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ABSTRACT 
The demand for high performance embedded processors, 

for consumer electronics, is rapidly increasing for the past 

few years. Many of these embedded processors depend 

upon custom built Instruction Ser Architecture (ISA) such 

as game processor (GPU), multimedia processors, DSP 

processors etc. Primary requirement for consumer 

electronic industry is low cost with high performance and 

low power consumption. A lot of research has been evolved 

to enhance the performance of embedded processors 

through parallel computing. But some of them focus 

superscalar processors i.e. single processors with more 

resources like Instruction Level Parallelism (ILP) which 

includes Very Long Instruction Word (VLIW) architecture, 

custom instruction set extensible processor architecture and 

others require more number of processing units on a single 

chip like Thread Level Parallelism (TLP) that includes 

Simultaneous Multithreading (SMT), Chip Multithreading 

(CMT) and Chip Multiprocessing (CMP). In this paper, we 

present a new technique, named C-slow, to enhance 

performance for embedded processors for consumer 

electronics by exploiting multithreading technique in single 

core processors. Without resulting into the complexity of 

micro controlling with Real Time Operating system 

(RTOS), C-slowed processor can execute multiple threads 

in parallel using single datapath of Instruction Set 

processing element. This technique takes low area & 

approach complexity of general purpose processor running 

RTOS. 
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1.  INTRODUCTION 

From the past few years, consumer electronic industry, toys 

to high end game consoles and from mp3 players to PDAs 

and Laptops, is growing with sky rocket speed. One of the 

primary requirements for these embedded systems is high 

performance with minimal silicon area cost. Most of 

consumer based embedded processors require custom built 

ISAs in contrast to general purpose processors. The ISA of 

a general purpose processor is designed to meet the 

requirements in a variety of domains. So a general purpose 

processor is not suitable to meet the high performance 

requirement of application specific circuits. Thus 

Application Specific Instruction Set Processors (ASIPs) are 

the promising way to enhance the computation 

performance of consumer based embedded systems [7], 

[13]. Moreover cost and time to market is also much 

important for consumer electronics [6] and ASIPs allow 

high performance with automatic design even for high level 

architecture. It also `affects the cost as embedded 

applications are developed in huge quantity, a small 

decrease in amount effects a lot. ARM [1], a 32 bit reduced 

Instruction set architecture is a common example. 

During the last decade processor clock frequency was 

synchronous with performance i.e. faster processor means 

more computing power. During this, the target of most of 

the performance related research was single core 

processors. Within a few years, clock speed reaches up to a 

point where heat dissipation across the chip is at a 

dangerous level [2]. Thus performance with single 

processor reaches to its optimal limit. Then processor 

designers target to design multicore processors to enhance 

performance as theoretically adding additional core in a 

chip means double the performance. Some examples of 

multicore processors are Cell [3], MP211 [4], FR1000 [5]. 

Most techniques developed, during recent years, target 

multicore processors. 

Most of the performance enhancement techniques exploit 

parallelism within processors. Two types of parallel 

computation techniques are common within processors, 

Instruction Level Parallelism (ILP) [10], [11] and Thread 

Level Parallelism (TLP) [12]. The basic idea behind both is 

same because both identify independent instructions and 

utilize parallel to compute in parallel. Neither of the 

technique is promising to adopt dynamically hardware 

changes. 
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Instruction Level Parallelism exploits parallel execution 

by utilizing independent instructions within a program such 

as memory load/store, addition/multiplication instructions 

etc. Normally ILP architectures are transparent to users. 

One primary difference between ILP processor and normal 

RISC based machine is that ILP processors require more 

hardware resources to perform parallel execution. There are 

two most common processor architectures that exploit 

instruction level parallelism, VLIW [25] processors and 

Superscalar processors [26]. Superscalar processors are 

sequential architectures that in which program do not 

provide any explicit information about parallelism. So 

program does not know the presence of dependencies 

present in a program rather it is the task of hardware to find 

the dependencies between instructions. The primary issue 

in superscalar processors is how to execute instructions in 

parallel. As the superscalar processors support sequential 

execution, rather to execute multiple instructions in single 

clock cycle, it is more convenient to increase the clock 

speed up to number of instructions to execute in parallel 

and issue only one instruction in a single clock cycle. In 

superscalar processors, it is known as super pipelining [27]. 

