
International Journal of Computer Applications (0975 – 8887)

Volume 36– No.6, December 2011

25

Identifying the Dissimilarities based on Working of

Programs among Versions in DVCS

(Distributed Version Control Systems)

Laika Satish

Faculty of Computing and Information technology,

King Abdul Aziz University,

Rabigh, Saudi Arabia

ABSTRACT
In this paper, one of the most important phases of Software

development that is versioning, which is done through version

control systems, is being presented. The current methodologies

used in distributed version management, some aspects needed in

the working of Version Control Systems, the prior work that is

done in this field of technology are discussed. A proposed

algorithmic approach for knowing the dependency of linkages of

classes, interfaces and methods in object-oriented technology

amid versions of a program is also presented. The aim of this

approach is to decrease errors and inaccuracies during the phase

of software development in distributed version control systems.

General Terms

Software engineering, Software maintenance, Software

configuration Management.

Keywords

Tracking repository changes, Differences based on working

aspects of programs.

1. INTRODUCTION
Software development and maintenance is a process that is

performed by a group of developers. Regarding cost, the

requirement for tools and methods to aid in the software

development arouses naturally [3]. The high cost of software

maintenance makes it important to look into the inefficiencies

and make new methods to improve the effectiveness of the

maintenance process. This requires proper look through into the

entire application, which are stored in repositories called version

control systems.[2]

Version Control System (VCS) is a centralized place, which

stores source code of the application part of the software system.

A VCS helps to synchronize the work of many developers

working at the same time on the product. The VCS also

maintains a complete history of changes in the code of the

software system. Every change is represented as a special record

in the VCS called a check-in. For every check-in, the VCS

stores the date when each change is made, the developer name

who made the code change, a description of the change, the list

of changed source files, and the actual changes in source code in

the form of a textual diff. To every check in, a check-in ID is

allocated. Each check-in changes one or more source files. To

differentiate between different versions of these files, version

numbers are allotted.

Thus the VCS, is very important source of information in the

project lifecycle. They control data on source files, functions,

check-ins, bug records, and entire team of developers.

Distributed revision control (DRCS) follows a peer-to-peer

approach, as opposed to the client-server approach of centralized

systems[17] .For example, VCS ensures that the name of the

developer is always there in the check-in.

Thus through VCS, most of the problems that are encountered

are solved but working out of these changes are limited in

object-oriented programming. This technique helps us to

identify object-oriented features and, works on comparing

changes based on functionality of object-oriented programs.

Distributed computing means, where programs are split among a

grid of machines. Distributed version control gives importance

to on sharing changes; every change has a unique id[1].

2. THE MAINTENANCE PHASE OF

SOFTWARE DEVELOPMENT
The maintenance phase mostly involves change management

also referred to as software configuration management (SCM).

It is like an umbrella activity that is done during the software

process. Its aim is to increase productivity by decreasing

inaccuracy and errors during software development [18].

New market demands require changes in software requirements

or new business rules may come into focus demanding changes

in functionalities in software.[10]

Even if software tools have the potential to progress in

maintaining the quality of software, in a large organization this

can be an expensive scheme Thus, Even cost or time constraints

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.6, December 2011

26

may need a redefinition of the product. In Centralised systems, it

is a central repository where developers can check in and check

out, but the centralised systems does not achieve the required

mark for merging and branching changes .In distributed systems,

object oriented programs may be split into multiple portions for

example an interface may be on server 1 whereas the class

which implements that interface may be on server2.distributed

systems make branching and merging more manageable in

comparison to centralized version control systems .

Software engineering involves analysis of multiple versions of a

program. The development team needs to Store data in form of a

tree, which can be easily understood, have access to the entire

source code. Developers should be able to work in synchronized

manner at the same time on the same files (Users edit their

working copy locally), keep track of different versions of the

same file (history)

Thus, designed for concurrent editing and to store history

information. Thereby granting read/write access to the stored

data. For all these purposes a repository is used which is like a

centralized place to store data:[4]

Through a repository, a programmer can see a version of the

program at any time in the history of the project and know how

those files looked like at the time. He can also see the latest

version of the file from the repository.

3. THE CURRENT METHODOLOGY OF

VERSION MANAGEMENT
In the process of software engineering, information about

changes between different versions of a program is needed in

each step of the software lifecycle. For these there are many

algorithms currently. Differencing algorithms give information

about the places of the program where changes have being made

[11].

Changes anywhere in the application have an impact on

software engineering tasks. For example, whenever there is a

code modification. Testing needs to be redone, which effects the

estimation of time and cost of the software programs. Huge

projects on which many developers are working need a Version

Control System. There are many tools available that give us the

changes between n number of files like diff, SCCS (Source

Code Control system for unix), RCS (RCS also for unix), CVS

(Concurrent version system for windows). In distributed we

have systems like GIT, INFOQ, Mercurial, Bazaar.

A Version Control System does the following:

Long-term undo.

Suppose we made a change a year ago, and it had a bug we want

to go back to the old version, and check what changes were

made on that day.

Branching and merging.

During check in we can merge our work back into the common

area.

