
International Journal of Computer Applications (0975 – 8887)

Volume 36– No.7, December 2011

30

C-slow Technique vs Multiprocessor in designing Low

Area Customized Instruction set Processor for

Embedded Applications

Muhammad Adeel

Akram

COMSATS Insititute of IT
Quaid Avenue, Wah Cantt.

Pujnab, Pakistan

Aamir Khan

COMSATS Insititute of IT
Quaid Avenue, Wah Cantt.

Pujnab, Pakistan

Muhammad Masood
Sarfaraz

COMSATS Institute of IT
Quaid Avenue, Wah Cantt

Punjab, Pakistan

ABSTRACT
The demand for high performance embedded processors,

for consumer electronics, is rapidly increasing for the past

few years. Many of these embedded processors depend

upon custom built Instruction Ser Architecture (ISA) such

as game processor (GPU), multimedia processors, DSP

processors etc. Primary requirement for consumer

electronic industry is low cost with high performance and

low power consumption. A lot of research has been evolved

to enhance the performance of embedded processors

through parallel computing. But some of them focus

superscalar processors i.e. single processors with more

resources like Instruction Level Parallelism (ILP) which

includes Very Long Instruction Word (VLIW) architecture,

custom instruction set extensible processor architecture and

others require more number of processing units on a single

chip like Thread Level Parallelism (TLP) that includes

Simultaneous Multithreading (SMT), Chip Multithreading

(CMT) and Chip Multiprocessing (CMP). In this paper, we

present a new technique, named C-slow, to enhance

performance for embedded processors for consumer

electronics by exploiting multithreading technique in single

core processors. Without resulting into the complexity of

micro controlling with Real Time Operating system

(RTOS), C-slowed processor can execute multiple threads

in parallel using single datapath of Instruction Set

processing element. This technique takes low area &

approach complexity of general purpose processor running

RTOS.

Keywords: Instruction Set Architecture (ISA),

Instruction Level Parallelism (ILP), Very Long Instruction

Word (VLIW), Thread Level Parallelism (TLP),

Simultaneous Multithreading (SMT), Chip Multithreading

(CMT), Chip Multiprocessing (CMP)

1. INTRODUCTION

From the past few years, consumer electronic industry, toys

to high end game consoles and from mp3 players to PDAs

and Laptops, is growing with sky rocket speed. One of the

primary requirements for these embedded systems is high

performance with minimal silicon area cost. Most of

consumer based embedded processors require custom built

ISAs in contrast to general purpose processors. The ISA of

a general purpose processor is designed to meet the

requirements in a variety of domains. So a general purpose

processor is not suitable to meet the high performance

requirement of application specific circuits. Thus

Application Specific Instruction Set Processors (ASIPs) are

the promising way to enhance the computation

performance of consumer based embedded systems [7],

[13]. Moreover cost and time to market is also much

important for consumer electronics [6] and ASIPs allow

high performance with automatic design even for high level

architecture. It also `affects the cost as embedded

applications are developed in huge quantity, a small

decrease in amount effects a lot. ARM [1], a 32 bit reduced

Instruction set architecture is a common example.

During the last decade processor clock frequency was

synchronous with performance i.e. faster processor means

more computing power. During this, the target of most of

the performance related research was single core

processors. Within a few years, clock speed reaches up to a

point where heat dissipation across the chip is at a

dangerous level [2]. Thus performance with single

processor reaches to its optimal limit. Then processor

designers target to design multicore processors to enhance

performance as theoretically adding additional core in a

chip means double the performance. Some examples of

multicore processors are Cell [3], MP211 [4], FR1000 [5].

Most techniques developed, during recent years, target

multicore processors.

Most of the performance enhancement techniques exploit

parallelism within processors. Two types of parallel

computation techniques are common within processors,

Instruction Level Parallelism (ILP) [10], [11] and Thread

Level Parallelism (TLP) [12]. The basic idea behind both is

same because both identify independent instructions and

utilize parallel to compute in parallel. Neither of the

technique is promising to adopt dynamically hardware

changes.