One major problem in superscalar processors is 

unpredictable branches that reduce the level of 

performance. This problem can be solved to some extent 

with speculative execution in which conditional branches 

are executed first before their control dependencies 

branches are issued. Many architectures are designed to 

support speculative execution [13], [14] but hardware can 

only support a small amount of parallelism up to fetched 

instructions. The drawback of superscalar processors is the 

increase in architecture complexity. Because dependence 

check, branch predictor, reorder buffer introduce makes 

architecture complex. 

 

VLIW architecture also exploits instruction level 

parallelism. In order to exploit parallelism system must 

have knowledge about the independent instructions present 

in the program. In spite of superscalar processors, in VLIW 

processors the compiler identifies the presence of 

parallelism within a program and forward the information 

to the hardware about the instructions that are independent 

to each other. Now the hardware does not need to 

investigate about dependencies. Hence the scheduling and 

dependence check is moved from hardware level to 

compiler level so there is a great affect on circuit 

complexity. VLIW fetches only one instruction per clock 

cycle that consists of different operations for different 

processing units to execute in parallel. ILP supports out of 

order execution in which instructions are rearranged to 

reduce the interference between computation and memory 

reference instructions. Two types of instruction scheduling 

exist in ILP processors, Static ILP scheduling architectures 

and Dynamic ILP scheduling architectures. In static 

architecture scheduling is not performed at run time 

because processor assume that compiler already schedule 

the instructions and instructions are issued in the same way 

as they come to machine program [19],[20]. In dynamic 

scheduling is performed at run time using dedicated 

hardware. But the performance of ILP processors is limited 

to the number of independent instructions present in a 

program. To enhance the performance of ILP design, there 

must be more independent instructions in a program that 

can be executed in parallel. 

Simultaneous Multithreading (SMT) processors, in 

contrast to ILP allow multiple independent threads to issue 

multiple processing units. The main purpose of SMT 

architecture is the maximum processor utilization in the 

presence of long memory latencies and limited parallelism 

present in a single thread. SMT exploits some features of 

superscalar processors such as to issue multiple instructions 

and also have hardware support to fetch instructions from 

multiple threads. Thus SMT is a technique which supports 

the multiple instructions from multiple threads at the same 

time, hence exploits both ILP and TLP. In SMT processors 

parallel threads come from multithreaded, parallel program 

or from independent multi programs. And instruction level 

parallelism obtains from a single thread or from a single 

program. In [9], SMT processor’s working is discussed and 

how they are different from other multithreaded 

architectures and superscalar processors. There are two 

types of wastes in any type of processor design, horizontal 

waste and vertical waste. Horizontal waste occurs when all 

issue slots in single cycle are not filled with instructions. 

The amount of Horizontal waste is the number of empty 

slots. The Vertical waste occurs when there is no 

instruction issued to any issuing slot i.e. all slots is empty 

as shown in the figure 1. 

 

Normal superscalar processors exploit instruction level 

parallelism. They execute multiple parallel instructions 

from a single thread i.e. instructions that are independent to 

each other. Thus the performance of superscalar processors 

certainly depends upon the number of independent 

instructions present in a thread. On the other hand 

multithreaded processors fetch all instructions from same 

thread in a single cycle. In next clock cycle they switch the 

context to new thread and now execute instructions from 

this new thread. The primary effectiveness of multithreaded 

processors is that these can tolerate memory latencies thus 

reducing the vertical waste but they cannot reduce the 

horizontal waste because they still depend on the 

independent instructions present in a thread to reduce 

horizontal waste. 

X

X X X

X X

X
X X X X

              Horizontal Waste = 9 slots 

Vertical Waste = 12 slots

X         Full Issue Slot

      Empty Issue Slot

Issue Slots

  
  
  
  
  
  
  
C

y
c

le
s

Fig.1. Horizontal and Vertical waste representation 

 

Despite all these, SMT processors [24] select instruction 

from multiple threads in every clock cycle. It schedules the 

on chip resources in way to maximize the hardware 

utilization. If more number of independent instructions is 

available, exploits instruction level parallelism otherwise to 
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utilize hardware instructions from different cycles are 

selected as shown in the figure 2. 
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Fig. 2. (a) Superscalar processor behavior, (b) 

multithreaded processor and (c) simultaneous 

multithreaded processor 

 

In the second section we will discuss some previous work 

done to design processors especially for embedded 

applications. In third section we described our proposed 

model and effects of area and throughput. 

