On Intuitionistic Fuzzy M-Precontinuous Mappings

Mahima Thakur Department of Applied Mathematics Jabalpur Engineering College, Jabalpur, (M.P.) 482011 India.

ABSTRACT

The aim of this paper is to extend the concept of fuzzy M-pre continuous mappings due to Thakur and Singh [9] in intuitionistic fuzzy topological spaces and obtain some of their characterizations and properties.

Keywords

Intuitionistic fuzzy topology, Intuitionistic fuzzy M- pre continuous mappings.

2000, Mathematics Subject Classification:

54A99, 03E99.

1. INTRODUCTION

After the introduction of fuzzy sets by Zadeh [11] in 1965 and fuzzy topology by Chang [4] in 1968, several researches were conducted on the generalizations of the notions of fuzzy sets and fuzzy topology. The concept of intuitionistic fuzzy sets was introduced by Atanassov [1, 2, 3] as a generalization of fuzzy sets. In the last 28 years various concepts of fuzzy mathematics have been extended for intuitionistic fuzzy sets. In 1997 Coker [5] introduced the concept of intuitionistic fuzzy topological spaces as a generalization of fuzzy topological spaces. In the same year Guecay Coker and Hayder [7] extended the concepts of fuzzy preopen sets and fuzzy topology. In the present paper we introduce and study the concept of fuzzy M-pre continuous mappings in intuitionistic fuzzy topological spaces.

2. PRELIMANIRIES

Definition 2.1 [1]: Let X is a nonempty fixed set. An intuitionistic fuzzy set A in X is an object having the form

$$A = \{ <\!\! x, \mu_A(x), \gamma_A(x) \!\! > \! : x \! \in \! X \}$$

Where the functions $\mu_A: X \rightarrow I$ and $\gamma_A: X \rightarrow I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non membership (namely $\gamma_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for each $x \in X$.

Definition 2.2 [1]: Let X be a nonempty set and the intuitionistic fuzzy sets A and B be in the form A = $\{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}, B = \{\langle x, \mu_B(x), \gamma_B(x) \rangle : x \in X\}$

S. S. Thakur Department of Applied Mathematics Jabalpur Engineering College, Jabalpur, (M.P.) 482011 India.

and let $\{A_i: i \in J\}$ be an arbitrary family of intuitionistic fuzzy sets in X. Then:

- (a) $A \subseteq B$ if $\forall x \in X [\mu_A(x) \le \mu_B(x) \text{ and } \gamma_A(x) \ge \gamma_B(x)];$
- (b) A = B if $A \subseteq B$ and $B \subseteq A$;
- (c) $A^{c} = \{ \langle x, \gamma_{A}(x), \mu_{A}(x) \rangle : x \in X \};$
- (d) \cap A_i = {<x, $\land \mu_{Ai}(x)$, $\lor \gamma_{Ai}(x)$ > : $x \in X$ };
- (e) \cup A_i = {<x, \lor μ _{Ai}(x), \land γ _{Ai}(x)> : $x \in X$ };
- (f) $\widetilde{\mathbf{0}} = \{ <x, 0, 1 > : x \in X \}$ and $\widetilde{\mathbf{1}} = \{ <x, 1, 0 > : x \in X \}$.

Definition 2.3 [5]: Let *X* and *Y* be two nonempty sets and *f* : $X \rightarrow Y$ be a function. Then

(a) If B = { $\langle y, \mu_B(y), \gamma_B(y) \rangle : y \in Y$ } is an intuitionistic fuzzy set in *Y*, then the pre image of B under *f* denoted by $f^{-1}(B)$, is the IFS in *X* defined by

$$f^{-1}(\mathbf{B}) = \langle x, f^{-1}(\mu_{\mathbf{B}})(x), f^{-1}(\gamma_{\mathbf{B}})(x) \rangle : x \in X \}$$

(b) If A = { $\langle x, \lambda_A(x), v_A(x) \rangle$: $x \in X$ } is an intuitionistic fuzzy set in *X*, then the image of A under *f* denoted by *f*(A) is the intuitionistic fuzzy set in *Y* defined by

$$f(A) = \{ \langle y, f(\lambda_A)(y), f(v_A)(y) \rangle : y \in Y \}$$

where, $f(v_A) = 1 - f(1 - v_A).$

Definition 2.4 [5]: Two intuitionistic fuzzy sets A and B of X said to be q-coincident (AqB for short) if and only if there exits an element $x \in X$ such that $\mu_A(x) > \gamma_B(x)$ or $\gamma_A(x) < \mu_B(x)$.