Working Set/Working Copy: the local directory of files, where

we make changes.

Trunk/Main: The primary location for code in the repository.

The code is like a family tree

 — The trunk is the main line.

 Actions in VCS

Add: Put a file into the version control system for the first time,

i.e. start using it with Version Control.

Revision: What version a file is on (v1, v2, v3, etc.).

Head: The latest revision in the VCS.

Check out: Download a file from the vcs.

Check in: Upload a file to the VCS.

 The file gets a new revision number, and developers can “check

out” the latest one.

Checkin Message: A short message describing what was

changed.

Change log/History: A list of changes made to a file since it is

created.

Update/Sync: Synchronize your files with the latest from the

VCS.

Revert: Throw away the local changes and reload the latest

version from the repository.

Advanced Actions

Diff/Change/Delta: Finding the differences between two files.

Merge (or patch): Apply the changes from one file to another,

to bring it up-to-date.

Resolve: Resolving the changes contradicting each other and

 checking in the correct version.

Locking: giving access control to a file so nobody else can edit

it unless it is unlocked.

Check out for edit: Checking out an “editable” version of a file

[13].

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.6, December 2011

27

4. THE NEED OF VERSION

MANAGEMENT BASED ON

FUNCTIONALITY
The aim of the tools used in version management is to collect

information about the application spread in these different

sources and give the functionality needed by the developer in its

current state or intermediate states that the developer requires in

each step of software engineering, just relying on syntactic

differences in object oriented programs does not go well for

software developers. [14]

In this paper, I present a technique for comparing programs in

objected oriented disciplines in distributed architecture that

identifies differences based on functionality between n versions

of the program.

Thus, I present an algorithm that acquire information from a

version control system and track changes based on functionality

This algorithm allows retrieving information on code

integrations not only for recent code changes, but for huge

amounts of versioned data too.

Given two lines of code, A and B, i.e. if coupling exists B must

change behavior only when A is changed.

"Functional changes" refer to source code changes, or run-time

results? It refers to explicit changes in working - i.e. the source

code. [17]

These functional program changes are limited to OO

programming.

When we manage changes instead of managing versions,

merging works better, and therefore, you can branch any time

your organizational goals require it, because merging back will

be a piece of cake. [19]

Fig.1

interface I1 {

 abstract void test(int i);

}

interface I2 {

 abstract void test(String s);

}

public class Example1 implements I1, I2

{

 public void test(int i) {

 System.out.println(i);

 }

 public void test(String s) {

 System.out.println(s);

 }

 public static void main(String[] a) {

 Example1 t = new Example1 ();

 t.test(3);

 t.test("Course code COCS 202");

 }

}

interface I1 {

 abstract void test1(int i,int j);

}

interface I2 {

 abstract void test(String s);

}

class Example2

{

 void show(int a,int b)

 {

 System.out.println("Lecture and lab credits

units are "+a +" "+b);

 }

}

public class Example1 extends Example2 implements I1, I2

{

 void show(int a,int b)

 {

 int TotalCredits=a+b;

 System.out.println("TotalCredits are "+TotalCredits);

 }

 public void test1(int i,int j) {

 System.out.println(i);

 System.out.println(j);

 }

 public void test(String s) {

 System.out.println(s);

 }

 }

 public static void main(String[] a) {

 Example1 t = new Example1 ();

 t.test1(3,2);

 t.test("Course code COCS 202,COCS 203");

}

}

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.6, December 2011

28

5. THE PROPOSED ALGORITHMIC

APPROACH FOR KNOWING THE

DISSIMILARITIES BETWEEN VERSIONS

BASED ON FUNCTIONALITY

I present a small example here as shown in fig 1. implemented

in ASP.net.There are 2 versions of the same file .in file 1, There

are 2 interfaces „I1‟ and „I2‟ and a class „Example1‟ which has 2

methods from the interface and the implementation of these

methods.

In version 2, we have the same 2 interfaces I1 and I2 with the

deletion of method test in interface I1 and addition of a new

method test1, which takes 2 parameters of int datatype. We also

have a new class called Example 2 which also has a method

named show and the implementation of the method .We have

the same class Example 1 which now extends Example 2 and

implements the interface methods and also has methods from the

parent class Example 2.

Consider in case of huge applications, new developers may

replace old ones .If they want to know the functionality between

these versions other than just semantic differences, they need

something more in version control systems.

So, I present the following method, which will take

Input: checked in versions V1, V2…VN of the application in the

development trunk in the servers s1 ….sn

Return: dependency of classes (parent and child classes),

methods, interfaces in each version in the development trunk in

the server‟s s1 ….sn

Begin

For each checked in version V1… VN in the trunk

 Sort v [] in the ascending order and add it in a stack.

End

For each file f in v []

Compare classes in each file f

Locate newly added and removed classes (parent classes and

child classes), interfaces, and methods in each version.

Check for methods common in each class in the versions /*this

will give us information about the changes in each method */

Check for semantic differences in each class using the diff tool.

End

 Construct a graph in which each vertex may correspond to a

parent class or a child class or an interface or a method and each

edge will correspond to flow of dependence between each other

or with the main class existing on server‟s s1 ….sn.

