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ABSTRACT 

This paper presents a novel algorithm of an optimal power 

flow (OPF), which possible be used for real time applications. 

The proposed algorithm uses neural networks (NNs) to model 

the generator capability curves and set them as the output 

power constraints of the generators. In addition, it also uses 

NNs to replace an OPF based on the particle swarm 

optimization (PSO) method so as to run in real time. Also, in 

order for the proposed algorithm to be able to account for 

various load conditions, the statistic-fuzzy load clustering 

method is used to classify the loads based on the patterns of 

load curves. A similarity index is then defined to associate the 

similarity among different patterns of load distribution curves. 

This similarity index is also included in the training process of 

the final constructed neural networks. A 500 kV Java-Bali 

power system consisting of 23 buses is used as a benchmark 

system to validate the proposed NN-based OPF. The 

simulation results show that that the values obtained from the 

proposed algorithm are in great agreement with those 

calculated from the PSO-OPF.   

Keywords 
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1. INTRODUCTION 
The objective of an optimal power flow (OPF) is usually to 

minimize the line losses and the total fuel cost of the 

generating units, which are subjected to  active and reactive 

power, bus voltage, and line flow limits. Conventional 

solution techniques offer good results  but when  the search  

space is non- linear  and  has discontinuities,  these techniques 

become difficult  to  solve and do not always get the optimal 

solution [1]. To solve this problem, artificial intelligence (AI) 

methods have been widely adopted. The most popular 

intelligence optimization technique already applied were 

genetic algorithm, fuzzy, simulated annealing (SA), expert 

systems, neural networks (NNs), particle swarm optimization 

(PSO) and the hybrid of them [1-11]. Among these, PSO 

based methods are the ones recently received greatest 

attention due to its capability in achieving global optimal 

solutions [7].  

Normally, the constraints for a generator in an optimal power 

flow (OPF) are defined as rectangular constraints - curves 

only require two sets of inequality constraints (Pmin-Pmax, 

Qmin-Qmax) [12-13]. However, such constraints may 

overestimate the cost of the generation. Therefore, it is highly 

desirable to see how much cost would be reduced if the output 

power limits of generators are imposed by the actual generator 

capability curves (GCCs) [14]. A GCC faithfully describes the 

real and reactive power capabilities of a generator.  

We have developed a PSO-OPF [19], which takes GCCs into 

account. Although, PSO can ensure convergence and lead to 

accurate results, its computation time is usually long and not 

suitable for online application. It has been recognized that 

NNs can be used for online application [15]. Normally, the 

training process of an NN is done offline due to its intensive 

computation. However, once the training is completed, a 

trained NN, like a human brain, can associate a large number 

of output patterns corresponding to each input patterns in an 

extremely fast time. Moreover, we also use NNs to 

approximate the developed offline PSO-OPF model, which is 

possible to run in real time. The training method employed in 

this paper is constructive backpropagation [16]. In addition, in 

order for the NN-based OPF to account for  multitides of  load 

conditions, the statistic-fuzzy load clustering method [17] is 

used to classify the loads based on the patterns of load curves. 

A similarity index is defined to associate the similarities 

among different patterns of load curves. This similarity index 

is also included in the training process of NNs.  

The rest of this paper is arranged as follows: Section II 

describes the proposed solution procedures. Section III 

presents the simulation results of the proposed NN-based OPF 

method for the 500 kV Java-Bali power system, which 

consists of 23 buses. This system is the biggest in Indonesia, 

supporting the area of 7 provinces across Java and Bali 

Islands. The simulation results are verified with the offline 

PSO-OPF method. Finally, a conclusion is given in section IV 

2. METHODOLOGY 
This section describes the proposed solution procedure of our 

NN-based OPF method applicable for operation in real time. 