Lemma 2.1 [5]: For any two intuitionistic fuzzy sets A and B of X, $](AqB) \Leftrightarrow A \subset B^c$ [5].

Definition 2.5[5]: An intuitionistic fuzzy topology on a nonempty set X is a family \Im of intuitionistic fuzzy sets in X satisfying the following axioms:

$$(T_1) \ \widetilde{\mathbf{0}}, \ \widetilde{\mathbf{1}} \in \mathfrak{T}.$$

 $(T_2) \ G_1 \cap G_2 \in \mathfrak{T} \text{ for any } G_1, \ G_2 \in \mathfrak{T}.$
 $(T_3) \cup G_i \in \mathfrak{T} \text{ for any arbitrary family } \{G_i : i \in J\} \subset \mathfrak{T}.$

In this case the pair (X,\mathfrak{I}) is called an intuitionistic fuzzy**D** topological space and each intuitionistic fuzzy set in \mathfrak{I} is known as an intuitionistic fuzzy open set in *X*. The complement A^c of an intuitionistic fuzzy open set is called an intuitionistic fuzzy closed set in *X*.

Definition 2.6 [5]: Let (X, \mathfrak{I}) be an intuitionistic fuzzy topological space and *A* be an intuitionistic fuzzy set in *X*. Then the fuzzy interior and fuzzy closure of *A* are defined by:

 $cl(A) = \bigcap \{K : K \text{ is an intuitionistic fuzzy closed set in } X \text{ and } A \subseteq K \},$

 $int(A) = \bigcup \{G : G \text{ is an intuitionistic fuzzy open set in } X \text{ and } G \subseteq K \}$

Lemma 2.2 [5] : For any intuitionistic fuzzy set A in (X, \mathfrak{I}) we have

(a) A is an intuitionistic fuzzy closed set in $X \Leftrightarrow cl(A) = A$,

(b) *A* is an intuitionistic fuzzy open set in $X \Leftrightarrow int(A) = A$;

(c) $\operatorname{cl}(A^{c}) = (\operatorname{int}(A))^{c};$

(d) $int(A^{c}) = (cl(A))^{c}$.

Definition 2.7[7]: An intuitionistic fuzzy set A in an intuitionistic fuzzy topological space X is called :

(a)Iintuitionistic fuzzy pre open if $A \subseteq$ int (cl (A));

(b) Intuitionistic fuzzy pre closed if its compliment is intuitionistic fuzzy pre open.

Definition 2.8 [7]: Let (X, \mathfrak{I}) be an intuitionistic fuzzy topological space and A be an intuitionistic fuzzy set in X. Then the interior and closure of A are defined by:

pcl (A) = $\bigcap \{K : K \text{ is an intuitionistic fuzzy pre closed set in } X$ and $A \subseteq K$,

pint (A) = \cup {G : G is an intuitionistic fuzzy pre open set in X and $G \subseteq A$ }.

Definition 2.9[7]: A mapping $f:(X, \mathfrak{I}) \rightarrow (Y, \Gamma)$ is said to be:

(a) Intuitionistic fuzzy continuous if the inverse image of every Intuitionistic fuzzy open set of Y is Intuitionistic fuzzy open in X.

(b) Intuitionistic fuzzy pre continuous if the inverse image of every Intuitionistic fuzzy open set of Y is intuitionistic fuzzy pre open set in X. **Definition 2.10:** Let X be a non empty set and $p \in X$ a fixed element in X. If $\alpha \in (0,1]$ and $\beta \in [0,1)$ are two real numbers such that $\alpha + \beta \le 1$ then, Intuitionistic fuzzy set $p(\alpha, \beta) =$ $\{<x, p_{\alpha}, 1 \cdot p_{1-\beta} > :x \in X\}$ (where p_{α} is the fuzzy point in X with support p and value α) is called an Intuitionistic fuzzy point in X (IFP in short) where α denotes the degree of membership o $p(\alpha, \beta)$ and β denotes the degree of non membership of $p(\alpha, \beta)$.

3. INTUITIONISTIC FUZZY M-PRE CONTINUOUS MAPPINGS

Definition 3.1: A mapping f from an intuitionistic fuzzy topological space (X, \Im) to an intuitionistic fuzzy topological space (Y, σ) is called intuitionistic fuzzy M-precontinuous if $f^1(U)$ is intuitionistic fuzzy pre open set in X for every

intuitionistic fuzzy pre open set U in Y.

