
International Journal of Computer Applications (0975 – 8887)

Volume 36– No.7, December 2011

37

Optimized Software Quality Assurance Model for

Testing Scientific Software

G.Uma Maheswari1 and Dr. V. V. Rama Prasad2

1
M.tech, in Software Engineering

2
Professor

Department of IT, Sree Vidyanikethan Engineering College,

Tirupati, A.P-517501, India

ABSTRACT

Software projects in R&D organizations differ in their quality

assurance process compared to other production and business

organizations. Major hard constraints are accuracy and

precision. Estimated number of defects the product is likely to

contain at release shall be as minimum as possible. Various

models for assessing the quality of the software are developed

and are in use. The most widely used models are McCall‟s,

ISO 9000, CMM and COCOMO. These models sometimes

become laborious during testing. Hence it is necessary to

optimize the methodology of software quality assurance. So

that it becomes robust, fast and economic. Based on the

requirements an effort is made in this project to develop

“Optimal Software Quality Assurance Model for Testing

Scientific Software” which shall produce reliable and robust

software engineering model to meet the requirements of IEEE

12207. Here through several procedures such as clustering of

requirements, mapping, and so on, are used in order to find

out the Defect Density of software and to predict its reliability

and quality. The optimized model can overcome the process

limitations of traditionally applied models and to provide an

efficient way to assess the quality and other factors pertaining

to scientific software systems. The optimized model is

validated through comparing previous test results with results

obtained from applying this model and the model was found

working as per the requirements.

Keywords:
SQA, Optimized Testing Model, Model Testing, Quality

Assurance Model for Testing Scientific Software.

1. INTRODUCTION
 Software Quality Assurance is an important attribute of

software projects. The number of varieties and complexity of

software‟s increases continuously hence quality assurance

must be used to make a balance between productivity and

quality[1]. It is most important when dependable software-

intensive scientific systems are developed, where delivering

high quality is a major success factor.

 Software projects pertaining to the scientific area differ in

their quality assurance and testing process compared to other

organizations. Certain important hard constraints as accuracy,

precision and soft constraints as cost, effort and schedule are

to be taken under consideration.

 The estimated number of defects the product is likely to

contain at the time of release shall be as minimal as possible.

But defects themselves alone are not sufficient to predict the

software quality. Software engineering researches still does

not have a complete defect prediction for a software project

although there are many models that predict software quality.

There are many defect prediction models available such as

empirical model, Rayleigh model, Constructive quality model

and so on. But all of them base on defects alone which is quite

insufficient. Also the above mentioned models target only the

critical parts of the software product which is considered a

drawback as in high-assurance scientific systems all modules

should be given same priority.

 Models of scientific software development practiced now do

not fit the standard software engineering models. Hence, it has

become essential to develop a new model which can

overcome the drawbacks mentioned above. Accordingly the

“Optimized Software Quality Assurance Model for Testing

Scientific Software” is developed.

Here a model is proposed to estimate software quality in

projects related to the field of science. In order to develop the

required model that can overcome the above mentioned

problem and fulfill the requirements of the IEEE 12207

standard, study of certain quality assurance concepts,

advantages and disadvantages of models that are already

proposed, and certain calculations to be conducted using

software metrics were done and an optimized model is

developed. The optimized model consists of stages in which

certain defined processes are executed in order to find out the

quality of given software.

 After literature survey and studying the data of two specific

projects “Global location mapping and analysis” and

“Dynamic Pressure Data” procedures present in the developed

model are applied and results obtained through the application

of this model are used to declare the quality of the software.

The model in this paper is developed such that it is reliable

and overcomes the drawbacks of traditionally applied models.

This model, as it has been checked with some lab data and has

provided promising results.

2. OVERVIEW OF OPTIMIZED MODEL
Software quality assurance (SQA) consists of a means of

monitoring the software engineering processes and methods

used to ensure quality. The methods by which this is

accomplished are many and varied, and may include ensuring

conformance to one or more standards, such as ISO

9000 and CMMI[2].

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.7, December 2011

38

Model checking methods are being used widely for software

verification. Here we propose a model for checking scientific

software while overcoming drawbacks of traditional models

such as uneven testing of a given software, i.e., by considering

only critical modules and leaving out non critical modules

resulting in defects being present in the software even after

testing it, also complexity is another problem, a model should

not be complex so that its understandability and application

will be easy. Other drawbacks are models length and

flexibility[3].

By using model testing techniques, it can result in the

following benefits:

 Shorter schedules, lower cost, and better quality

 A model of user behavior

 Enhanced communication between developers

 and testers

 Capability to automatically generate many non-

 repetitive and useful tests

 Test harness to automatically run generated tests

 Eases the updating of test suites for changed

 requirements

 Capability to evaluate regression test suites

 Capability to assess software quality

One of the key steps to creating software testing processes

that are specific to a given domain is to determine current

practices in the domain[4][5]. This step is necessary to

determine how current practices are working, in what ways

they are not working, and to identify gaps in the testing

process. The results of our study shows a correlation between

requirements documentation required for scientific software

and the actual implementation of the software product. They

also identify three sources of requirements volatility[6] –

changes in the theory, changes in the scope of the theory, and

quality factors[7].