Fig.1 describes the flowchart of the overall solution 

procedures. As illustrated in the figure, the procedure consists 

of five stages, which will be described in details in the 

following subsections. 
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2.1 Stage 1: Construct GCC using NNs 
The first stage is to develop a NN model for a GCC. The data 

used in the training process of the NN are the sample points 

along a GCC provided by the generator manufacture’s data 

sheet [14]. The NN model consists of one input, one output 

and one hidden layer.To obtain the weighting coefficients of 

the NN, we first convert all the (P, Q) pairs into the polar 

forms, (R,) as shown in Fig. 2. Then, we set  as the input 

and R as the output. The weighting coefficients can 

consequenly be obtained via constructive back propagation 

method. Hence, one can easily restore a GCC for a given 

values of  as shown in Fig. 3 

START

Generator, 

network and load 

data 

Implement PSO-OPF with GCCs as 

the output power constraints of 

generators

Find out the Ps and Qs for various load 

conditions by means of PSO-OPF and 

record these data

END

Stage 1

Train NN-OPF: The weighting coefficients obtained 

during the training process of NN-OPF are uploaded to 

the real time model.

Construct GCCs using NNs

Cluster the load data  based on the 

patterns of load curves using 

Statistic-Fuzzy method

Stage 2

Stage 3

Stage 4

Stage 5

Fig. 1. Flowchart design of NN-OPF. 

Fig. 3 shows the similarity between the GCCs constructed by 

the NN and those from the data sheet. The main advantage of 

the NN-based model is that it is much easier to be included in 

an optimal power flow. In the next subsection, we will 

describe how such a model can be included in the PSO-OPF. 

2.2 Stage 2: Implement GCCs as the 

output power constraints of generators in 

PSO-OPF 
The overall flow chart in Fig. 4 summarizes the program 

algorithm of implementing a PSO-OPF with GCCs as the 

output power constraints of generators.  The generator, 

network and load data are first read into the program. The 

generator data are passed to stage 1 where the GCCs are 

constructed. Then generator data together with the network 

and load data are passed to the load flow program. However, 

before the load flow calculation is carried out, the initialized 

Ps and Qs for the PV buses need to be checked if they are 

within their GCC limits. The checking alogrithm can be 

summarized in Fig. 5. As seen from the figure, the initialized 

(P,Q) pairs are first converted into the (R, ) pairs. Then , is 

passed to the NN model, built in stage 1 to get Rref. R is then 

compared with Rref. If R is smaller than or equal to Rref, it 

means the initialized (P,Q) pairs are within the GCC limits 

(see Fig. 6); otherwise , R is set to Rref . After the checking 

process, the results are converted back to the corresponding P, 

Q values, which are needed for the load flow calculation. 

After the load flow calculation, one checks if the voltages at 

the PV buses are within the proper range, and the slack bus is 

within its GCC limits. If any of the two is violated, the values 

of P and Q are re-initialized as shown in Fig. 4. 
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Fig. 2 Data Pair for NN Learning θ and R 

Fig. 3. Comparison between GCC data sheet and GCC based 

on NN 

When the checking process is completed, optimization can be 

carried out via particle swarm optimization (PSO). PSO is an 

iterative process for allocating the global optimal solution by 

comparing the values of the objective functions for all 

possible combinations of feasible generation.  Equations (1)-

(3) describe the iterative formula of PSO. 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1                                                                       (1) 

𝑉𝑖
𝑘+1 = 𝑉𝑖

𝑘 + 𝑐1𝑟𝑎𝑛𝑑1 𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖
𝑘                              

+ 𝑐2𝑟𝑎𝑛𝑑2 𝐺𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖
𝑘                      (2) 

 

 = 𝑚𝑎𝑥 −
𝑚𝑎𝑥 − 𝑚𝑖𝑛

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
𝑖𝑡𝑒𝑟                                              (3) 
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𝑉𝑖
𝑘  = individu velocity i at iteration k 

   = weight parameter 

𝑐1 𝑐2 = acceleration coefisien 

𝑟𝑎𝑛𝑑1, 𝑟𝑎𝑛𝑑2= random value between 0 and 1 

𝑋𝑖
𝑘= individu position i at iteration k 

𝑃𝑏𝑒𝑠𝑡𝑖= The best position of individu i until iteration k 

𝐺𝑏𝑒𝑠𝑡𝑖= The best position of community  until iteration k 
𝑚𝑖𝑛 , 𝑚𝑎𝑥  = initial and final weight  

𝐼𝑡𝑒𝑟𝑚𝑎𝑥 = maximum iteration number 

𝑖𝑡𝑒𝑟 = number of current iteration 
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Fig. 4. Flowchart of PSO-OPF design 
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Fig. 5. Security check Algorithm. 