Remark 3.1: Every intuitionistic fuzzy M-Precontinuous mapping is intuitionistic fuzzy precontinuous but the converse may not be true.

Example 3.1: Let $X = \{a, b\}$, $Y = \{x, y\}$ and U, V are the intuitionistic fuzzy sets respectively on X and Y defined as follows:

 $U=\{<a,\,0.4,\,0.6>,\,<\!b,\,0.5,\,0.5>\},$

 $V = \{ < a, 0.5, 0.5 >, < b, 0.7, 0.3 > \},\$

Let $\mathfrak{I} = \{ \mathbf{0}, \mathbf{U}, \mathbf{V}, \mathbf{1} \}$ and $\boldsymbol{\sigma} = \{ \mathbf{0}, \mathbf{1} \}$ be the intuitionistic fuzzy topologies on X and Y respectively. Then the mapping f: $(X, \mathfrak{I}) \rightarrow (Y, \boldsymbol{\sigma})$ defined by f(a) = x and f(b) = y is intuitionistic fuzzy pre continuous(in fact intuitionistic fuzzy continuous) but not intuitionistic fuzzy M- pre continuous.

Consider the following example:

Example (3.2): Let $X = \{a, b\}$, $Y = \{x, y\}$ and V be an intuitionistic fuzzy set on Y defined as follows:

 $V = \{<x, 0.5, 0.5>, <y, 0.6, 0.4>\},$

Let $\mathfrak{I} = \{\widetilde{\mathbf{0}}, \widetilde{\mathbf{1}}\}$ and $\boldsymbol{\sigma} = \{\widetilde{\mathbf{0}}, \mathbf{V}, \widetilde{\mathbf{1}}\}$ be intuitionistic fuzzy topologies on X and Y respectively. Then the mapping g: (X, $\mathfrak{I}) \rightarrow (\mathbf{Y}, \boldsymbol{\sigma})$ defined by g(a) = x and g(b) = y is intuitionistic fuzzy M-precontinuous but not intuitionistic fuzzy continuous

Remark 3.2. Example 3.1 and Example 3.2 shows that the concepts of Intuitionistic fuzzy M-precontinuous and intuitionistic fuzzy continuous mappings are independent.

Theorem (3.1): The following statements are equivalent for a mapping f: $(X, \mathfrak{I}) \rightarrow (Y, \sigma)$:

- (a) f is intuitionistic fuzzy M-precontinuous.
- (**b**) **f**¹(V) is intuitionistic fuzzy pre closed set in X for every intuitionistic fuzzy pre closed set V in Y.
- (c) for every intuitionistic fuzzy point P(α, β) in X and every intuitionistic fuzzy preopen set V in Y such that f(P(α, β)) ∈ V there is an intuitionistic fuzzy pre open

set U in X, such that $P(\alpha, \beta) \in U$ and $f(U) \subseteq V$.

- (d) for every intuitionistic fuzzy point $P(\alpha, \beta)$ in X and every pre neighbourhood V of f $(P(\alpha, \beta))$, f¹ (V) is a pre neighbourhood of $P(\alpha, \beta)$.
- (e) for every intuitionistic fuzzy point $P(\alpha, \beta)$ in X and every pre neighbourhood V of f $(P(\alpha, \beta))$ there is a preneighbourhood U of $P(\alpha, \beta)$ such that $f(U) \subseteq V$.
- (f) $f(pcl(U)) \subseteq pcl(f(U))$ for every intuitionistic fuzzy set U of X.
- (g) pcl(f¹ (V)) ⊆ f¹ (pcl(V)) for every intuitionistic fuzzy set Vof Y.
- (h) $f^1(pint(V)) \subseteq pint(f^1(V))$ for every intuitionistic fuzzy set V of Y.

PROOF :(a)⇔(b) Obvious.

(a) \Rightarrow (c). Let P (α , β) be an intuitionistic fuzzy point of X and V is an intuitionistic fuzzy pre open set in X such that f (P (α , β)) \in V. Put U = f¹(V). Then by (a), U is an intuitionistic fuzzy pre open set in X such that P (α , β) \in U and f(U) \subseteq V

(c) \Rightarrow (a). Let V is intuitionistic fuzzy pre open set in Y and P (α, β) \in f⁻¹ (V). Then f(P(α, β)) \in V. Now by (c) there is an intuitionistic fuzzy preopen set U in X such that P (α, β) \in U and f (U) \subseteq V. Then P(α, β) \in U \subseteq f¹(V). Hence f¹(V) is intuitionistic fuzzy pre open set in X.