Scientific software, by which we mean application software

that has a large computational component, models physical

phenomena and provides data for decision support. This can

be software that calculates loads on bridges, provides

predictions for weather systems, images bone structures for

surgical procedures, models subsystems at nuclear generating

stations, or processes images from ground-based telescopes.

There is no consensus on what the best practices for the

development of scientific software are[8][9].

2.1 Optimized SQA model Description
The optimized software quality assurance model is developed

for the testing of scientific software. This model is designed to

overcome the process limitations of traditionally applied

models such as COCOMO and its variations which only target

the critical components of a software product.

The design approach of the optimized software quality

assurance model was taken after a study of normal software

development life cycles. The model was designed similar to a

software development model[7], i.e., it comprises of stages of

process application as compared to stages of software

development. The model consists of requirement analysis in

its first stage, mapping methods, Defect containment table,

and other processes arranged in different stages according to

the model execution and overall combined to form a model

which is effective for testing scientific software. The

optimized SQA model is designed in such a way that we can

apply it not only for testing but also during model

development as well.

Mapping process that is used in the model help locate the

defect with ease, and not only that but also provide a view

which can be used to find out all the modules, units or the

interfaces in the product that were affected by either the defect

or even by the defect rectification. Certain statistical testing

methods and equations have also been introduced here so that

the model not only is conceptually developed but also has a

mathematical base to back up the results or assessment of

quality of software which it provides.

In this model, we use clusters, units and consortiums, which

will be explained in the model below. Here not only do we

consider internal attributes but also few external attributes

have been used for the model development, memory and time

are the two main external attributes that are also used for

calculations in the quality assessment. Here certain critical

values, defect densities and interface or cluster combinations,

data flow accuracy and so on also have been utilized.

A tree structure is also used. It shows the project testing

completion, as in the project each module is being tested,

whatever modules(or clusters as in the model) are finished off

are then added to the tree and so when the tree is complete so

is the project. In this model, the product that is to be tested is

first translated into a model itself, according to the steps

defined in the model and then it is mapped using the mapping

methods, which too is defined in the model in a step by step

process. The defects that arise are tabulated in the defect

containment table which is designed and developed as given

below in the model.

Usually there is a lot of confusion as to where the defect

actually occurred in the module or a unit, in the developed

model this problem is targeted with the usage of mapping

methodology and the DCT (Defect Containment Table).

3. OPTIMIZED MODEL DESIGN
The optimized software quality model is designed and

developed to assess the quality of scientific software. As any

other model this comprises of various stages of application.

This model may be applied for both testing as well as during

the development of the software product. To clearly explain

about the model, it is divided into two parts, exterior and

interior. The exterior part of the model shows the various

stages comprised in it, where as the interior part shows the

various procedures that are to be performed in each stage of

the model.

Two partitions of the model:

1. Exterior

2. Interior

3.1 Exterior
In the exterior part of the model, it consists of three stages.

The three stages themselves consist of different stages of a

product‟s life cycle comprised in them. Such as the infant

stage consisting of analysis and design parts, the production

stage consisting of coding, implementation and connections

and in testing stage the verification is done. In the exterior

part i.e., the outer layer of the project shows three stages of

the model as shown in the diagram below.

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.7, December 2011

39

 Figure 1: Stages of Optimized model

Each of the above mentioned stages in Fig.1 comprise of sub

stages and different procedures that are to be applied on the

software being tested. The three stages of the model are

mapped from infant stage to the testing stages.

3.1.1 Infant Stage
The infant stage comprises of analysis and design sub stages

where requirements are analyzed and the software product is

translated into a model. The model translation is done by

grouping up similar requirements and then allocating them

into their respective clusters. What the clusters are and their

use is explained in the production stage .In the infant stages

all the requirements are clearly classified and mapped on to

the respective design.

R1, R2… = Requirements

C1, C2…. = Clusters

3.1.2 Production Stage
In the production stage the model is first split into parts

known as clusters and then added up into a complete

consortium. Here the emphasis is on requirements being

mapped on to code and then certain internal procedures to be

followed.

The above mentioned clusters consists of requirements being

mapped to their respective modules, different clusters have

different set of requirements mapped to them. A single

requirement need not be connected to a single cluster; it can

be mapped to different clusters also depending upon its usage.

To test the clusters operations etc various Input and Output

sets have been created. At the coding stage restricted input

and outputs are used to reduce the testing difficulty.

Figure 2: Infant stage analyses of Requirements and allocation

into clusters.

