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1. INTRODUCTION 
After the introduction of fuzzy sets by Zadeh [11] in 1965 and 

fuzzy topology by Chang [4] in 1968, several researches were 

conducted on the generalizations of the notions of fuzzy sets 

and fuzzy topology. The concept of intuitionistic fuzzy sets 

was introduced by Atanassov [1, 2, 3] as a generalization of 

fuzzy sets. In the last 28 years various concepts of fuzzy 

mathematics have been extended for intuitionistic fuzzy sets. 

In 1997 Coker [5 ] introduced the concept of intuitionistic 

fuzzy topological spaces as a generalization of fuzzy 

topological spaces.  In the same year Guecay Coker and 

Hayder  [7] extended the concepts of fuzzy preopen sets and 

fuzzy precontinuity due to Bin Sahana [4] in intuitionistic 

fuzzy topology.In the present paper we introduce and study 

the concept of fuzzy M-pre continuous mappings in 

intuitionistic fuzzy topological spaces. 

 

2. PRELIMANIRIES 
Definition 2.1 [1]: Let X is a nonempty fixed set. An 

intuitionistic fuzzy set A in X is an object having the form  

 A= {<x,A(x),A(x)> : xX } 

Where the functions A:XI and A: XI denote the  degree 

of membership (namely A(x)) and the degree of non 

membership (namely A(x)) of each element xX to the set A, 

respectively, and 0 A(x)+ A(x)  1 for each xX.  

Definition 2.2 [1]: Let X be a nonempty set and the 

intuitionistic fuzzy sets A and B be in the form A = 

{xA(x), A(x) : x  X}, B = {xB(x), B(x) : x  X} 

and let {Ai: i  J} be an arbitrary family of intuitionistic fuzzy 

sets in X. Then: 

(a) A  B if xX [A(x) B(x) and A(x)B(x)]; 

(b) A = B if A  B and B  A; 

(c) Ac= {x, A(x), A(x) : xX}; 

(d)  Ai = {x, Ai(x), Ai(x) : xX}; 

(e)  Ai = {x, Ai(x), Ai(x) : xX}; 

(f)  = {<x, 0, 1>: xX} and  = {<x, 1, 0>: xX}. 

Definition 2.3 [5]: Let X and Y be two nonempty sets and f : 

X  Y be a function. Then 

(a) If B = {yB(y), B(y) : y  Y}is an intuitionistic fuzzy 

set in Y, then the pre image of B under f denoted by f -1(B), is 

the IFS in X defined by  

 f -1(B) = <x, f -1(B)(x), f-1(B)(x)> : x X} 

(b) If A = {<x, A(x), A(x)> : x  X}is an intuitionistic fuzzy 

set in X, then the image of A under f denoted by f(A) is the 

intuitionistic fuzzy set in Y defined by  

            f(A) = {<y, f (A)(y), f (A)(y)> : y  Y} 

           where,   f(A) = 1 – f(1- A). 

Definition 2.4 [5]: Two intuitionistic fuzzy sets A and B of X 

said to be q-coincident (AqB for short) if and only if there 

exits an element xX such that A(x)  B(x) or A(x)  

B(x).  

Lemma 2.1 [5]: For any two intuitionistic fuzzy sets 

A and B of X, (AqB)  ABc [5]. 

Definition 2.5[5]: An intuitionistic fuzzy topology on a 

nonempty set X is a family  of intuitionistic fuzzy sets in X 

satisfying the following axioms: 

   (T1) ,   .            

   (T2) G1G2   for any G1, G2  . 

   (T3) Gifor any arbitrary family {Gi: i J} . 
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In this case the pair (X,) is called an intuitionistic fuzzy 

topological space and each intuitionistic fuzzy set in  is 

known as an intuitionistic fuzzy open set in X. The 

complement Ac of an intuitionistic fuzzy open set is called an 

intuitionistic fuzzy closed set in X. 

Definition 2.6 [5]:  Let (  be an intuitionistic fuzzy 

topological space and  be an intuitionistic fuzzy set in X. 