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.7, December 2011

31

Instruction Level Parallelism exploits parallel execution

by utilizing independent instructions within a program such

as memory load/store, addition/multiplication instructions

etc. Normally ILP architectures are transparent to users.

One primary difference between ILP processor and normal

RISC based machine is that ILP processors require more

hardware resources to perform parallel execution. There are

two most common processor architectures that exploit

instruction level parallelism, VLIW [25] processors and

Superscalar processors [26]. Superscalar processors are

sequential architectures that in which program do not

provide any explicit information about parallelism. So

program does not know the presence of dependencies

present in a program rather it is the task of hardware to find

the dependencies between instructions. The primary issue

in superscalar processors is how to execute instructions in

parallel. As the superscalar processors support sequential

execution, rather to execute multiple instructions in single

clock cycle, it is more convenient to increase the clock

speed up to number of instructions to execute in parallel

and issue only one instruction in a single clock cycle. In

superscalar processors, it is known as super pipelining [27].

One major problem in superscalar processors is

unpredictable branches that reduce the level of

performance. This problem can be solved to some extent

with speculative execution in which conditional branches

are executed first before their control dependencies

branches are issued. Many architectures are designed to

support speculative execution [13], [14] but hardware can

only support a small amount of parallelism up to fetched

instructions. The drawback of superscalar processors is the

increase in architecture complexity. Because dependence

check, branch predictor, reorder buffer introduce makes

architecture complex.

VLIW architecture also exploits instruction level

parallelism. In order to exploit parallelism system must

have knowledge about the independent instructions present

in the program. In spite of superscalar processors, in VLIW

processors the compiler identifies the presence of

parallelism within a program and forward the information

to the hardware about the instructions that are independent

to each other. Now the hardware does not need to

investigate about dependencies. Hence the scheduling and

dependence check is moved from hardware level to

compiler level so there is a great affect on circuit

complexity. VLIW fetches only one instruction per clock

cycle that consists of different operations for different

processing units to execute in parallel. ILP supports out of

order execution in which instructions are rearranged to

reduce the interference between computation and memory

reference instructions. Two types of instruction scheduling

exist in ILP processors, Static ILP scheduling architectures

and Dynamic ILP scheduling architectures. In static

architecture scheduling is not performed at run time

because processor assume that compiler already schedule

the instructions and instructions are issued in the same way

as they come to machine program [19],[20]. In dynamic

scheduling is performed at run time using dedicated

hardware. But the performance of ILP processors is limited

to the number of independent instructions present in a

program. To enhance the performance of ILP design, there

must be more independent instructions in a program that

can be executed in parallel.

Simultaneous Multithreading (SMT) processors, in

contrast to ILP allow multiple independent threads to issue

multiple processing units. The main purpose of SMT

architecture is the maximum processor utilization in the

presence of long memory latencies and limited parallelism

present in a single thread. SMT exploits some features of

superscalar processors such as to issue multiple instructions

and also have hardware support to fetch instructions from

multiple threads. Thus SMT is a technique which supports

the multiple instructions from multiple threads at the same

time, hence exploits both ILP and TLP. In SMT processors

parallel threads come from multithreaded, parallel program

or from independent multi programs. And instruction level

parallelism obtains from a single thread or from a single

program. In [9], SMT processor’s working is discussed and

how they are different from other multithreaded

architectures and superscalar processors. There are two

types of wastes in any type of processor design, horizontal

waste and vertical waste. Horizontal waste occurs when all

issue slots in single cycle are not filled with instructions.

The amount of Horizontal waste is the number of empty

slots. The Vertical waste occurs when there is no

instruction issued to any issuing slot i.e. all slots is empty

as shown in the figure 1.