This stage also consists of Units, two or more clusters being

connected through their interfaces. The use of units in this

model is to test the interfaces, data flow accuracy and also the

time usage attribute in the system.

The consortium is the product in which all the different

clusters are grouped together and connected via interfaces.

The entire product which is separately tested as clusters and

units is finally grouped together to form a consortium which is

the whole product being tested at once.

3.1.3 Testing Stage
In the testing stage verification is done. In the production

stage testing is also done but here it differs as entire product is

verified so that defects or any problem that were not found

previously are found in this stage. This stage i.e., the

verification plays a major role in testing of the software. The

procedures done here are explained in the interior part.

3.2 INTERIOR
The interior of the model consists of different procedures to

be run within the above mentioned stages of the optimized

model. The procedures are arranged in a step by step process.

Within those steps mathematical calculations are also

performed. The steps provided show that the optimized model

developed has the presence of both conceptual and

mathematical base in the process of assessing the quality of

small or medium scale scientific software.

4. MODEL IMPLEMENTATION

4.1 Model Procedures and its Application
The model and its procedures are developed with adherence to

several rules and constraints.

 The model developed should overcome the

drawbacks of traditional models.

 The model should adhere to IEEE 12207 standard.

 The optimized model is developed for small and

medium scale scientific softwares

 All processes included in the steps are simple and

effective.

R1, R2 R3 R4, R5 R6, R7

Analyzed & grouped

requirements

C1

C2

C3

Requirements
arranged into

Clusters

PRODUCTION STAGE

{Coding, Implementation &

Connections}

TESTING STAGE

{Verification}

INFANT STAGE

{Analysis, design of Requirements}

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.7, December 2011

40

 The calculations present in the model should

provide a solid base in the software quality

assessment.

 The model provides even testing throughout the

software, i.e., all modules are tested evenly so that

proper results are provided.

The model is designed in a way that provides a full view of

the software to be tested and also it provides access to all

interactions that are present between modules so that not only

normal coding defects but also data flow errors, interface

errors and data inconsistency errors are also found.

Figure 3: Activity Diagram for the process in Optimized

Model

The procedures performed in the model are given below in a

step by step procedure:

1. In the infant stage, first the software product is translated

into a model and all the requirements are individually

sought after and should be clearly analyzed and then

grouped up. While the requirements are being analyzed if

a requirement is part of two groups then it can be

mapped to two clusters as seen in diagram below.

2. In the production stage, all the above analyzed

requirements are grouped up and arranged into

different into clusters, according to their relations.

3. A cluster is a set of requirements that belong to the

same module and in cluster some exceptional

requirements may be present which belong to other

modules but are interlinked with requirements in

this module.

4. An Input and Output sets are created for testing the

product. Each cluster is then tested using the input

and output sets.

 An input set is a set of alternative inputs that can be

given to a module during testing.

 Input set is denoted by I, and there can as many as

 required

 ∑ I = {I1, I2, I3 …….} (1)

 An output set is a set of outputs that is expected

when input from a specified input set is given to a

module.

 Output set is denoted by O, and the numbers of

output

 sets are shown as

 ∑ O = {O1, O2, O3……} (2)

 The number of requirements not implemented

properly here are found out by

 nrp = (∑ I + ∑ O) * [PS – FS] (3)

In the above equation PS indicates sets that have

passed the tests and FS indicates sets where failure

occurred.

5. When the clusters are Tested then two or more

clusters according to the interface requirements are

combined into unit. A unit can be described as

module collaboration; links between two or more

modules form a unit. Then the unit is tested for data

flow accuracy, interface errors, and processing

errors.

6. All modules/clusters that are to be integrated to

form a unit are tested in sets of two each i.e.,

combinations of clusters where integration is done

are tested.

If there are 4 clusters then

C={ (1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}.

In the above example (3, 4) or (2, 4) need not be

tested if there is no interface requirement is between

3 or 4, or between 2or 4.

7. A consortium is the entire product being connected

up to form complete working software.

8. Critical values are fixed for each cluster to assess

the quality of the software.

 Critical value of a cluster is given as cr

cr = no. of functions / (no. of input sets + no. of

output

 sets)

Let CR be the average critical value

CR = avg critical value of all clusters (no. of

functions /

 (no. of input sets + no. of Output sets)) (4)

Analyze requirements

Map requirements to clusters

Pair up clusters

Test independent clusters for defects

Test Paired Clusters for interface errors

Map the results in Defect Containment

Table

If defects present

Analyze requirements

Map requirements to clusters

Pair up clusters

Test independent clusters for defects

Test Paired Clusters for interface errors

Map the results in Defect Containment

Table

Analyze requirements

Map requirements to clusters

Pair up clusters

Test independent clusters for defects

Test Paired Clusters for interface errors

Analyze requirements

Map requirements to clusters

Pair up clusters

Test independent clusters for defects

Test Paired Clusters for interface errors

Map the results in Defect Containment

Table

Map the results in Defect Containment

Table

Use Mapping Table

and map back to where

defect is present

No defects

Start

End

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.7, December 2011

41

Let Number of defects found be nd,

Number of modules be nm then,

nd/nm > CR the defect content is high.

nd/nm < CR the defect content is low.

