claim that secureness

of software with respect to the user community can be

enhanced, the study does not claim that such development

work is beyond the capabilities of private software

development companies. On the contrary, the authors may

even recommend entrusting such development work to

leading software developers in the private sector in India to

make use of their vast experience and access to human

resources. This study, however, accords priority to the

licenses under which the transfer of rights of software and

sources ought to take place that would reveal the extent of

secureness of software to its users.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.11, January 2012

28

Fig 2. Varying software secureness in different software environments.

4. CONCLUSION
Software secureness varies considerably with the neutrality of

the software environment under which the software gets

operationalised. The concept of software secureness gets an

added dimension when it is perceived from the role of a user

community which is more empowered than the developer

community. As a principle, software secureness is associated

with adherence to use of data standards, fair implementation

of protocols and transparency in coding of their

implementation. Software that adheres to these criteria ex-

tends secureness to the users, developers and maintainers of

software. In many software projects, especially those that

process information related to public citizens, the

communities of developers, maintainers and users could be

different. There exist possibilities wherein software which

may appear secure to developer community could become

insecure to user community.

Different works in software which are released only as

binaries cannot be verified for their adherence to data

standards, protocols or for rules associated with those

software. It is therefore vital to ensure that any software that

are to be assured for its quality, adheres to established data

standards or published open formats (after relinquishing

ownership, so that these could be taken up for converting into

a standard). Additionally, releasing the software sources

would ensure that implementation details of software are

transparent and do not violate any existing protocols.

Rigorous methods of control have been suggested in a

software quality management system adopted from standards

Australia [8], which insisted on review of code and documents

to assure their compliance with design criteria.

Additionally, in a constitutional setup under which such

public software services are developed, operated and

maintained, the user community is the one which is

constitutionally the most empowered. Therefore in cases like

these, software secureness should be evaluated from the

viewpoint of users to ascertain software quality. NREGA-

Soft, a software implementation for monitoring information

processed in the employment guarantee scheme (MGNREGS)

is found wanting in areas related to data standards and

transparency in implementation as the current environment

and software platforms are proprietary in nature.

In order to enable the government in extending the necessary

guarantees over processing of information related to public,

adherence to published protocols and its encoding,

NREGASoft should be re-designed to be implemented with

Free Software using published data standards. This variation

in design and implementation would eventually enhance the

software secureness to the user community of the software,

thereby accomplishing better software quality. The

experiment carried out with Free Software as a case study by

the author, further exemplifies that by resolving to release the

database dump under a GNU General Public License

(GPLv3), the legal mechanisms would help in retaining the

transparency of implementation in future too.

5. ACKNOWLEDGMENTS
Our sincere thanks to the block development officer and his

staff at Panskura Block Panchayat in West Bengal. We are

also thankful to Dr Nikhil Dey, Ms Aruna Roy and Dr Jean

Dreze, the principal architects behind MGNREGS for offering

valuable insights.

6. REFERENCES
[1] Boehm, B., Brown, J., Lipow, M.: 1976. Quantitative

evaluation of software quality. Proceedings of the 2nd

International Conference on Software Engineering, IEEE

Computer Society pp. 592 605

[2] Capra, E., Francalanci, C., Merlo, F.: 2008. An empirical

study on the relationship between software de- sign

quality, development e ort and governance in open

source projects. IEEE Transactions on Software

Engineering 34(6), pp. 765 782

[3] Cowan, C.: 2003. Software security for open-source

systems. Security Privacy, IEEE 1(1), pp. 38 45

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.11, January 2012

29

[4] Dromey, R.G.: 1995. A model for software product

quality. IEEE Transactions on Software Engineering 21,

pp. 146 162

[5] Government of India: 2005. The National Rural

Employment Guarantee Act NREGA 2005. Government

Gazette (India)

[6] Government of India: 2008. Government Notification on

Transparency in NREGA. Government Gazette (India) p.

9

[7] IEEE Guide for Software Quality Assurance Planning.

1986. ANSI/IEEE Std 983-1986 pp. 1 31

[8] IEEE standard for Software Quality Assurance Plans.

1989. IEEE Std 730.1-1989 pp. 0 1

[9] Jones, C.: 1994. Software Metrics: Good, Bad and

Missing. Computer, IEEE 27(9), 98 100, ISSN:0018-

9162

[10] Joshua Gay, editor. 2002. Free Software, Free Society:

Selected Essays of Richard M. Stallman. pub-GNU-

PRESS,

[11] Julia Allen, Sean Barnum, Robert Ellison, Gary

McGraw, and Nancy Mead.: 2008. Software engineering:

a guide for project managers Software security. Addison-

Wesley Professional, First edition

[12] Khoshgoftaar, T.M., Liu, Y., Seliya, N.: 2004. A

multiobjective module-order model for software quality

enhancement. IEEE Transactions on Evolutionary

Computation 8(6), pp. 593 608

[13] Li, X., Tiwari, M., Hardekopf, B., Sherwood, T., Chong,

F.T.: 2010. Secure information flow analysis for

hardware design: using the right abstraction for the job.

In NY, USA, ACM.

[14] Madhuri, S., Mishra, D.: 2008. Strengthening National

Rural Employment Guarantee Scheme (NREGS) through

E-Governance. In: E-Governance in Practice

[15] McGraw, G.: 2004. Software Security. Security Privacy,

IEEE 2(2), pp. 80 83 ISSN 1540-7993

[16] NIC, Government of India: 2007. User manual of

NREGA. MIS for National Rural Employment

Guarantee Act (NREGA) 2005

[17] Planning Commission, Government of India: 2003.

India's Five Year Plans : Complete Documents: First

Five Year Plan (1951-56) to Tenth Five Year Plan 2002-

2007. Academic Foundation

[18] Rajalekshmi and K. Gopakumar.: 2007. E-governance

services through telecenters: The role of human

intermediary and issues of trust. Inf. Technol. Int. Dev.

Proceedings of the 5th ACM SIGPLAN Workshop on

Programming Languages and Analysis for Security,

PLAS '10, pages 8:1 8:7, New York, , 4(1): pp. 19 35

[19] Raju, C. K., and Bhadoria, P. B. S.: 2011. Software

secureness for users: Significance in public ICT

applications. In Ajith Abraham, Jaime Lloret Mauri, John

F. Buford, Junichi Suzuki, and Sabu M. Thampi, editors,

Advances in Computing and Communications , volume

193 of Communications in Computer and Information

Science , pages 211 222. Springer Berlin Heidelberg.

[20] Raymond, E.S.: 2001. The Cathedral and the Bazaar:

Musings on Linux and Open Source by an Accidental

Revolutionary. O'Reilly

[21] Software Quality Management System. Part 1:

Requirements. Adopted from Standards Australia. 1993.

IEEE Std 1298-1992; AS 3563.1-1991 pp. 0 1

[22] Tiemann, M.: An objective definition of open standards.

Computer Standards and Interfaces, Science Direct

28(5), pp. 495 507 (2006), ISSN 0920-5489

[23] Villaneuva, E.: 2001. Use of Free Software in Public

Agencies. Bill No 1609, Republic of Peru