Normal superscalar processors exploit instruction level

parallelism. They execute multiple parallel instructions

from a single thread i.e. instructions that are independent to

each other. Thus the performance of superscalar processors

certainly depends upon the number of independent

instructions present in a thread. On the other hand

multithreaded processors fetch all instructions from same

thread in a single cycle. In next clock cycle they switch the

context to new thread and now execute instructions from

this new thread. The primary effectiveness of multithreaded

processors is that these can tolerate memory latencies thus

reducing the vertical waste but they cannot reduce the

horizontal waste because they still depend on the

independent instructions present in a thread to reduce

horizontal waste.

X

X X X

X X

X
X X X X

 Horizontal Waste = 9 slots

Vertical Waste = 12 slots

X Full Issue Slot

 Empty Issue Slot

Issue Slots

C

y
c

le
s

Fig.1. Horizontal and Vertical waste representation

Despite all these, SMT processors [24] select instruction

from multiple threads in every clock cycle. It schedules the

on chip resources in way to maximize the hardware

utilization. If more number of independent instructions is

available, exploits instruction level parallelism otherwise to

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.7, December 2011

32

utilize hardware instructions from different cycles are

selected as shown in the figure 2.

C
yc

le
s

Thread 1

Thread 2

Thread 3

Thread 4

Fig. 2. (a) Superscalar processor behavior, (b)

multithreaded processor and (c) simultaneous

multithreaded processor

In the second section we will discuss some previous work

done to design processors especially for embedded

applications. In third section we described our proposed

model and effects of area and throughput.

2. RELATED WORK

There is a lot of work have been evolved to increase the

performance of processor. There is large gap between

processor’s computation speed and memory speed. This is

the primary reason in degrading the performance of

embedded systems. Many techniques have been evolved to

reduce this gap. Pre fetching, multilevel caches, compiler

optimization are some of these techniques. To enhance the

computation performance of embedded systems, ILP and

TLP are two most used approaches. Different models have

been proposed to enhance performance by exploiting these

two techniques. Some of these models are discussed here.

An architecture is proposed in [16] that exploits both TLP

and ILP. To exploit TLP, the design contains much thread

processing units and each of these processing units its own

program counter, cache memory to perform speculative

execution and instruction execution path. It can execute

multiple instructions from different threads. But there is a

large area because of multiple caches, program counters

and ALUs.

Another model proposed in [17], [19], known as EPIC.

This model is an enhancement of VLIW but also exploit

some features of superscalar processors. Intel’s IA-64[18]

was first commercially available ISA that was based on

EPIC.

SMTA, proposed in [21], consists of a number of thread

slots and a thread dispatcher. Each thread slot has its own

program counter, instruction and decode unit. The

execution results are transferred to another thread if

required through communication unit.

Polymorphous Trips Architecture [22] is a single processor

core model with a memory system. It supports ILP.

Normally it executes instruction in a serial manner but

when parallelism is available, it divides itself logically into

multiple processing units. But still to exploit parallelism it

required more resources.

A stream processor [23] is another approach to enhance

performance of embedded systems. Stream processors

consist of clusters of functional units. They exploit ILP

within a cluster and Data parallelism (DP) [15] between

clusters. Each cluster consists of a number of ALUs and

use VLIW format by microcontroller. Stream processors

also exploit Data Parallelism, a number of data streams that

require the same operation to be performed.

3. C-SLOW PROCESSOR DESIGN
Basic concept of C-slow technique is briefly discussed

first. C-slow is a technique that is used to improve the

performance especially when there is feedback loops in the

design. In the presence of feedback loops, processor cannot

exploit the parallelism because next computation is only

possible when results of previous computation are

available. Hence in these cases we cannot exploit ILP or

TLP by simply introducing pipelining registers or using

multiple processing units. C-slow was proposed by

Leiserson et al. [28] to enhance computation performance

in the presence of feedback loops. Figure 3 illustrates the

difference between conventional pipelining and C-slow

retiming [29].