9. Each cluster is now attached with an input and

output set.

10. Usually during project development itself, restricted

input should be practiced at coding area so that

testing can be more simplified as well as it results in

easier way of finding out where the problem is if a

defect arises.

11. A software product can have any number of input

and output sets as required by the modules.

12. Next a Mapping table is created and results of the

tests are entered here, where Y being true or passed

and N being False or failure. Here the values Y and

N in the table give a precise idea about where and

how a defect has entered and is present in a system

and it also provides idea on which modules does

this defect have an effect on. So that correction can

be made with ease. Given below is the defect

containment table.

Table 1: Mapping table presentation example

In the above diagram the DPV indicates defect presence

verification, where ever N is there then it indicates defect

presence. The mapping table indicates that in output set 2 the

outcome is N i.e., wrong out come and since it was for cluster

2 then cluster 2 can be checked for errors.

According to the diagram fig.4, the procedure is run. In the

testing phase all modules are tested in form of request

response methodology. Also the modules are to be

categorized into two groups MAC and MIC, MAC indicates

majority class and MIC indicates minority class.

Also we classify each module or cluster as DP defect present

and non defect present NDP, and also critical weights are

added to them and so with this we can say that if two modules

of DP with high critical weight equal to or more dangerous

than 5 modules of DP but with low critical weight. Usually we

consider MAC > MIC. If MAC consists of DP and MIC

consists of NDP then according to MAC>MIC the software is

completely defect prone, but if it is vice versa then software

product quality is at an acceptable level.

Figure 4: Procedure for execution of model application

13. Finally after finishing all the above steps, mathematical

calculations are done as given below

By calculating through the formula of products

operational interface efficiencies we can be able to

estimate the overall product working capability and

through that find out the product quality.

 Product operational Interface efficiency is given by

 POIE = (C-Ec (nrp))*Dp+(Mu-Mr)+(Tu-Tr)(5)

Where C is the number of cluster sets to be tested,

Ec is the number of errors found in the clusters

connections, which normally can be defined as when

connected the number of Input and Output faults

occurred

Dp which is the data flow between the connections.

Mu is the memory that is used by the system

Mr is the memory that is actually required by the system

Tr is the time required and

Tu is the time utilized by the system

After the above calculation, we can also perform

 integrated calculation given

Below, this calculation can be denoted as IC,

IC = Pxtc

0
dx (6)

In the above equation P is the total number of clusters

connected to form a consortium, t is the number of interfaces

present, and c is the total number of cluster sets. For example

for the above equation let if P = 5, t = 12, c = 4 then the out

come will be IC = 240.

Similarly in equ (5) if we calculate according to the test

results and obtain a value of 350 then for both equ (5) and equ

(6) we have to round off the resultant value to its nearest

complete value i.e., for example we have obtained IC = 240 so

we have to round it off to 300 or calculate the percentage of

240 for 300, and similarly if value of POIE = 350 then we

have to round it off or calculate 350 is how much percentage

of 400.

By rounding off the value of the above equations if we get the

value of the above both POIE and IC greater than or equal to

82% then the software product can be considered to be of

good quality. The software product quality assessment can be

given as or considered as acceptable.

Product testing and its completion can be known by following

a tree structure, here nodes represent modules and after proper

OUTPUT

SETS

INPUT

SETS

OUTPUT

SETS

INPUT

SETS

VerifiedRe-verifyVerifiedDPV

YNYO/P 2

YYO/P 1

YYYI/P2

YYI/P 1

YR6

YYR5

YR4

YR3

YR2

YYR1

CLUSTER 3CLUSTER 2CLUSTER 1REQ

VerifiedRe-verifyVerifiedDPV

YNYO/P 2

YYO/P 1

YYYI/P2

YYI/P 1

YR6

YYR5

YR4

YR3

YR2

YYR1

CLUSTER 3CLUSTER 2CLUSTER 1REQ

Original
Source
Code

Software as

model drawn

Model

mapping table

Error found Deployed Error

corrected,

procedure

repeated

If no error

found

module

deployed

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.7, December 2011

42

testing only each node is added to the tree and if you arrive to

the bottom of the tree with all nodes present in it then your

project quality assessment can be deemed completed. In the

below diagram, A, B, C, D are different modules and in those

modules:

 A, B, C and D are inter connected modules.

 B1, B2 are sub modules of B.

 C1 is a sub module of C.

 C11 is also a sub-module of C1.

 B11 and B12 are sub modules of B1.

If each module is properly tested only then it will appear on

the tree and if the tree is complete then the testing is also

complete.