2.3 Stage 3: Find out the P and Q for 

various load conditions by means of PSO-

OPF and record these data 
Since the PSO usually takes a long time to converge, the PSO-

OPF is not suitable to be used for online applications. 

Therefore, we propose an NN model to replace the developed 

PSO-OPF for real time applications. In order for the NN-

based OPF to account for various load conditions in real time, 

we need to train our NN model for various load conditions 

offline. For example, Fig. 7 shows the load distribution curves 

for 6 different times in an hour across 23 buses. To have the 

NN-based OPF to account for these load conditions in real 

time, we will perform offline PSO-OPFs for these load 

conditions. The converged Ps and Qs are then recorded for the 

training process of the NN. To have the NN-based OPF to 

account for a multitude of various load curves, load clustering 

is used for improving the efficiency of the training process. 

Stage 4 describes in details how the load clustering is 

implemented 
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Fig. 6. Relationship between P,Q, θ, R and Rref 

 

Fig.7. Load distribution curves over a 23-bus system at 

different time 

2.4 Stage 4: Cluster the load data based on 

the patterns of load curves using statistic-

fuzzy method 
The recorded load data from stage 3 are enormous. To deal 

with them efficiently, we employ the concept of load 

clustering. The purpose of clustering is to place objects into 

groups such that objects in a given group have tendency to be 

similar to each other, and those in different cluster tend to be 

dissimilar. The similarity of any two load distribution curve 

can be measured by the similarity index. The similarity index 

is based on the cosine angle between the two load curve 

vectors [17] and is given by (4). 

𝑊𝑖𝑘 =
 𝑋𝑖𝑙𝑋𝑘𝑙

𝑛
𝑙=1

   𝑋𝑖𝑙
2𝑛

𝑙=1    𝑋𝑘𝑙
2𝑛
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                                                   (4) 
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𝑊𝑖𝑘  is the similarity index between the two load distribution 

curve vectors (load curve i and load curve k) 

𝑋𝑖𝑙  is normalized load curve i at node l   

𝑋𝑘𝑙 is normalized load curve i at node k   

 

Note that one needs to normalize the load curves before 

evaluating (4). For example if all the curves in Fig. 8 are 

normalized with respect to their corresponding peak values, 

these three curves will concide to one, as shown in Fig. 9. 

 

Fig.8. Example of three load curve surfaces in MW. 

The similarity relationship among all the load curves form a 

matrix whose elements are the similarity incices 𝑊𝑖𝑘  between 

two load curves. The diagonal 𝑊𝑖𝑘  are always 1 because the 

load curves are compared to themselves.  The off-diagonal 

𝑊𝑖𝑘  are between the value of 0 and 1. In order to 𝑊𝑖𝑘can used 

to cluster load curve, it needs to process in fuzzy system. The 

process of fuzzyfication usually uses triangle, trapezoids, or 

normal curve distribution. In this paper we used statistic 

equation (4) to process fuzzification. The fuzzy rule base used 

in this paper is min-max system and combined with equation 

(5).  

𝐹𝑊𝑖𝑘 =  𝑊𝑖𝑙

𝑛

𝑙=1

𝑊𝑘𝑙                                                                      (5) 

𝐹𝑊𝑖𝑘The nearness index between the two load curve vectors 

(load curve i and load curve k) after fuzzification process. 

𝑊𝑖𝑙  The similarity index between the two load curve vectors 

(load curve i and load curve l) 

𝑊𝑘𝑙The similarity index between the two load curve vectors 

(load curve k and load curve l) 

𝐹𝑊𝑖𝑘  is calculated using equation (5) but the product of two 

elements is replaced by taking the minimum one and the 

addition of two products by taking the maximum one. For 

load curves whose 𝐹𝑊𝑖𝑘are greater than 0.9, they are assumed 

to be one cluster. Inside each of the cluster, the average of all 

the load curve patterns are obtained in order to serve as a 

representative for that cluster. These representatives are used 

for computing the values of 𝐹𝑊𝑖𝑘 for new sets of load curves. 