2 2

(a)

2 2

(b)

1 1 2

(c)

11

1 1 2

(d)

11

1 1 2

(e)

11

Fig. 3. (a) A simple feed forward circuit, (b) After

pipelining of (a), (c) A circuit with feedback path, (d)

After C-slow, (e) After retiming of (d)

As shown in the figure 3 (a) represents a simple feed

forward circuit having critical path 4. After pipelining,

critical path is reduced to 2 as shown in (b). A circuit with

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.7, December 2011

33

feedback path is represented in (c). Here feedback is the

critical path. After C-slow and retiming circuit is

represented in (d) and (e) respectively. Now in every clock

cycle, the circuit can process two independent

computations by taking data from two independent streams.

Hence the input register needs not to wait for the feedback

computation results to fetch another input. From above

described figure, C-slow is technique that enhances

throughput by replacing each register with C number of

registers. And C numbers of computations are possible

simultaneously.

C-slow Processor Architecture consists of registers such ac

program counter address register etc. are replaced by C

registers as shown in figure 4. All other architecture

remains same. The biggest complications in architecture are

the implementation of various types of memories. The first

type provides the C-slow semantics complete

independence, where a thread has a complete independent

view. This is applicable to the register file and state

registers. In C-slow design, the register file is increased C

times.

Program Counter 0

Program counter C

Mux

Address Register 0

Address Register C

Instruction
Cache

Data
Cache

ALU

C times Register File

Fig. 4. A generic C-slow processor Architecture

A hardware thread counter is used to select the group of

registers which is being used, so that each can see its own

set of registers and all read and writes of different threads

are going to different locations.

The second type of memory is completely shared such as

main memory and cache memory. Normally these

memories are placed out of C-slow portion. There are two

ways to access to access cache memory. If the cache is

physically addressed, to enhance the throughput just

required pipeline the cache so that interlocked read/write

instructions has time to be completed. In contrast, when

virtually addressed caches are used, they require some way

so that one thread cannot access the memory of other thread

and require a record to be maintained for virtual to physical

address mappings to ensure coherency between threads.

Third one is dynamically shared in which a hardware

thread ID or software thread context ID is tagged to each

thread. This is best approach for branch predictors and

similar caches. These types of memories do not need to be

increased in size.

C-slow as Multithreading are elaborated. There are

numerous architecture proposed to exploit multithreading.

All these architectures share same idea: increasing system

throughput by executing multiple threads simultaneously.

These architectures can be categorized into four classes:

always context switching (Heap and Tera [30]), SMT,

context switching on event and interleaved multithreading.

The primary idea of C-slow retiming is applicable to highly

complex designs such as microprocessors. In those cases, it

is not simply a matter of adding registers and balancing

delays. The changes in the design are comparatively small

than the benefits. The C-slow design produces a simple,

statically scheduled, high clock rate, multithreaded design,

similar to interleaved multithreaded design. C-slow

processor architecture alternates between fixed numbers of

threads in a round-robin manner creating the illusion of a

multiprocessor system. C-slowing needs three design

changes, increasing register file size and modifying TLB,

changing cache interface, and modifying interrupt routines.

To create the illusion that each thread is processing on a

separate processor i.e. multiple threads are executing on

multiple processors, each thread has its own translational

memory. This can be performed by increasing size of TLB

by C times so that each thread accesses its own set.

4. SIMULATION RESULTS

In order to check the performance of proposed C-slow

processor over simple processor, a simple instruction set

architecture is designed as given in appendix. The given

ISA is implemented on SPARTAN 3 FPGA to test the

performance of C-slow processor against simple design.

And check the results of execution of multiple threads from

different applications. When C number of threads is

executed on a simple pipelined design, total number of

clock cycles is equal to the sum of clock cycles required to

execute C number of single threads. When the same test is

performed on C-Slow-based design, total number of clock

cycles required to execute C number of threads is equal to

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.7, December 2011

34

the thread which requires maximum clock cycles. Fig.5

represents the execution results of one; two and three

threads respectively on simple pipelined design and C-slow

based design.