Figure. 5: Tree Structure for analysis of the tested product

using optimized model

5. MODEL TESTING
Testing of the model is done by applying the model on two

scientific software projects. Here data has been gathered on

two projects, they are “Global Location Mapping and

Analysis” and “Dynamic Pressure Data”. The optimized

model has been applied on the two projects for assessing the

quality of the softwares and results were obtained. The

applied procedures, methods and calculations done are

explained below.

5.1 Sample testing project.1: Global

Location Mapping and Analysis

5.1.1 Project Description
Global Location Mapping and Analysis project is a virtual

map of the earth, various locations of the world are mapped

onto a graphical map. For the locations on the graphical map

data is gathered and stored in the database. Each location

presented on the map through code is attached with a link to

the data pertaining to the selected location.

The map is designed to provide users with specific data

required by the user on the location chosen by him/her. The

data consists of latitudes, longitudes, terrain specifications,

routes to and from the chosen location to another selected

location and the location‟s local data such as its main areas

and its importance.

This software can also be used as a search engine in finding

locations on the graphical map based on given latitudes and

longitudes degrees. Search of the location can be single or

multiple i.e, an exact location can be found according to the

latitudes and longitudes or areas between two sets of latitudes

and longitudes can be acquired using this software.

The graphical map is a world map with links attached to all

places displayed on the map. By clicking on each link, data of

the link of the location is displayed. This project basically

consists of

 Client side Scripts – HTML as User Interface.

 Server side Scripts – JSP

 Database – Oracle 9i

5.1.2 Testing of GLMA Project

5.1.2.1 Requirements Analysis
All the requirements found according to the documentation of

the project are analyzed according to the optimized model and

are tabulated below:

Table 2: Requirements Declaration

Requirement

Declaration

Definition

R1 Graphical Map presentation

R2 Graphical Map Link Processing

R3 Single Explicit Input provided by user

R4 Input through selection.

R5 Multiple Explicit Input provided by user

R6 Accurate Data stored in Database

R7 Output data presented by Database

All the above declared requirements are analyzed according to

the model‟s analysis perspective and also through the

diagrams presented in the documentation such as usecase and

sequence diagrams etc. As per the usage of the product or

project the requirements are analyzed and are classified into

clusters. Given below are steps that are taken for testing this

software according to the optimized model.

1. Requirements analysis is done according to the

usage and specifications present in the project.

2. Requirements are declared according to the project

usage i.e., each task that need be performed in the

project can be considered as a requirements of the

project itself.

3. After analysis all requirements are clearly defined

and are arranged into clusters so that actual testing

can be started.

4. Number of Clusters present = 3

C1 = {R1, R2, R7}

C2 = {R3, R4, R5, R7}

C3 = {R2, R6, R7}

5. Input value sets and output value sets for the project

are defined as given below

Input sets ∑ I = {I1, I2, I3 …….}

 I1= {11.74 N, 92.65 E} Single Set

 I2= {User Selection on Map} Assuming selection of

Diu

 I3= { (17.04 N, 80.09 E), (30.42 N, 76.54 E), (20.12 N,

7.00

 E)} Multiple Sets

 Output sets ∑ O = {O1, O2, O3 …….}

 O1= {Output of Data pertaining to latitude 11.74 and

 longitude 92.65}

 O2= {Data pertaining to location of Diu}

 O3= {Data Pertaining to the multiple inputs provided by

user

 AP, Daman & Diu, Dadra & Nagar Haveli}

A

C B

B2 B1

B12 B11

C1

D C11

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.7, December 2011

43

6. The number of defects that can arise due to

requirements not implemented properly here are

found out by

 nrp = (∑ I + ∑ O) * [PS – FS] = (3 + 3) * [4 – 2] =

12

 PS = 4 (I1, I3, O1, O3)

 FS = 2 (I2, O2)

7. Cluster combination pairs are defined for testing

interfaces and data flow accuracy,

 C={(C1, C2), (C1, C3), (C2, C3)}

8. Critical values are fixed for each cluster to assess

the quality of the software.

 Critical value of a cluster is given as cr

 cr1 = 3/ (1+1) = 3/2

 cr2 = 5/ (3+3) = 5/6

 cr3 = 3/ (1+1) = 3/2

 CR be the average critical value

 CR = ((3/2)+(5/6)+(3/2))/3 = 1.27 ~ 1

9. Mapping table is given below to show the Defect

Presence and its Verification process.

 Table 3: Defect Containment Table

10. POIE = (C-Ec (nrp)) * Dp + (Mu-Mr) + (Tu-Tr)

 = (3 – 6(12)) * (3) + 0 + 0 = 207 ~ 82.8%(

207

 rounded off by 250 integer usage)

 Perform integrated calculation given

 Below, this calculation can be denoted as IC,

IC = 𝑃𝑥𝑡
𝑐

0
𝑑𝑥

 = 3𝑥93

0
𝑑𝑥 = 81 ~ 81% (Rounded off by 100)

And through comparison of both POIE and IC equations and

their values being approximately equal to each other, the

projects quality assessment can be declared as being 82%

accurate, still verification need to be done as errors are present

in the project. The last stage tree diagram is to show that how

each module is inter-related and is tested.