2.5 Stage 5: Train NN-OPF: The weighting 

coefficients obtained during the training 

process of NN-OPF are uploaded to the real 

time model 
To have PSO-OPF to be able to run in real time, an NN is 

constructed to replace the PSO-OPF. The training process of 

NN requires 3 sets of input, and they are the total apparent 

power of the load, total active/reactive power of the load, and 

the nearness index (𝐹𝑊𝑖𝑘 ), As shown in Fig. 10. The 

activation functions [18] of the hidden layers were chosen to 

be tansig and logsig. The training method used was based on 

the constructive back propagation method [16]. 

 

Fig. 9. Same load curve surface in per unit of three different 

load curve in MM 
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Fig.10. NN-OPF Model (single) for the active power 

optimization. 

The range of the load variations can be very wide. If we only 

use one NN to account for all changes of the load, it may take 

a great number of neurons, and consequently a long time to 

train the NN. Instead, it is better to construct several smaller 

NNs working in parallel for different ranges of the loads as 

shown in Fig. 11. These NN have the same number of 

neurons. However, the weightings for each network may be 

different, and their values depend on its corresponding range.  

In this paper, 15 NNs were constructed because the load 

variation was ranged from 25% to 100%, and each NN is 

responsible for 5% range of the load. The number of hidden 

layer in each NN is three. The first layer consists of 11 

neurons, the second 25, and the third 25. 

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

Bus Number

M
W

LOAD CURVE

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bus Number

p
u
 (

%
)

LOAD CURVE



International Journal of Computer Applications (0975 – 8887) 

Volume 36– No.7, December 2011 

5 

3. SIMULATION AND ANALYSIS 
The system used for simulation is the 500 kV Java-Bali Power 

System (see Fig. 12). The cost function for each generator is 

shown in TABLE I. The network data are listed in the 

Appendix. The performance comparison between the NN- 

based OPF and the PSO-OPF can be seen in TABLE II. As 

seen from the table, the difference between NN-based OPF 

and PSO-OPF on the operation cost and power generation is 

0.16 % and 0.0%, respectively, which is very small. 
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 Fig.11. NN-OPF Model for Large Load Variation 

Table 1. Generator data 

UNIT CHARACTERISTIC FUNCTION 

OF GENERATOR 

PRODUCTION 

COST(RP/KWH) 

SURALAYA (1) 65.94𝑃1
2 + 395668. 05𝑃1

+ 31630.21 

0.138 

MUARA 

TAWAR (8) 
690.98𝑃2

2 + 2478064.47𝑃2

+ 107892572.17 

1.450 

CIRATA (10) 0 + 6000.00𝑃3 + 0 1.000 

SAGULING (11) 0 + 5502. 00𝑃4 + 0 0.917 

TANJUNG JATI 

(15) 
21.88𝑃5

2 + 197191. 76𝑃5

+ 1636484.18 

0.077 

GRESIK (17) 132.15𝑃6
2 + 777148. 77𝑃6

+ 13608770.9 

0.378 

PAITON (22) 52.19𝑃7
2 + 37370.67𝑃8

+ 8220765.38 

0.030 

GRATI (23) 533.92𝑃8
2 + 2004960.63𝑃8

+ 31630.21 

1.067 

 

 

Fig. 13 -20 show the optimization results of the P and Q of 

each generator by using the NN- based OPF and PSO-OPF. 
Figs. 13, 15, 17, 18 and 20 show that the values obtained by 

these two methods are almost identical. For Generator 

Saguling (Fig. 16), the values of Qs are almost identical and 

those of Ps are slightly different. On the other hand, for 

Generator Muara Tawar and Paiton (Figs. 14 and 19) the 

differences between these two OPF are observed for the value 

of Q. Their difference can be improved by  

1. Including more data for NN training. 

2. Increasing the threshold value during the process of 

clustering the load curves. 

Note that the optimized P and Q values of Generators Cirata, 

Saguling, Tanjungjati, Gresik, Paiton and Grati (Figs. 15, 16, 

17, 18, 19 and 20) exactly coincide with the GCC. Operation 

under this condition is still very safe because GCCs used in 

our simulation include security factors. 
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Fig. 12.  500 kV Java Bali power system 

 
Fig.13.  NN-OPF and PSO-OPF at Suralaya Generator 
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Table 2. Cost generation 

  NN-OPF OPF-PSO 

  P(MW) Q(Mvar) Cost (Rp/Kwh) P(Mvar) Q(MW) Cost (Rp/Kwh) 