Fig. 5 Comparison of number of clock cycles vs number

of threads

Table 1 represents SPARTAN 3 FPGA device utilization

summary of simple processor while fig.7 shows brief

summary of same device utilization when 3-slow design is

implemented.

Table 1 Device Utilization Summary of Simple

Processor Design

Logic Utilization Used Available Utilization

No. of slice registers 2107 26,624 7%

No. of 4 input LUTs 1444 26,624 5%

Logic Distribution

No. of occupied slices 1778 13,312 13%

No. of slices containing

only related logic

1778 1778 100%

No. of slices containing

only unrelated logic

0 1778 0%

Total No. of 4 input

LUTs

1454 26,624 5%

No used as logic 1444

No used as a route-

thru

10

No of bonded IOBs 9 333 2%

No. of GCLKs 2 8 5%

Table 2 Device Utilization Summary of 3-Slow

Processor Design

Logic Utilization Used Available Utilization

No. of slice registers 4,270 26,624 16%

No. of 4 input LUTs 3,166 26,624 11%

Logic Distribution

No. of occupied slices 3,708 13,312 27%

No. of slices containing

only related logic

3,708 1778 100%

No. of slices containing

only unrelated logic

0 1778 0%

Total No. of 4 input

LUTs

3,167 26,624 11%

No used as logic 3,167

No used as a route-

thru

1

No of bonded IOBs 10 333 3%

No. of GCLKs 2 8 25%

After testing the simple microprogrammed FSM system

and 3-slow on microprogrammed FSM system, comparison

of different efficiency parameters between the said systems

can be observed in table 3.

Table 3 Different Efficiency Parameters Comparison

between Simple and 3-slow Microprogrammed FSM

Efficiency

Parameters

Microprogrammed

FSM

3-slow

Microprogrammed

FSM

Minimum

period

29.976ns 11.558ns

Minimum

input arrival

time before

clock

29.985ns 5.458ns

Maximum

Frequency

33.360MHz 86.520MHz

Maximum

output

required

time after

clock

 7.165ns 7.165ns

Hence from the simulation results, it was observed that C-

slowing is a promising technique to increase the

performance of system especially when the system have to

complete same task multiple times as in embedded systems.

5. CONCLUSION

From all previous discussion, from introduction to

simulation results, one thing that is clear that for consumer

electronics especially embedded system designs, SMT is

the most promising way to enhance the performance. We

have discussed many techniques to implement the SMT

with different proposed models. One thing that is common

in all these that they enhance performance by increasing

number of processing units such as arithmetic and logic

unit (ALU), floating point unit (FPU), and others that are

the primary cause to increase the area of the system.

Most of embedded systems are area critical i.e. they require

maximum performance with minimum area. To achieve

this goal, we proposed C-slow processing technique. The

most advantage of this technique, as discussed in

simulation results, it use the available resources not from

external resources and enhance the performance. From the

simulation results, it is clear that 3-slow processor can

compute 3 threads simultaneously i.e. producing the effect

of three processing units are present in the design.

0

10

20

30

40

50

1 2 3

N
o

. o
f

cl
o

ck
 c

yc
le

s

No. of Threads

C-sloww
Processor
Conventional
Processor

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.7, December 2011

35

6. REFRENCES
[1] John Goodacre, Andrew N. Sloss, Parallelism and the

ARM Instruction Set Architecture, IEEE Published by

the IEEE Computer Society, 2005

[2] W. Knight, ―Two Heads Are Better Than One‖, IEEE

Review, September 2005

[3] D. Pham et al. The Design and Implementation of a

First Generation CELL Processor. In Proceeding of

the IEEE International Solid-State Circuits

Conference, 2005.