2.  RELATED WORK 

There is a lot of work have been evolved to increase the 

performance of processor. There is large gap between 

processor’s computation speed and memory speed. This is 

the primary reason in degrading the performance of 

embedded systems. Many techniques have been evolved to 

reduce this gap. Pre fetching, multilevel caches, compiler 

optimization are some of these techniques. To enhance the 

computation performance of embedded systems, ILP and 

TLP are two most used approaches. Different models have 

been proposed to enhance performance by exploiting these 

two techniques. Some of these models are discussed here. 

An architecture is proposed in [16] that exploits both TLP 

and ILP. To exploit TLP, the design contains much thread 

processing units and each of these processing units its own 

program counter, cache memory to perform speculative 

execution and instruction execution path. It can execute 

multiple instructions from different threads. But there is a 

large area because of multiple caches, program counters 

and ALUs. 

Another model proposed in [17], [19], known as EPIC. 

This model is an enhancement of VLIW but also exploit 

some features of superscalar processors. Intel’s IA-64[18] 

was first commercially available ISA that was based on 

EPIC. 

SMTA, proposed in [21], consists of a number of thread 

slots and a thread dispatcher. Each thread slot has its own 

program counter, instruction and decode unit. The 

execution results are transferred to another thread if 

required through communication unit. 

Polymorphous Trips Architecture [22] is a single processor 

core model with a memory system. It supports ILP. 

Normally it executes instruction in a serial manner but 

when parallelism is available, it divides itself logically into 

multiple processing units. But still to exploit parallelism it 

required more resources. 

A stream processor [23] is another approach to enhance 

performance of embedded systems. Stream processors 

consist of clusters of functional units. They exploit ILP 

within a cluster and Data parallelism (DP) [15] between 

clusters. Each cluster consists of a number of ALUs and 

use VLIW format by microcontroller. Stream processors 

also exploit Data Parallelism, a number of data streams that 

require the same operation to be performed. 

3.  C-SLOW PROCESSOR DESIGN 
Basic concept of C-slow technique is briefly discussed 

first. C-slow is a technique that is used to improve the 

performance especially when there is feedback loops in the 

design. In the presence of feedback loops, processor cannot 

exploit the parallelism because next computation is only 

possible when results of previous computation are 

available. Hence in these cases we cannot exploit ILP or 

TLP by simply introducing pipelining registers or using 

multiple processing units.  C-slow was proposed by 

Leiserson et al. [28] to enhance computation performance 

in the presence of feedback loops. Figure 3 illustrates the 

difference between conventional pipelining and C-slow 

retiming [29]. 
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Fig. 3. (a) A simple feed forward circuit, (b) After 

pipelining of (a), (c) A circuit with feedback path, (d) 

After C-slow, (e) After retiming of (d) 

As shown in the figure 3 (a) represents a simple feed 

forward circuit having critical path 4. After pipelining, 

critical path is reduced to 2 as shown in (b). A circuit with 
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feedback path is represented in (c). Here feedback is the 

critical path. After C-slow and retiming circuit is 

represented in (d) and (e) respectively. Now in every clock 

cycle, the circuit can process two independent 

computations by taking data from two independent streams. 

Hence the input register needs not to wait for the feedback 

computation results to fetch another input. From above 

described figure, C-slow is technique that enhances 

throughput by replacing each register with C number of 

registers. And C numbers of computations are possible 

simultaneously. 

C-slow Processor Architecture consists of registers such ac 

program counter address register etc. are replaced by C 

registers as shown in figure 4. All other architecture 

remains same. The biggest complications in architecture are 

the implementation of various types of memories. The first 

type provides the C-slow semantics complete 

independence, where a thread has a complete independent 

view. This is applicable to the register file and state 

registers. In C-slow design, the register file is increased C 

times. 