Suralaya (bus 1) 1531.22 1012.57    760 491 673.1 1519.46 1145.83 753 473 072.9 

Muara tawar (bus 8) 1040.00 803.08 3 432 443 589.0 1040.00 586.93 3 432 443 589.0 

Cirata (bus 10) 787.27 371.89        4 723 602.4 779.82 391.93 4 678 905.3 

Saguling (bus 11) 648.00 464.48        3 565 305.9 670.51 458.12 3 689 167.3 

Tanjung jati (bus 15) 743.31 432.26    160 299 920.6 748.42 428.88 161 475 023.8 

Gresik (bus 17) 392.71 294.73    339 180 169.7 392.21 294.94 338 740 163.4 

Paiton (bus 22) 4728.85 1177.88 1 352 013 925.0 4721.22 1417.70 1 347 965 310.0 

Grati (bus 23) 149.99 670.98   399 294 066.6 149.71 671.01 398 695 696.8 

Total Generation 10021.35     10021.35     

Total Cost (Rp/Kwh)     6 452 012 252.3     6 441 160 928.5 

 

 

Fig.14. NN-OPF and PSO-OPF at Muara Tawar Generator 

 

Fig.15. NN-OPF and PSO-OPF at Cirata Generator 

 

Fig.16. NN-OPF and PSO-OPF at Saguling Generator 

 

Fig.17. NN-OPF and PSO-OPF at Tanjung Jati Generator 
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Fig.18. NN-OPF and PSO-OPF at Gresik Generator 

 

Fig.19. NN-OPF and PSO-OPF at Paiton Generator 

 

Fig.20. NN-OPF and PSO-OPF at Grati Generator 

4. CONCLUSION 
An NN-based OPF is proposed in this paper. The proposed 

OPF include three unique features. Firstly, instead of using 

the rectangular constraints, the more realistic GCC constraints 

are used in the algorithm. To overcome the mathematical 

difficulty in modeling a GCC, we used NN to model it. 

Secondly, to be able to account for various load conditions, 

the statistic-fuzzy load clustering method is used to classify 

the loads based on the patterns of load curves. A similarity 

index is then defined to associate the similarity among 

different patterns of load distribution curves. Thirdly, the 

proposed overall NN is trained to imitate the PSO-OPF. 

Therefore, the results, obtained by the proposed OPF, are very 

close to those by the PSO-OPF.  
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7. APENDIX 
Table 3. Network data 

From 

Bus. 

To 

Bus 

R 

(pu) 

X  

(pu) 

B 

(pu) 

1 2 0.0006264960000 0.0070087680000 0 

1 4 0.0065132730000 0.0625763240000 0.005989820 

2 5 0.0131333240000 0.1469257920000 0.003530571 

3 4 0.0015131790000 0.0169283090000 0 

4 5 0.0012464220000 0.0119750100000 0 

4 18 0.0006941760000 0.0066692980000 0 

5 7 0.0044418800000 0.0426754000000 0 

5 8 0.0062116000000 0.0596780000000 0 

5 11 0.0041113800000 0.0459950400000 0.004420973 

6 7 0.0019736480000 0.0189618400000 0 

6 8 0.0056256000000 0.0540480000000 0 

8 9 0.0028220590000 0.0271129540000 0 

9 10 0.0027399600000 0.0263241910000 0 

10 11 0.0014747280000 0.0141684580000 0 

11 12 0.0019578000000 0.0219024000000 0 

12 13 0.0069909800000 0.0671659000000 0.006429135 

13 14 0.0134780000000 0.1294900000000 0.012394812 

14 15 0.0135339200000 0.1514073600000 0.003638261 

14 16 0.0157985600000 0.1517848000000 0.003632219 

14 20 0.0090361200000 0.0868146000000 0 

15 16 0.0375396290000 0.3606623040000 0.008630669 

16 17 0.0013946800000 0.0133994000000 0 

16 23 0.0039863820000 0.0445966560000 0 

18 19 0.0140560000000 0.1572480000000 0.015114437 

19 20 0.0153110000000 0.1712880000000 0.016463941 

20 21 0.0102910000000 0.1151280000000 0.011065927 

21 22 0.0102910000000 0.1151280000000 0.011065927 

22 23 0.0044358230000 0.0496246610000 0.004769846 

 