Then the fuzzy interior and fuzzy closure of A are defined by: 

cl(A) = {K : K is an intuitionistic fuzzy closed set in X and A 

}, 

int(A) = {G : G is an intuitionistic fuzzy open set in X and G 

 K} 

Lemma 2.2 [5] : For any intuitionistic fuzzy set A in () 

we have 

(a)  A is an intuitionistic fuzzy closed set in X  cl(A) = A, 

(b) A is an intuitionistic fuzzy open set in X  int(A) = A; 

(c) cl(Ac)   = (int(A))c; 

(d) int(Ac) = (cl(A))c. 

Definition 2.7[7]: An intuitionistic fuzzy set A in an 

intuitionistic fuzzy topological space X is called : 

(a )Iintuitionistic fuzzy pre open if A int (cl (A)); 

(b) Intuitionistic fuzzy pre closed if its compliment is 

intuitionistic fuzzy pre open. 

Definition 2.8 [7]:  Let (  be an intuitionistic fuzzy 

topological space and   be an intuitionistic fuzzy set in X. 

Then the interior and closure of A are defined by: 

pcl (A) = {K : K is an intuitionistic fuzzy pre closed set in X 

and A }, 

pint (A) = {G : G is an intuitionistic fuzzy pre open set in X 

and G  A}. 

Definition 2.9[7]: A mapping f :( )   →   (Y  is said to 

be:  

(a) Intuitionistic fuzzy continuous if the inverse image of 

every Intuitionistic fuzzy open set of Y is Intuitionistic fuzzy 

open in X.  

(b) Intuitionistic fuzzy pre continuous if the inverse image of 

every Intuitionistic fuzzy open set of Y is intuitionistic fuzzy 

pre open set in X. 

D         Definition 2.10: Let X be a non empty set and p  a fixed 

element in X. If α  (0,1]  and β  [0,1) are two real numbers 

such that  α +  β ≤  1 then, Intuitionistic fuzzy set p(α, β) = 

{<x, ,1-  >:x } (where  is the fuzzy point in 

X with support p and value α) is called an Intuitionistic fuzzy  

point in  X (IFP in short) where α denotes the degree of 

membership o p(α, β) and β denotes the degree of non 

membership of p(α, β). 

3. INTUITIONISTIC FUZZY                  

M-PRE CONTINUOUS MAPPINGS 
Definition 3.1: A mapping f from an intuitionistic fuzzy 

topological space () to an intuitionistic fuzzy topological 

space (Y, ) is called intuitionistic fuzzy M-precontinuous if           

f-1 ( ) is intuitionistic fuzzy pre open set in X for every 

intuitionistic fuzzy pre open set in Y. 

Remark 3.1: Every intuitionistic fuzzy M-Precontinuous 

mapping is intuitionistic fuzzy precontinuous but the converse 

may not be true. 

Example 3.1: Let X= {a, b}, Y= {x, y} and U, V are the 

intuitionistic fuzzy sets respectively on X and Y defined as 

follows:  

 U= {< a, 0.4, 0.6 >, <b, 0.5, 0.5 >},      

  V = {< a, 0.5, 0.5 >, <b, 0.7, 0.3 >},      

Let  = { U, V, } and = { , }  be the intuitionistic 

fuzzy topologies on X and Y respectively.  Then the mapping 

f: () (Y, ) defined by f(a )= x and  f(b) = y is 

intuitionistic fuzzy pre continuous( in fact intuitionistic fuzzy 

continuous ) but not intuitionistic fuzzy   M- pre continuous. 

Consider the following example:  

Example (3.2): Let X = {a, b}, Y = {x, y} and V be an 

intuitionistic fuzzy set on Y defined as follows:         

 V = {< x, 0.5, 0.5 >, <y, 0.6, 0.4 >},      

Let  = { , } and = { , V, } be  intuitionistic fuzzy 

topologies on X and Y respectively. Then the mapping g: 

() (Y, ) defined by g(a) = x and g(b) = y is 

intuitionistic fuzzy M-precontinuous but not intuitionistic 

fuzzy continuous  

Remark 3.2.  Example 3.1 and Example 3.2 shows that the 

concepts of Intuitionistic fuzzy M-precontinuous and 

intuitionistic fuzzy continuous mappings are independent.  
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Theorem (3.1): The following statements are equivalent for a 

mapping f: () (Y, ): 

(a) f is intuitionistic fuzzy M-precontinuous. 