Program Counter 0

Program counter C

Mux

Address Register 0

Address Register C

Instruction 
Cache

Data 
Cache

ALU

C times Register File

 
 

 

Fig. 4.  A generic C-slow processor Architecture 

 

A hardware thread counter is used to select the group of 

registers which is being used, so that each can see its own 

set of registers and all read and writes of different threads 

are going to different locations.  

The second type of memory is completely shared such as 

main memory and cache memory. Normally these 

memories are placed out of C-slow portion. There are two 

ways to access to access cache memory. If the cache is 

physically addressed, to enhance the throughput just 

required pipeline the cache so that interlocked read/write 

instructions has time to be completed. In contrast, when 

virtually addressed caches are used, they require some way 

so that one thread cannot access the memory of other thread 

and require a record to be maintained for virtual to physical 

address mappings to ensure coherency between threads.  

Third one is dynamically shared in which a hardware 

thread ID or software thread context ID is tagged to each 

thread. This is best approach for branch predictors and 

similar caches. These types of memories do not need to be 

increased in size. 

C-slow as Multithreading are elaborated. There are 

numerous architecture proposed to exploit multithreading. 

All these architectures share same idea: increasing system 

throughput by executing multiple threads simultaneously. 

These architectures can be categorized into four classes: 

always context switching (Heap and Tera [30]), SMT, 

context switching on event and interleaved multithreading. 

The primary idea of C-slow retiming is applicable to highly 

complex designs such as microprocessors. In those cases, it 

is not simply a matter of adding registers and balancing 

delays. The changes in the design are comparatively small 

than the benefits. The C-slow design produces a simple, 

statically scheduled, high clock rate, multithreaded design, 

similar to interleaved multithreaded design. C-slow 

processor architecture alternates between fixed numbers of 

threads in a round-robin manner creating the illusion of a 

multiprocessor system. C-slowing needs three design 

changes, increasing register file size and modifying TLB, 

changing cache interface, and modifying interrupt routines. 

To create the illusion that each thread is processing on a 

separate processor i.e. multiple threads are executing on 

multiple processors, each thread has its own translational 

memory. This can be performed by increasing size of TLB 

by C times so that each thread accesses its own set. 

4.  SIMULATION RESULTS 

In order to check the performance of proposed C-slow 

processor over simple processor, a simple instruction set 

architecture is designed as given in appendix. The given 

ISA is implemented on SPARTAN 3 FPGA to test the 

performance of C-slow processor against simple design. 

And check the results of execution of multiple threads from 

different applications. When C number of threads is 

executed on a simple pipelined design, total number of 

clock cycles is equal to the sum of clock cycles required to 

execute C number of single threads. When the same test is 

performed on C-Slow-based design, total number of clock 

cycles required to execute C number of threads is equal to 



International Journal of Computer Applications (0975 – 8887) 

Volume 36– No.7, December 2011 

34 

the thread which requires maximum clock cycles. Fig.5 

represents the execution results of one; two and three 

threads respectively on simple pipelined design and C-slow 

based design.  

 
 

Fig. 5 Comparison of number of clock cycles vs number 

of threads  
 

Table 1 represents SPARTAN 3 FPGA device utilization 

summary of simple processor while fig.7 shows brief 

summary of same device utilization when 3-slow design is 

implemented. 

 

Table 1 Device Utilization Summary of Simple 

Processor Design 

Logic Utilization Used Available Utilization 

No. of slice registers 2107 26,624 7% 

No. of 4 input LUTs 1444 26,624 5% 

Logic Distribution    

No. of occupied slices 1778 13,312 13% 

No. of slices containing 

only related logic 

1778 1778 100% 

No. of slices containing 

only unrelated logic 

0 1778 0% 

Total No. of 4 input 

LUTs 

1454 26,624 5% 

No used as logic 1444   

No used as a route-

thru 

10   

No of bonded IOBs 9 333 2% 

No. of GCLKs 2 8 5% 

 

Table 2 Device Utilization Summary of 3-Slow 

Processor Design 

Logic Utilization Used Available Utilization 

No. of slice registers 4,270 26,624 16% 

No. of 4 input LUTs 3,166 26,624 11% 

Logic Distribution    

No. of occupied slices 3,708 13,312 27% 

No. of slices containing 

only related logic 

3,708 1778 100% 

No. of slices containing 

only unrelated logic 

0 1778 0% 

Total No. of 4 input 

LUTs 

3,167 26,624 11% 

No used as logic 3,167   

No used as a route-

thru 

1   

No of bonded IOBs 10 333 3% 

No. of GCLKs 2 8 25% 

After testing the simple microprogrammed FSM system 

and 3-slow on microprogrammed FSM system, comparison 

of different efficiency parameters between the said systems 

can be observed in table 3. 