(a) \Rightarrow (d). Let P (α , β) be an intuitionistic fuzzy point in X and V be a pre neighbourhood of f (P(α , β)). Then there is a intuitionistic fuzzy pre open set W of Y such that f (P (α , β)) \in W \subseteq V Now f¹(W) is an intuitionistic fuzzy pre open set in X and P (α , β) \in f⁻¹(W) \subseteq f⁻¹ (V). Thus f⁻¹ (V) is a pre neighbourhood of P (α , β) in X.

(d) \Rightarrow (e). Let P (α , β) be a intuitionistic fuzzy point of X and V be a pre neighbourhood of f (P(α , β)). Then U = f¹(V) is a pre neighbourhood of P (α , β) and f (U) = f (f¹(V)) \subseteq V.

(e) \Rightarrow (c). Let P (α , β) be an intuitionistic fuzzy point of X and V is an intuitionistic fuzzy pre open set in Y such that f (P(α , β)) \in V. So there is pre neighbourhood W of P (α , β) in X such that P (α , β) \in W and f (W) \subseteq V.Hence there is an intuitionistic fuzzy pre open set U in X such that P (α , β) \in U \subseteq W and f (U) \subseteq V.

(**b**) \Rightarrow (**f**). Let U be an intuitionistic fuzzy set of X. Since U= f¹(f (U)), we have $U \subseteq f^1(pcl(f(U)))$. Now pcl (f (U)) is an intuitionistic fuzzy pre closed set of Y and hence f¹(pcl (f (U))) is an intuitionistic fuzzy pre closed of X. Therefore pcl (U) \subseteq f¹(pcl(f(U))) and f(pcl(U) \subseteq f ¹(pcl(f(U)))) \subseteq pcl(f(U)).

(**f**) ⇒(**b**). Let V is an intuitionistic fuzzy pre closed set of Y. then $f(pcl(f^{-1}(V))) \subseteq pcl(f(f^{-1}(V))) \subseteq pcl(V) = V$. Hence pcl $(f^{-1}(V)) \subseteq f^{-1}(V)$ and so $f^{-1}(V)$ is an intuitionistic fuzzy pre closed set of X.

(f) ⇒(g). Let V be an intuitionistic fuzzy set of Y then $f^{1}(V)$ is an intuitionistic fuzzy set of X. Therefore by hypothesis f(pcl ($f^{1}(V)$)) ⊆ pcl ($f^{1}(V)$) ⊆ pcl (V). Hence pcl ($f^{1}(V)$) ⊆ $f^{1}(pcl (V))$.

(g) ⇒(f). Let U be a intuitionistic fuzzy set of X. Then f(U) is an intuitionistic fuzzy set of Y and by (g) , $pcl(f^{1}(f(U))) \subseteq f^{1}(pcl(f(U)))$. Hence $f(pcl(U)) \subseteq pcl(f(U))$.

(a) \Rightarrow (h). Let V be an intuitionistic fuzzy set of Y. Then pint(V) is an intuitionistic fuzzy pre open set of Y and so by (a) $f^1(\text{pint}(V))$ is an intuitionistic fuzzy pre open set of X. Since $f^1(\text{pint}(V)) \subseteq f^1(V)$, then $f^1(\text{pint}(V) \subseteq \text{pint}(f^1(V))$

(h) ⇒(a). Let V be an intuitionistic fuzzy pre open set of Y. Then pint(V) = V and $f^1(V) \subseteq$ pint ($f^1(V)$). Thus $f^1(V) =$ pint ($f^1(V)$) and $f^1(V)$ is an intuitionistic fuzzy pre open set in X. Hence f is intuitionistic fuzzy M-precontinuous.

Lemma (3.1): A intuitionistic fuzzy set V is intuitionistic fuzzy pre open set of X if and only if there exists a intuitionistic fuzzy open set U such that $V \subseteq U \subseteq cl(V)$

Proof: Necessity if V is intuitionistic fuzzy pre open set of X Then $V \subseteq int(cl(V))$. Put U=int(cl (V)). Then U is intuitionistic fuzzy open and $V \subseteq U \subseteq cl$ (V). **Sufficiency**: Let U be an intuitionistic fuzzy open set such that $V \subseteq U \subseteq cl(V)$ Then $V \subseteq int (U) \subseteq int (cl (V))$. Hence V is intuitionistic fuzzy pre open set of X

Theorem (3.2): Let f: $(X, \mathfrak{I}) \rightarrow (Y, \sigma)$ be intuitionistic fuzzy precontinuous and intuitionistic fuzzy open mapping then f is intuitionistic fuzzy M-precontinuous.