(b) f-1(V) is intuitionistic fuzzy pre closed set in X for every  

intuitionistic fuzzy pre closed set V in Y. 

(c) for every intuitionistic fuzzy point P(α, β) in X and every 

intuitionistic fuzzy preopen  set V in Y such that               

f(P(α, β))   V there is an intuitionistic fuzzy pre open 

set  U  in X, such that P(α, β)  U and f(U)  V. 

(d) for every intuitionistic fuzzy point P(α, β) in X and every 

pre neighbourhood V of   f (P(α, β)), f-1 (V) is a pre 

neighbourhood of  P(α, β). 

(e)  for every intuitionistic fuzzy point P(α, β) in X and 

every pre neighbourhood V of   f (P(α, β)) there is a 

preneighbourhood U of P(α, β) such that f(U)  V. 

(f) f(pcl( ))  pcl(f( )) for every intuitionistic fuzzy set 

U of  X. 

(g) pcl(f-1 (V))  f-1 (pcl(V)) for every intuitionistic fuzzy 

set Vof Y. 

(h) f-1 (pint )) pint (f-1 )) for every intuitionistic 

fuzzy set  of Y. 

 

PROOF :(a) (b) Obvious.  

 

(a) (c). Let P (α, β) be an intuitionistic fuzzy point of X and 

V is an intuitionistic fuzzy pre open set  in X such that                 

f (P (α, β))  V . Put U = f-1(V). Then by (a), U is an 

intuitionistic fuzzy pre open set in X such that P (α, β)   U 

and f( )  V 

 

(c) (a). Let V is intuitionistic fuzzy pre open set in Y and P 

(α, β)  f -1 . Then     f(P(α, β))  V . Now by (c) there is 

an intuitionistic fuzzy preopen set U in X such that                 

P (α, β) and f (U)  V. Then P(α,β) f-1(V). 

Hence f-1(V) is intuitionistic fuzzy   pre open set in X. 

 

(a) (d). Let P (α, β) be an intuitionistic fuzzy point in X and 

V be a pre neighbourhood of   f (P(α, β)). Then there is a 

intuitionistic fuzzy pre open set W of Y such that                        

f (P (α, β))  W  V Now f-1(W) is an intuitionistic fuzzy 

pre open set in X and P (α, β)  f-1(W)  f-1 (V). Thus              

f-1 (V) is a pre neighbiurhood of P (α, β) in X.  

 

(d) (e). Let P (α, β) be a intuitionistic fuzzy point of X and 

V be a pre neighbourhood of   f (P(α, β)). Then U = f-1(V) is a 

pre neighbourhood of P (α, β) and f (U) = f (f-1(V))  V. 

(e) (c). Let P (α, β) be an intuitionistic fuzzy point of X and 

V is an intuitionistic fuzzy pre open set in Y such that f (P(α, 

β))  V. So there is pre neighbourhood W of P (α, β) in X 

such that P (α, β)  W and f (W)  V.Hence there is an 

intuitionistic fuzzy pre open set U in X such that                       

P (α, β)   W and f ( )  f(W) .  

 

(b) (f). Let U be an intuitionistic fuzzy set of X. Since U= 

f-1(f (U)), we have     f-1(pcl(f(U))). Now pcl (f (U)) is an 

intuitionistic fuzzy pre closed set of Y and hence                     

f-1(pcl (f (U))) is an intuitionistic fuzzy pre closed of X. 

Therefore pcl (U)  f-1(pcl(f(U))) and f(pcl(U)  f-

1(pcl(f(U))))  pcl(f(U)). 

 

(f) (b). Let  V is an  intuitionistic fuzzy pre closed set of Y. 

then f(pcl(f-1(V)))  pcl(f(f-1(V)))  pcl(V) = .Hence pcl 

(f-1(V))  f-1(V) and so f-1(V) is an  intuitionistic fuzzy pre 

closed set of X. 