 

Table 3 Different Efficiency Parameters Comparison 

between Simple and 3-slow Microprogrammed FSM 

Efficiency 

Parameters  

Microprogrammed 

FSM 

3-slow 

Microprogrammed 

FSM 

Minimum 

period 

29.976ns  11.558ns 

Minimum 

input arrival 

time before 

clock 

29.985ns 5.458ns 

Maximum 

Frequency 

33.360MHz  86.520MHz 

Maximum 

output 

required 

time after 

clock 

 7.165ns  7.165ns 

 

Hence from the simulation results, it was observed that C-

slowing is a promising technique to increase the 

performance of system especially when the system have to 

complete same task multiple times as in embedded systems. 

5.  CONCLUSION 

From all previous discussion, from introduction to 

simulation results, one thing that is clear that for consumer 

electronics especially embedded system designs, SMT is 

the most promising way to enhance the performance. We 

have discussed many techniques to implement the SMT 

with different proposed models. One thing that is common 

in all these that they enhance performance by increasing 

number of processing units such as arithmetic and logic 

unit (ALU), floating point unit (FPU), and others that are 

the primary cause to increase the area of the system. 

Most of embedded systems are area critical i.e. they require 

maximum performance with minimum area. To achieve 

this goal, we proposed C-slow processing technique. The 

most advantage of this technique, as discussed in 

simulation results, it use the available resources not from 

external resources and enhance the performance. From the 

simulation results, it is clear that 3-slow processor can 

compute 3 threads simultaneously i.e. producing the effect 

of three processing units are present in the design. 
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7. APPENDIX 
TABLE 4 

Symbolic Instruction Set Architecture 

Address  Symbolic Instruction 

0  pc ←  0 

1 Fetch MAR←  pc 

2  IR ←  M(MAR) ; pc ← pc+1 

3 Decode I3 = 1? go to MEMREF 

4  XC0 = 1? Go to CMA 

5  XC1 = 1? Go to INCA 

6  XC2 = 1? Go to DCA 

7  go to HALT 

8 CMA A ←  Ā 

9  go to Fetch 

10 INCA A ← A+1 

11  go to Fetch 

12 DCRA A ←  A-1 

13  go to Fetch 

14 MEMREF if XC0 = 1,  LDSTO 

15  if XC1 = 1,  ADDSUB 

16  if XC2 = 1,  JUMP 

17 AND MAR ← pc 

18  Buffer←M(MAR), pc← pc+1 

19  MAR ← Buffer 

20  Buffer ← M(MAR) 

21  A ← A & Buffer 

22  go to Fetch 

23 LDSTO MAR ← pc 

24  Buffer ← M(MAR); pc ← pc +1 

25  MAR ←  Buffer 

26  if I0 = 1 go to STO 

27 LOAD Buffer ←  M(MAR) 

28  A ← Buffer 

29  go to Fetch 

30 STO M(MAR) ← A 

31  go to Fetch 

32 ADSUB MAR ← pc 

33  Buffer←(MAR);pc← pc+1 

34  MAR ← Buffer 

35  Buffer ← M(MAR) 

36  if I0 = , go to SUB 

37 ADD A ← A + Buffer 

38  go to Fetch 

39 SUB A ← A- Buffer 

40  go to Fetch 

41 JUMP MAR ← pc 

42  if I0 =0, go to JOZ 

43  if I0 =1, go to JOC 

44 JOZ if  z=1 go to LOADPC 

45  pc ← pc+1 

46  go to Fetch 

47 JOC if c=1 go to LOADPC 

48  pc ← pc+1 

49  go to Fetch 

50 LOADPC pc ← M(MAR) 

51  go to Fetch 

52 HALT go to HALT 

 