[4] J. Cornish. Balanced Energy Optimization. In

International Symposium on Low Power Electronics

and Design, 2004

[5] A. Suga et al. FR-V Single-Chip Multicore Processor:

FR1000. Fujitsu Sci Tech J, 42(2):190–199, 2006.

[6] Schlett M., ―Trends in embedded-microprocessor

design‖, IEEE Computer, pp. 44–49, Aug. 1998.

[7] ―An Infrastructure for Designing Custom Embedded

Counterflow Pipelines‖ Proceedings of the 33rd

Hawaii International Conference on System Sciences

– 2000

[8] D. M. Tullsen, S. J. Eggers, and H. M. Levy.

Simultaneous Multithreading: Maximizing On-chip

Parallelism. Proceedings of the 22nd International

Symposium on Computer Architecture, pp. 206-218,

June 1995.

[9] ―Simultaneous Multithreading: a Platform for Next

Generation Processors‖ Paulo Alexandre Vilarinho

Assis IEEE MICRO September/October 1997

[10] Instruction Level Parallelism through

Microthreading—A Scalable Approach to Chip

Multiprocessors. The Computer Journal 2006 49(2).

British Computer Society

[11] Instruction-Level Parallel Processing: History,

Overview and Perspective The Journal of

Supercomputing, Volume 7, No.1, January, 1993

[12] D.W. Wall, ‖Limits of Instruction-Level Parallelism,‖

Pruc. Fourth Int‘l Con5 Architectural Support for

Programming Languages and Operating Systems, pp.

176-188, Apr. 1991.

[13] M. Johnson, ―Super-scalar Processor Design,‖

Technical Report No. CSL-TR-89-383, Stanford

Univ., June 1989.

[14] K. Murakami, N. Irie, M. Kuga, and S. Tomita,‖SIMP

(Single Instruction Stream/Multiple Instruction

Pipelining): A Novel High-speed Single-Processor

Architecture,‖ Proc. 16th Ann. Int’l Symp. Computer

Architecture, pp. 78-85, May 1989.

[15] EXPLOITING INSTRUCTIONAND DATA-LEVEL

PARALLELISM. Roger Espasa Mateo Valero

Polytechnic University of Catalunya-Barcelona IEEE

Micro September/October 1997

[16] The Superthreaded Processor Architecture Jenn-Yuan

Tsai, Member, IEEE, Jian Huang, Student Member,

IEEE, Christoffer Amlo, David J. Lilja, Senior

Member, IEEE, and Pen-Chung Yew, Fellow, IEEE,

IEEE TRANSACTIONS ON COMPUTERS, VOL.

48, NO. 9, SEPTEMBER 1999

[17] M.S. Schlansker and B.R. Rau, EPIC: An Architecture

for Instruction-Level Parallel Processors, HPL Tech.

Report HPL-1999-111, Hewlett-Packard Laboratories,

Jan. 2000.

[18] IA-64 Application Developer’s Architecture Guide,

Intel Corp., 1999.

[19] M. S. Schlansker and B. R. R. Cover, ―EPIC:

Explicitly parallel instruction computing,‖ Computer,

vol. 33, no. 2, pp. 37–45, Feb. 2000.

[20] H. Sharangpani and K. Arora, ―Itanium processor

microarchitecture,‖ IEEE Micro, vol. 20, pp. 24–43,

Sept./Oct. 2000.

 [21] SMTA: next-generation high-performance multi-

threaded processor. J.-F. Tu and L.-H. Wang IEEE

Proc.-Comput. Digit. Tech., Vol. 149, No. 5,

September 2002

[22] K. Sankaralingam et al. , ―Exploiting ILP TLP, and

DLP with the Polymorphous TRIPS Architecture,‖

Proc. 30th Int’l Symp. Computer Architecture (ISCA

03), ACM Press, 2003, pp. 422-433.