Proof: Let V is intuitionistic fuzzy pre open set of Y then by Lemma (3.2) there exists a intuitionistic fuzzy open set U such that $V \subseteq U \subseteq cl(V)$. Therefore $f^{1}(V) \subseteq f^{1}(U) \subseteq f^{1}(cl(V)) \subseteq cl(f^{1}(V)$ because f is intuitionistic fuzzy open. Since f is intuitionistic fuzzy precontinuous, $f^{1}(U) \subseteq f^{1}(U) \subseteq int$ (cl (f¹(U)) \subseteq int (cl (f¹(V))) and $f^{1}(V)$ is intuitionistic fuzzy pre open set of X.

Theorem (3.3): Let f: $(X, \mathfrak{I}) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \omega)$ be two mappings. If f and g are intuitionistic fuzzy M-precontinuous then gof is intuitionistic fuzzy M- precontinuous

Proof: Let V is an intuitionistic fuzzy pre open set in Z, since g is intuitionistic fuzzy M- precontinuous. g^{-1} (V) is intuitionistic fuzzy pre open in Y. Therefore $(gof)^{-1}$ (V) is intuitionistic fuzzy pre open in X. because f is intuitionistic fuzzy M-precontinuous. Hence gof is intuitionistic fuzzy M-precontinuous.

Theorem (3.4): Let f: $(X, \mathfrak{I}) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \omega)$ be two mappings. If f is intuitionistic fuzzy M-precontinuous is and g is intuitionistic fuzzy m-precontinuous then gof is intuitionistic fuzzy M-precontinuous.

Proof: Let **U** be a intuitionistic fuzzy open set of Z. Since g is intuitionistic fuzzy precontinuous so $g^{-1}(U)$ is intuitionistic fuzzy pre open set of Y. Therefore $(gof)^{-1}(U) \equiv f^{-1}\{g^{-1}(U)\}$ is intuitionistic fuzzy pre open set of X because f is intuitionistic fuzzy precontinuous. Hence gof is intuitionistic fuzzy precontinuous.

Definition (3.2): A mapping f from an intuitionistic fuzzy topological space (X, \Im) to an intuitionistic fuzzy topological space (Y, σ) is called intuitionistic fuzzy M-preopen if f (**V**) is intuitionistic fuzzy pre open set of Y for every intuitionistic fuzzy set V is intuitionistic fuzzy pre open set of X.

Remark (3.1): Every intuitionistic fuzzy M-preopen mapping is intuitionistic fuzzy pre open but the converse may not be true for,

Example (3.4): Let $X = \{a,b\}$ $Y = \{x,y\}$ and V be a intuitionistic fuzzy set of Y defined as follows:

 $V = \{ < a, 0.4, 0.6 >, < b, 0.5, 0.5 > \},\$

Let $\mathfrak{I} = \{\widetilde{\mathbf{0}}, \widetilde{\mathbf{1}}\}$ and $\boldsymbol{\sigma} = \{\widetilde{\mathbf{0}}, V, \widetilde{\mathbf{1}}\}$. Then the mapping f: $(X, \mathfrak{I}) \rightarrow (Y, \boldsymbol{\sigma})$ defined by f(a) = x, f(b) = y is intuitionistic fuzzy open and hence intuitionistic fuzzy preopen but not intuitionistic fuzzy M-preopen.

Consider the following example.

Example (3.5): Let $X = \{a,b\} Y = \{x,y\}$ and U be a intuitionistic fuzzy set of X defined as follows:

 $U = \{ < a, 0.3, 0.7 >, < b, 0.4, 0.6 > \},\$

Let $\mathfrak{I} = \{\widetilde{\mathbf{0}}, U, \widetilde{\mathbf{1}}\}\$ and $\boldsymbol{\sigma} = \{\widetilde{\mathbf{0}}, \widetilde{\mathbf{1}}\}\$ Then the mapping f: $(X, \mathfrak{I}) \rightarrow (Y, \boldsymbol{\sigma})\$ defined by f(a) = x, f(b) = y is intuitionistic fuzzy M-preopen but not intuitionistic fuzzy open.