 

(f) (g). Let V be an intuitionistic fuzzy set of Y then f-1(V) 

is an intuitionistic fuzzy set of X. Therefore by hypothesis 

f(pcl (f-1(V)))  pcl (f-1(V))  pcl (V). Hence                            

pcl (f-1(V))  f-1(pcl (V)). 

 

(g) (f). Let U be a intuitionistic fuzzy set of X. Then f(U) is 

an  intuitionistic fuzzy set of Y and by (g) ,                              

pcl(f-1(f(U)))  f-1(pcl (f(U))). Hence f(pcl(U))  pcl (f(U)). 

 

(a) (h). Let V be an intuitionistic fuzzy set of Y. Then 

pint(V) is an intuitionistic fuzzy pre open set of Y and so by 

(a) f-1(pint (V)) is an intuitionistic fuzzy pre open set of X.  

Since  f-1(pint (V))  f-1(V), then   f-1(pint(V)  pint (f-1(V))  

 

(h) (a). Let V be an intuitionistic fuzzy pre open set of Y. 

Then pint(V) = V and  f-1(V)  pint (f-1(V)). Thus f-1(V) = 

pint (f-1(V)) and f-1(V) is an intuitionistic fuzzy pre open set in 

X. Hence f is intuitionistic fuzzy                          M-

precontinuous.  

 

Lemma (3.1): A intuitionistic fuzzy set V is intuitionistic 

fuzzy pre open set of X if and only if there exists a 

intuitionistic fuzzy open set U such that V U cl(V) 

 

Proof: Necessity if V is intuitionistic fuzzy pre open set of X 

Then V int(cl(V)). Put U=int(cl (V)).Then U is  intuitionistic 

fuzzy open and V  U cl (V). 
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Sufficiency: Let U be an intuitionistic fuzzy open set such 

that V  U cl(V) Then  V  int (U) int (cl (V)). Hence 

V is intuitionistic fuzzy pre open set of X 

 

Theorem (3.2): Let f: () (Y, ) be  intuitionistic fuzzy 

precontinuous and intuitionistic fuzzy open mapping then f is 

intuitionistic fuzzy M-precontinuous. 

 

Proof: Let V is intuitionistic fuzzy pre open set of Y              

then by Lemma (3.2) there exists a intuitionistic                        

fuzzy open set U such that V U  cl(V). Therefore               

f-1(V)  f-1 (U)  f-1 (cl(V))  cl(f-1 (V) because f is 

intuitionistic fuzzy open. Since f is intuitionistic fuzzy 

precontinuous,   f-1(U) intuitionistic fuzzy pre open set of 

X. Hence f-1(V)  f-1(U)  int (cl (f-1(U))  int (cl (f-1 (V))) 

and f-1 (V) is intuitionistic fuzzy pre open set of X.  

 

Theorem (3.3): Let f: () (Y, ) and                                     

g:  (Y, ) (Z, ) be two mappings. If f and g are 

intuitionistic fuzzy M-precontinuous then gof is intuitionistic 

fuzzy M- precontinuous 

 

Proof: Let V is an intuitionistic fuzzy pre open set in Z, since 

g is intuitionistic fuzzy M- precontinuous. g-1 ( ) is 

intuitionistic fuzzy pre open in Y. Therefore (gof)-1 (V) is 

intuitionistic fuzzy pre open in X. because f is intuitionistic 

fuzzy M-precontinuous. Hence gof is intuitionistic fuzzy M- 

precontinuous  

 

Theorem (3.4): Let f: () (Y, ) and                                      

g:  (Y, ) (Z, ) be two mappings. If f is intuitionistic 

fuzzy M-precontinuous is and g is intuitionistic fuzzy 

precontinuous then gof is intuitionistic fuzzy M- 

precontinuous. 

 

Proof: Let U be a intuitionistic fuzzy open set of Z. Since g is 

intuitionistic fuzzy precontinuous so g-1(U) is intuitionistic 

fuzzy pre open set of Y. Therefore (gof)-1(U)  f-1{g-1(U)} is 

intuitionistic fuzzy pre open set of X because f is intuitionistic 

fuzzy M-precontinuous. Hence gof is intuitionistic fuzzy 

precontinuous.  