Mark each edge in the proper order with an ordering number.

For every edge traversed, make a string format, which consists

of the ordering number on the start point, ordering number on

the end point, edge value, and serverId.

Hash the value coming from the above step.

Return the set of hash values /* which help us to know the

dependency of each class and methods in these classes. */

6. COMPARATIVE STUDY OF

EXISTING TECHNIQUES AND

EXPERIMENTAL RESULTS OF THIS

APPROACH
Apiwattanapong et al. came up with the CalcDiff algorithm,

which works, on the behaviors of object-oriented programs. For

this they used ECFG‟s (Enhanced Control flow graphs) in

centralized version control systems but it doesnot show the

differences based on working of programs. Thomas Horwitz and

Susan Reps came up with an algorithm, which would make a

program into slices evaluate these two program slices. This

algorithm works on dependence graph of slices of the program.

We also have many semantic differencing algorithms like cdiff

and jdiff. Some version control systems like gits donot work

good for windows. Mercurial also is complicated for beginners.

Bazaar is the topmost distributed version control systems but

lacks this approach. So this approach gives the method linkages

and changes in detail rather than just hash numbers and would

be easy for a beginner to understand. This approach can be used

for very huge projects.

7. EXPERIMENTAL RESULTS
I made a file comparison between 2 revisions and tested my

implementation .The outcome gives us the line numbers of the

2nd revision about where all changes are made and also shows us

the textual changes among both the revisions .It gives us the

total number of lines also for each, class Example1, Example2

interface I1, I2 in both the revisions .For example, if class

Example2, Interface I1, Interface I2 all exists on a different

server it shows that Example 1 on server # extends Example 2

on server # implements interface I1 on server # and I2 on

server#. The method differences are shown in both the revisions

based on the set of hash values returned by the algorithm.

Described below is the 2nd revision.

void show(int a, int b) exists in class Example 2 on server #

Method signature exists in interface I1 on server#=False

Method signature exists in interface I2 on server#=False

Method extended from class Example 2 on server#=True

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.6, December 2011

29

 void test1(int i,int j) exists in class Example 1 on server #

Method signature exists in interface I1 on server#=True

Method signature exists in interface I2 on server#=False

Method extended from class Example 2 on server#=False

void test(String s) exists in class Example 1 on server #

Method signature exists in interface I1 on server#=False

Method signature exists in interface I2 on server#=True

Method extended from class Example 2 on server#=False.

All the method hash numbers are not the same in both the

revisions. It also gives us the number of methods in revision 1

and 2.

Total number of methods in revision1=#

Total number of methods in revision2=#

8. CONCLUSIONS
In this approach, a way is being illustrated for knowing the

dependency of classes on interfaces or parent classes.

We represent the changed information in a way to help

programmers deal with changes in the applications in the

version control system. This approach will also help the

programmers to write changes in a structured way. Handling

comparisons only at the semantic level is not sufficient for

maintaining very large projects.

9. REFERENCES
[1] Ian Clatworthy, Distributed version control systems why and

how, Canonical.

[2] Sparx Systems, 2010,Version Control Best practices for

enterprise architect.

[3] Prof.Stafford, Department of computer Science, Tufts

University, Software Maintenance as part of the software

lifecycle, software Engineering.

[4] Introduction to Distributed version control Better Explained,

2007.

[5] Takafumi ODA†∗, Nonmember and Motoshi SAEKI†a),

Member, 2006,Meta Modeling based version control

system for software diagrams, IEICE TRANS. INF. &

SYST.

[6] Wuu Yang, Susan Horwitz and Thomas Reps, 1989,a new

program Integration algorithm, Computer Sciences

Technical report.

[7] Hung-Fu Chang, Audris Mockus, University of Southern

California. University Park Campus, Avaya Labs Research,

Constructing Universal version History.

[8] James J Hunt, Kiem-Phong Vo and Walter F Tichy,

University of Karlsruhe, Germany, An empirical study of

delta algorithms.

[9] Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael

Pilato, Version Control with Subversion

[10] Alexander Tarvo, Brown University, Thomas Zimmerman,

Jacek Czerwonka, An integration resolution algorithm for

Mining multiple branches in version control systems.

[11] Taweesup Apiwattanapong, Alessandro Orso, Mary Jean

Harold differencing technique and tool for object oriented

programs.

[12] David L. Atkins, Thomas Ball, Todd L. Graves_ and Audris

Mockus, Using Version Control Data to Evaluate the

Impact of Software Tools: A Case Study of the Version

Editor

[13] Carlos Garcia Campos IT, A distributed version controls

System.

[14] Miguel A. Figueroa Villanueva, Xabriel J. Collazo Mojica,

Version Control Systems subversion, University of Puerto

Rico.

[15] Alexander Yip, Benjie Chen and Robert Morris, MIT

Computer Science and AI Laboratory, Past Watch a

distributed version control system.

[16] Ted Naleid, Distributed version control system with

mercurial.

[17] Version control systems, Wikipedia.

[18] Pressman, Software engineering, A practitioners approach.

[19] Distribution control by Joel spolsky.