Remark (3.2): Example (3.4) and example (3.5) shows that the concepts of intuitionistic fuzzy open and intuitionistic fuzzy M- preopen mappings are independent.

Theorem (3.5): Let f: $(X, \mathfrak{I}) \rightarrow (Y, \sigma)$ be an intuitionistic fuzzy M-preopen mapping. If Vis a intuitionistic fuzzy set of Y and U is intuitionistic fuzzy pre closed set of X containing $f^{-1}(V)$, Then there exist a intuitionistic fuzzy set W in intuitionistic fuzzy pre closed set of Y such that $V \subseteq W$ and $f^{-1}(W) \subseteq U$.

Proof: Let $W = f(U^c)^c$. Since $f^1(V) \subseteq U$ we have $f(U^c) = V^c$. Since f is intuitionistic fuzzy M – preopen, W is intuitionistic fuzzy pre closed set of Y and $f^1(W) = (f^1(f(U^c)))^c \subseteq ((U^c))^c = U \blacksquare$.

Theorem (3.6): A mapping f: $(X, \mathfrak{I}) \rightarrow (Y, \sigma)$ is intuitionistic fuzzy M-preopen if and only if $f(pint(V)) \subseteq pint f(V)$ for every intuitionistic fuzzy set V of X.

Proof: Necessity: If f: $(X, \mathfrak{T}) \rightarrow (Y, \sigma)$ is intuitionistic fuzzy M-preopen then f(pint(V)) is intuitionistic fuzzy preopen set of Y Hence f(pint(V)) = pint(f(V)) \subseteq pint f(V).

Sufficiency: Let V is intuitionistic fuzzy set in X. Then by hypothesis $f(V)=f(pint(V)) \subseteq pint f(V)$ Hence f(V) is intuitionistic fuzzy preopen set of Y.

Theorem (3.7): Let f: $(X, \mathfrak{I}) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \omega)$ are intuitionistic fuzzy M-preopen then gof : $(X, \mathfrak{I}) \rightarrow (Z, \omega)$ is also intuitionistic fuzzy M-preopen.

Proof: Obvious.

Theorem (3.8): Let f: $(X, \mathfrak{T}) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \omega)$ be two mappings such that gof : $(X, \mathfrak{T}) \rightarrow (Z, \omega)$ is intuitionistic fuzzy M- preopen and g is intuitionistic fuzzy M-preopen.

Proof: Let V is intuitionistic fuzzy pre open set in X. Then (gof)(V) is intuitionistic fuzzy preopen set in Z because gof is intuitionistic fuzzy M-preopen. Since g is injective, we have $g^{-1}((gof)(V)) = f(V)$. Therefore f(V) is intuitionistic fuzzy pre open set in Y, because g is intuitionistic fuzzy M-precontinuous. Hence f is intuitionistic fuzzy M-preopen.

4. REFERENCES

- K. Atanassov, Intuitionistic Fuzzy sets, In VII ITKR'S Session, (V. Sgurev, Ed.) Sofia, Bulgaria, (1983)
- [2] K. Atanassov and S. Stoeva., Intuitionistic Fuzzy Sets, in polish Symposium on Interval and fuzzy mathematics, Poznan, (1983), 23-26.
- [3] K. Atanassov Intuitionistic fuzzy sets, Fuzzy Sets and systems 20 (1) (1986), 87-96.
- [4] A. S. Bin Shahana, mappings in fuzzy topological spaces, fuzzy sets and system, 61(1994)209-213.
- [5] C. L Chang Fuzzy topological spaces, J. Math. Anal. Appl.24 (1) (1968),182 -190
- [6] D. Coker Introductions to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems. 88(1) (1997), 81-89.
- [7] H. Gurcay D. Coker and A. Es. Hayder, on fuzzy continuity in intuitionistic fuzzy topological spaces, Journal of Fuzzy Mathematics 5 (2) (1997) 365-378.
- [8] J.K. Joen, Y.B. Jun, J.H. Jark, Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy, precontinuity, Intern. Jour, Math. Math. Sci., 19(2005),3091-3101
- [9] S. S. Thakur and Singh S., Fuzzy M-precontinuous mappings, Math Notae 39(1997-1998)149-155.
- [10] L. A. Zadeh, Fuzzy sets, Information and Control. 18(1965), 338-353.