Figure 6: Tree Representation of all modules and their

connections and testing stages.

5.2. Sample testing project.2: Dynamic

Pressure Data

5.2.1 Project Description
The software product Dynamic Pressure Data is a data

acquisition and plotting application that will be used for real-

time plotting of pressure/thrust parameters during static tests.

This application provides numerical display, real-time graph

and storage of acquired thrust/pressure raw data during test.

Printable processed data file for the displayed parameter is

also be generated. The system helps in knowing the

performance of the article under test in real time during test.

The following decomposition description records the division

of the software system into design entities. It describes the

way the system has been structured and the purpose and

function of each entity.

During testing of typical pressure data which is continuously

varying related to a parameter, Motor Pressure/Thrust are

acquired using dedicated data acquisition systems. Raw data

processing will be done off-line after the test to prepare the

performance report. This software shall have the capability to

acquire and plot thrust/pressure data of two redundant

channels in real time during the test. The software shall also

generate printable processed data file for the parameters

displayed during real-time.

The Dynamic pressure data software shall be a window-based,

self-contained and independent software product which shall

be used for the real time display of thrust /pressure parameters

during testing.

5.2.2. Testing of Dynamic Pressure Data

5.2.2.1 Requirements Analysis
All the requirements found according to the documentation of

the project are analyzed according to the optimized model and

are tabulated below:

All the above declared requirements are analyzed according to

the model‟s analysis perspective and also through the

diagrams presented in the documentation. As per the usage of

the product or project the requirements are analyzed and are

classified into clusters.

RE-VERIFYRE-VERIFYRE-VERIFYDPV

YYYO/P3

NNNO/P2

YYYO/P1

YYYI/P3

NNNI/P2

YYYI/P1

YYYR7

YR6

YR5

YR4

YR3

YYR2

YR1

CLUSTER 3CLUSTER 2CLUSTER 1REQ

RE-VERIFYRE-VERIFYRE-VERIFYDPV

YYYO/P3

NNNO/P2

YYYO/P1

YYYI/P3

NNNI/P2

YYYI/P1

YYYR7

YR6

YR5

YR4

YR3

YYR2

YR1

CLUSTER 3CLUSTER 2CLUSTER 1REQ

OUTPUT

SETS

INPUT

SETS

OUTPUT

SETS

INPUT

SETS

D

DC2 C1

B2B1

A

DD

DDC2 C1

B2B1

AA

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.7, December 2011

44

Table 4: Requirements Declaration for DPD project.

Requirement

Declaration

Definition

R1 Measure thrust /pressure during static test

R2 convert thrust/pressure analog signal to digital

R3 Updating the details in calibration file

R4 Updating of the input details file

R5 Availability of lower and upper bound data file to

user

R6 Reading input requirements Test no, Rocket motor
name, channel name, test duration, plot parameters

& predicted data files from input details file

R7 Get calibration details from channel calibration data

file.

R8 Initialization of the NI PCI-6034E ADC card for

acquiring the data

R9 Plotting of predicted data, mission bounds plots

R10 Data acquisitions for 8 channels and store the data in
binary file

R11 Plotting of one thrust /pressure redundant parameter

in Real-time during test superimposed on the

predicted data and mission bounds plots

R12 Displaying the one thrust/pressure channel data and

time in digital display

R13 Generate text file of thrust/pressure parameter data

plotted in real time

R14 Configuring the acquisition mode (manual/Level

trigger), trigger level, and configuring the plot color

properties

R15 provide menus
for top level system Feature

Selection

R16 Separate Display views should be provided for each
major functions and features of software

requirements

R17 provide Input file selection feature

R18 Provide error, alert message, operation completed
status

R19 Command Buttons

R20 Read the Input details file, nominal, upper and lower

bounds Files, channel Calibration file

R21 Configure acquisition Properties, Real time Plot

properties

R22 View the real time plot details selected and

Thrust/Pressure channel calibration details

R23 Start Real Time Graph, Stop Real Time Graph, Exit,

Real Time Display, Initialization of DAQ card Data

Acquisition.

R24 Real time Plotting and digital display

R25 Real time data logging of thrust/pressure channels

and converting to engineering units.

R26 Real time plot and digital display of thrust/pressure

parameters.

R27 Real time plot and digital display refresh shall be at

least for every 125ms.

R28 Maximum duration of real time display duration is

200 seconds.

R29 The Real Time Plot of the Thrust/Pressure parameter

must start when the motor thrust / pressure starts

rising.