 

Definition (3.2): A mapping f from an intuitionistic fuzzy 

topological space () to an intuitionistic fuzzy topological 

space (Y, ) is called intuitionistic fuzzy M-preopen if f ( ) 

is intuitionistic fuzzy pre open set of Y for every intuitionistic 

fuzzy set V is intuitionistic fuzzy pre open set of X. 

 

Remark (3.1): Every intuitionistic fuzzy M-preopen mapping 

is intuitionistic fuzzy pre open but the converse may not be 

true for,  

 

Example (3.4): Let X = {a,b} Y ={x,y} and V be a 

intuitionistic fuzzy set of Y defined as follows:  

 

V= {< a, 0.4, 0.6 >, <b, 0.5, 0.5 >},  

       

Let  = { , } and  = { ,V, }.  Then the mapping          

f: () (Y, ) defined by   f(a) = x, f(b) = y is 

intuitionistic fuzzy open and hence intuitionistic fuzzy 

preopen but not intuitionistic fuzzy M-preopen. 

 

Consider the following example. 

 

Example (3.5): Let X ={a,b} Y ={x,y} and U be a 

intuitionistic fuzzy set of X defined as follows:  

 

U = {< a, 0.3, 0.7 >, <b, 0.4, 0.6 >},  

       

Let  = { , U, } and  = { , }. Then the mapping               

f: () (Y, ) defined by f(a) = x, f(b) = y is 

intuitionistic fuzzy M-preopen but not intuitionistic fuzzy 

open. 

 

Remark (3.2): Example (3.4) and example (3.5) shows that 

the concepts of intuitionistic fuzzy open and intuitionistic 

fuzzy M- preopen mappings are independent. 

 

Theorem (3.5): Let f: () (Y, ) be an intuitionistic 

fuzzy M-preopen mapping. If Vis a intuitionistic fuzzy set of 

Y and U is intuitionistic fuzzy pre closed set of X containing 

f-1(V), Then there exist a intuitionistic fuzzy set W in 

intuitionistic fuzzy pre closed set of Y such that V W and             

f-1 (W) . 

 

Proof: Let W = f(Uc)c. Since f-1 (V)  U we have                                

f(Uc ) = Vc. Since f is intuitionistic fuzzy M – preopen, W is 

intuitionistic fuzzy pre closed set of Y andf-1(W)= (f-1(f(Uc)))c 

((Uc))c= U . 

 

Theorem (3.6): A mapping f: () (Y, ) is 

intuitionistic fuzzy M-preopen if and only if                     

f(pint(V))  pint f(V) for every intuitionistic fuzzy set V of 

X. 

 

Proof: Necessity: If f: () (Y, ) is intuitionistic fuzzy 

M-preopen then f(pint(V)) is intuitionistic fuzzy preopen set 

of Y Hence f(pint(V)) = pint(f(V))  pint f(V).  
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Sufficiency: Let V is intuitionistic fuzzy set in X. Then by 

hypothesis f(V)=f(pint(V))  pint f(V) Hence f(V) is 

intuitionistic fuzzy preopen set of Y.  

 

Theorem (3.7): Let f: () (Y, ) and g:  (Y, ) 

(Z, ) are intuitionistic fuzzy M-preopen then gof : 

() (Z, ) is also intuitionistic fuzzy M- preopen. 

Proof: Obvious.  

 

Theorem (3.8): Let f: () (Y, ) and g:  (Y, ) 

(Z, ) be two mappings such that gof : () (Z, ) is 

intuitionistic fuzzy M- preopen and g is intuitionistic fuzzy 

M-pre continuous and injective then f is intuitionistic fuzzy 

M-preopen. 

  

Proof: Let V is intuitionistic fuzzy pre open set in X. Then 

(gof)(V) is intuitionistic fuzzy preopen set in Z because gof is 

intuitionistic fuzzy M-preopen. Since g is injective, we have 

g-1((gof)( V))= f(V). Therefore f(V) is intuitionistic fuzzy pre 

open set in Y, because g is intuitionistic fuzzy M-

precontinuous. Hence f is intuitionistic fuzzy M-preopen.  
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