[23] DESIGN SPACE EXPLORATION FOR REAL-

TIME EMBEDDED STREAM PROCESSORS

Joseph R. Cavallaro Scott Rixner Rice University

Sridhar Rajagopal WiQuest Communications IEEE

MICRO JULY–AUGUST 2004

[24] Area and System Clock Effects on SMT/CMP

Throughput James Burns and Jean-Luc Gaudiot,

Fellow, IEEE, IEEE TRANSACTIONS ON

COMPUTERS, VOL. 54, NO. 2, FEBRUARY 2005

[25] R. Bahr, S. Ciavaglia, B. Flahive, M. Kline, P.

Mageau and D. Nickel. The DNl0000TX: a new high-

performance PRISM processor. Proc. COMPCON '91

(1991). 7G. Blanck and S. Krueger. The

SuperSPARCrM microprocessor. Proc. COMPCON

'92 (1992), 136-141

[26] 2M. Johnson. Superscalar Microprocessor Design.

(Prentice-Hall, Englewood Cliffs, New Jersey, 1991).

[27] N. P. Jouppi. The nonuniform distribution of

instruction-level and machine parallelism and its effect

on performance. IEEE Transactions on Computers C-

38, 12 (December 1989), 1645-1658

[28] C. Leiserson, F. Rose, and J. Saxe, ―Optimizing

synchronous circuitry by retiming,‖ Proceedings of

the 3rd Caltech Conference On VLSI, pp. 87-116,

March 1983.

[29] N. Weaver, Y. Markovskiy, Y. Patel and J.

Wawrzynek, ―Post placement c-slow retiming for the

Xilinx Virtex FPGA,‖ Proceedings of the 11th ACM

http://www.bcs.org.uk/

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.7, December 2011

36

Symposium of Field Programmable Gate Arrays, Feb.

2003, pp. 185-194.

[30] R. Alverson, D. Callahan, D. Cummings, B. Koblenz,

A. Porterfield, B. Smith. The Tera computer system.

Proceedings of the 1990 International Conference on

Supercomputing, 1990.

7. APPENDIX
TABLE 4

Symbolic Instruction Set Architecture

Address Symbolic Instruction

0 pc ← 0

1 Fetch MAR← pc

2 IR ← M(MAR) ; pc ← pc+1

3 Decode I3 = 1? go to MEMREF

4 XC0 = 1? Go to CMA

5 XC1 = 1? Go to INCA

6 XC2 = 1? Go to DCA

7 go to HALT

8 CMA A ← Ā

9 go to Fetch

10 INCA A ← A+1

11 go to Fetch

12 DCRA A ← A-1

13 go to Fetch

14 MEMREF if XC0 = 1, LDSTO

15 if XC1 = 1, ADDSUB

16 if XC2 = 1, JUMP

17 AND MAR ← pc

18 Buffer←M(MAR), pc← pc+1

19 MAR ← Buffer

20 Buffer ← M(MAR)

21 A ← A & Buffer

22 go to Fetch

23 LDSTO MAR ← pc

24 Buffer ← M(MAR); pc ← pc +1

25 MAR ← Buffer

26 if I0 = 1 go to STO

27 LOAD Buffer ← M(MAR)

28 A ← Buffer

29 go to Fetch

30 STO M(MAR) ← A

31 go to Fetch

32 ADSUB MAR ← pc

33 Buffer←(MAR);pc← pc+1

34 MAR ← Buffer

35 Buffer ← M(MAR)

36 if I0 = , go to SUB

37 ADD A ← A + Buffer

38 go to Fetch

39 SUB A ← A- Buffer

40 go to Fetch

41 JUMP MAR ← pc

42 if I0 =0, go to JOZ

43 if I0 =1, go to JOC

44 JOZ if z=1 go to LOADPC

45 pc ← pc+1

46 go to Fetch

47 JOC if c=1 go to LOADPC

48 pc ← pc+1

49 go to Fetch

50 LOADPC pc ← M(MAR)

51 go to Fetch

52 HALT go to HALT