R31 Trigger level for starting the real time display shall

be 10% of nominal voltage.

R32 The Time display also must be provided, taking start

of the plot as the „0 s‟ and incrementing every one
second.

R33 Raw and processed data kept in ram during the test

and storage to files shall be done at the end of the
test.

Given below are steps that are taken for testing this software

according to the optimized model.

1. Requirements analysis is done according to the usage and

specifications present in the project.

2. Requirements are declared according to the project

usage.

3. After analysis all requirements are clearly defined and

are arranged into clusters so that actual testing can be

started.

4. Number of Clusters present = 5

C1 = {R4, R6, R17, R20}

C2 = {R3, R7, R20, R22}

C3 = {R1, R2, R9, R10, R11, R12, R13, R14}

C4 = {R15, R16, R18, R24, R27, R28, R30, R31, R32}

C5 = {R5, R8, R19, R21, R23, R25, R26, R29, R33}

5. Input value sets and output value sets for the project are

defined as given in the actual tests that were run on the

software. The input sets and output sets for this project

can only be assumed as live project is not available to

perform the actual testing.

 Let us assume the input and output sets given below.

Input sets ∑ I = {I1, I2, I3 …….}

Output sets ∑ O = {O1, O2, O3 …….}

6. The number of defects that can arise due to requirements

not implemented properly here are found out by finding

out requirements implementation problems

nrp = (∑ I + ∑ O) * [PS – FS] = (21) * [21-0] = 441

Cluster combination pairs are defined for testing

interfaces and data flow accuracy,

 C= {(C1, C2), (C1, C3), (C1, C4), (C1, C5), (C2, C4),

 (C2, C5), (C3, C4), (C3, C5), (C4, C5), (C2, C3)}

7. Critical values are fixed for each cluster to assess the

quality of the software.

 Critical value of a cluster is given as cr

 cr = no. of functions / (no. of input sets + no. of output

sets)

 cr1 = 4/ (4+4) = 1/2

 cr2 = 8/ (4+4) = 1

 cr3 = 8/ (2+2) = 2

 cr4 = 9/ (2+2) = 2.25

 cr5 = 9/ (3+3) = 1.5

 CR be the average critical value

 Number of function, input sets and output sets taken in

the

 above equations are assumptions taken from the

previous

 tests performed on this project.

 CR = avg critical value of all clusters (no. of functions /

(no.

 of input sets + no. of Output sets))

CR = (0.5+1+2+(2.25)+(1.5))/3 = 1.45 ~ 1

8. Mapping table is given below to show the Defect

Presence

 and its Verification process.

9. POIE = (C-Ec (nrp)) + Dp + (Mu-Mr) + (Tu-Tr)

 = (5 – (21*21)) + (5) + 0 + 0 = 441 ~ 98%(441

 rounded off by 450 Integer usage)

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.7, December 2011

45

where Dp (multiply if equation result is below 50 and

add if result might increase above 50)which is the data

flow between the connections obtained by testing the

cluster sets connections, if data flow accuracy is

maintained then put down the number of clusters

working accurately and tasks done by them.

Table 5: Defect Containment Table

10. Perform integrated calculation given

 Below, this calculation can be denoted as IC,

IC = 𝑃𝑥𝑡
𝑐

0
𝑑𝑥 = 5𝑥910

0
𝑑𝑥 = 450 ~ 100%

And through comparison of both POIE and IC equations and

their values being approximately equal to each other, the

projects quality assessment can be declared as being 99%

accurate, still verification needs to be done as errors are

present in the project. The last stage tree diagram here shows

not the actual modules but modules made up through

requirements segregation, each node represents a part which

has been tested completely and how each one is inter-related.

Figure 7: Tree structure of dynamic pressure data testing

presentation.

6. EXPERIMENTAL RESULTS

The results of applying the optimized model on the projects

“Global Location Mapping and Analysis” and “Dynamic

Pressure Data” are provided below in the form of graphs.

6.1 Result analysis
Below Graph shows the results of testing of both the

softwares before and after the application of the optimized

model.

Figure 8: Graph Representing Test Results OF GLMA and

DPD projects

In the above shown graphs, both for GLMA and DPD projects

 A1, A2 represents test results of projects before the

application of optimized model.

 B1, B2 represents test results after the application of the

optimized model.

 A1 & B1 represent GLMA project test results.

 A2 & B2 represent DPD project test results.

 For project-1, several defects were found through the

application of the optimized model, the calculated results can

be viewed in chapter 6. By using the mapping technique that

is through the use of Defect Containment Table the defects

can be easily traced back to their exact location. The quality

of the software project in terms of calculations resulted in

82%. In the below given graph A shows through previous test

results, the quality as near to 100% where as B which is

optimized model testing shows result of quality being 82%.

YYYYYIP SET

YYYYYOP SET

YR33

YR24

YR25

YR26

YR27

YR28

YR29

YR30

YR31

YR32

VERIFIEDVERIFIEDVERIIFIEDVERIFIEDVERIFIEDDPV

YR23

YR22

YR21

YYR20

YR19

YR18

YR17

YR16

YR15

YR14

YR13

YR12

YR11

YR10

YR9

YR8

YR7

YR6

YR5

YR4

YR3

YR2

YR1

CLUSTER5CLUSTER4CLUSTER3CLUSTER 2CLUSTER1REQ

YYYYYIP SET

YYYYYOP SET

YR33

YR24

YR25

YR26

YR27

YR28

YR29

YR30

YR31

YR32

VERIFIEDVERIFIEDVERIIFIEDVERIFIEDVERIFIEDDPV

YR23

YR22

YR21

YYR20

YR19

YR18

YR17

YR16

YR15

YR14

YR13

YR12

YR11

YR10

YR9

YR8

YR7

YR6

YR5

YR4

YR3

YR2

YR1

CLUSTER5CLUSTER4CLUSTER3CLUSTER 2CLUSTER1REQ

A

CB

B1

B11

C1

D C11E

A

CB

B1

B11

C1

D C11E

0

10

20

30

40

50

60

70

80

90

100

Testing Methods

Q
u

a
li

ty
 A

s
s
e
s
s
m

e
n

t

 A1 B1 A2 B2

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.7, December 2011

46

 Figure 9: Graph displaying Test results of GLMA project.

For project -2, the calculated results concur with the previous

tests results and so the quality of the software was assessed

and the optimized model was effective in application to the

project. The quality of the software project in terms of

calculations resulted in ~100%. Both test results, i.e., previous

and current model applied test results show approximately

same results for DPD project.

Figure 10: Graph Display of test results of DPD project.

Fig.11: Screen shot of output for GLMA project

 Fig.12: Screen shot of output for DPD project

7. CONCLUSION & FUTURE WORK
This model is developed for small and medium scale scientific

software projects. Application of this optimized model has

given positive results on assessing quality of softwares. As

data acquired by applying this model on scientific project

shows that this can increase the quality as well reduce testing

time, cost and schedule of the project.

By comparing this model‟s approach with other models

approaches an added advantage is acquired. Unlike other

models that give importance to critical modules only, the

provided model gives equal importance to all modules also

considers more relevant influencing factors. And thus

provides more reliable results and shows that this model and

equations are feasible.

The applicability of the model and its methods has been

shown by applying this model for the assessment of quality

for two projects. The usefulness of the resultant model has

been seen by the resultant data acquired from the two model

applied projects. Only on a small number of projects this

model has been applied, since more thorough work has not

been, threat to validity of this model can occur. But future

work in this area with application on vast area of projects, an

extension of the current procedures and mathematical

methods of this model can lead to a more accurate, precise

and effective model.

8. REFERENCES
[1] Feldman.S, Software quality assurance is more than

testing and IEEE standard 12207. Retrieved 5/3/2009,

2009, from

http://elsmar.com/Forums/showthread.php?t=11148,
2005.

[2] (Webopedia, 2009) Webopedia. (2009). Retrieved

5/5/2009, 2009, from http://www.webopedia.com/TERM
/S/Software_Quality_Assurance.html

[3] NASA, Software definitions. Retrieved 5/5/2009, 2009,

fromhttp://ezproxy.library.nyu.edu:13976/office/codeq/s
oftware/umbrella_defs.htm

[4] Hayes, L. (2003). Column info : Test organization

strategies: Centralized, distributed, or
hybrid?2008(11/25/2008)

[5] Podlogar, Y. (2002). Taking advantage of a centralized

QA organization. Retrieved May 28, 2009, 2009, from

http://www.stickyminds.com/s.asp?F=S3516_ART_2

[6] Topping.S. (2009). Organizing localization in large

companies, achieving balance between centralized and

decentralized models. Multilingual Computing and
Technology, 10(6)

[7] (Ogale, 2005): Ogale, C. (2005). Testers vs programmers.

Retrieved 5/26, 2009, from http://www.indicthreads.
com/1330/testers-vs-programmers-2/

[8] Kitchenham, BA et al (1995) Towards a framework for

software measurement validation IEEE Trans. Software

Engineering 21(12) pp. 929-944

[9] Gilb, T (1987) Principles of Software Engineering

Management Reading, Massachusetts: Addison-Wesley

[10] Evans, M and Marciniak, J (1987) Software Quality

Assurance and Management New York: Wiley

[11] Shen, V (1987) Quality Time IEEE Software September

1987, p. 84

[12] Basili, V and Rombach (1987) “Implementing

Quantitative SQA: A practical model”, IEEE Software
September 1987 pp. 6-9

0

10

20

30

40

50

60

70

80

90

100

 Req Clustering Interface

A

B

0

10

20

30

40

50

60

70

80

90

100

 Req Clustering Interface

A

B

