
International Journal of Computer Applications (0975 – 8887)

Volume 36– No.6, December 2011

19

An Efficient Approach Parallel Support Vector

Machine for Classification of Diabetes Dataset

Naveeen Kumar Shrivastava1, Praneet Saurabh2 and Bhupendra Verma3

Department of Computer Science & Engg,
Technocrats Institute of Technology,

Bhopal, India

ABSTRACT

The paper proposes a Parallel SVM for predicting the diabetes

chances in human based on a survey dataset which relates the

different body parameters with diabetic and non diabetic

persons. The aim of the paper is to correctly predict the future

possibility of diabetes for any person. Since the survey dataset

size could be very large with large numbers of parameters

which makes it difficult to handle by simple SVM hence a

parallel SVM concept is proposed in this paper to distribute

these datasets into n different sets for n different machines

which reduces the computational complexity, processing

power and memory requirements for each machine. The

proposed method is simple but quite reliable for parallel

operation of SVM and can be used for large and unbalanced

datasets the method also provide the flexibility to modify

according to the dataset size, processors and memory

available on different units. We have tested the proposed

method using MATLAB and results are very encouraging.

Keywords: Diabetes, Support vector Machine, K means

Clustering, Parallel Support Vector Machine, Binary

Classification.

1. INTRODUCTION
Diabetes is a chronic disease and a major public health

challenge worldwide. According to IDF(international diabetic

federation) there are currently 246 million diabetic people

worldwide and this no is expected to rise to 380 million by

2025. 3.8milion deaths are attributing to diabetes

complications each year. 80% of type 2 diabetes

complications can be prevented or delayed by early

identification of people at risk. Disease prediction can be used

for many government organizations to manage their

functionality and preparing for future risks, and for private

sectors like insurance companies can make evidence based

decisions and can optimize, validate and refine the rules that

govern their business. There are several machine learning

approaches. Lot of research carried out on this context in

support vector machine. There are many methods are

available for prediction but because natural process of this

kind are very complex which involves large number of input

variables so we need very large dataset for proper prediction.

Present days the support vector machines are emerges as

excellent classifier and also SVM has advantages over other

techniques like artificial neural networks that solution from

SVM is global and unique while ANN suffers from local

minima other advantages are 1.) The SVM has a clear

geometrical explanation and representation and the 2.)

Complexity of SVM does not depend upon the dimensions of

input data. 3.) The SVM utilizes the structural risk

minimization not the empirical risk minimization as in case of

ANN. 4.) SVM is less prone to over-fitting. The reasons of

selecting is clear but it also has disadvantage from a practical

point of view and this is the most serious problem with SVMs

is the high algorithmic complexity and extensive memory

requirements of the required quadratic programming in large-

scale tasks [1]. Because this paper mainly deals with parallel

processing of SVM now we are going to discuss the need of

parallel processing. As we know that it’s a machine learning

technique and like many machine learning techniques, SVMs

involve a training stage, where the machine learns a pattern in

the data from training data set. The process of learning allows

parameters to be adjusted towards optimal values, while

guarding against over fitting. The training stage for Support

Vector Machines involves at its core a dense convex quadratic

optimization problem (QP). Solving this optimization problem

is computationally expensive, primarily due to the dense

Hessian matrix. Solving the QP with a general-purpose QP

solver would result in the time taken to scale cubically with

the number of data points (O(n3)). Such a complexity result

means that, in practice, the SVM training problem cannot be

solved by general purpose optimization solvers [2]. The

complexity cubically increases with data points hence for very

large data sets its better to divide data points in parts which

not only decrease the complexity but also provide the

capability of handling the tasks in parallel on separate

systems. Although the dividing or partitioning or points

selection technique must be reliable that it should not affect

the abstract of the data points.

2. PREVIOUS APPROACH
Many schemes have been proposed in past for predicting

disease and parallelization of SVM some of the techniques

that helps in development of our concepts in writing this paper

are discussed here. For disease prediction Wei Yu*, Tiebin

Liu, Rodolfo Valdez, Marta Gwinn, Muin J Khoury [11] used

data from the 1999-2004 National Health and Nutrition

Examination Survey (NHANES) to develop and validate

SVM models for two classification schemes: Classification

Scheme I (diagnosed or undiagnosed diabetes vs. pre-diabetes

or no diabetes) and Classification Scheme II (undiagnosed

diabetes or pre-diabetes vs. no diabetes). The SVM models

were used to select sets of variables that would yield the best

classification of individuals into these diabetes categories.

Mohammed Khalilia, Sounak Chakraborty and Mihail

Popescu [12] employed the National Inpatient Sample (NIS)

data, which is publicly available through Healthcare Cost and

Utilization Project (HCUP), to train random forest classifiers

for disease prediction. Since the HCUP data is highly

imbalanced, we employed an ensemble learning approach

based on repeated random sub-sampling. This technique

divides the training data into multiple sub-samples, while

ensuring that each sub-sample is fully balanced. We compared

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.6, December 2011

20

the performance of support vector machine (SVM), bagging,

boosting and RF to predict the risk of eight chronic diseases.

For parallel SVM the Yumao Lu and Vwani Roychowdhury

[4] proposes A parallel support vector machine based on

randomized sampling technique they modeled a new LP-type

problem so that it works for general linear-nonseparable SVM

training problems a unique priority based sampling

mechanism is used so that we can prove an average

convergence rate that is so far the fastest bounded

convergence rate. Amit Maan et al.[5] introduce a distributed

algorithm for solving large scale Support Vector Machines

(SVM) problems. Their algorithm divides the training set into

a number of processing nodes each running independently an

SVM sub-problem associated with its subset of training data.

The algorithm is a parallel (Jacobi) block-update scheme

derived from the convex conjugate (Fenchel Duality) form of

the original SVM problem. Each update step consists of a

modified SVM solver running in parallel over the sub-

problems followed by a simple global update. We derive

bounds on the number of updates showing that the number of

iterations (independent SVM applications on sub-problems)

required to obtain a solution of accuracy ε is O(log(1/ε)). The

work proposed by Cheng-Tao Chu , Gary Bradski et el.[6] in

their paper for a programming framework for processing with

multicore processors in simple and unified way for machine

learning to take advantage of the potential speed up. In paper,

they develop a broadly applicable parallel programming

method, one that is easily applied to many different learning

algorithms. Our work is in distinct contrast to the tradition in

machine learning of designing (often ingenious) ways to

speed up a single algorithm at a time. Specifically, they show

that algorithms that fit the Statistical Query model can be

written in a certain “summation form,” which allows them to

be easily parallelized on multicore computers the proposed

parallel speed up technique is tested on a variety of learning

algorithms including locally weighted linear regression

(LWLR), k-means, logistic regression (LR), naive Bayes

(NB), SVM, ICA, PCA, Gaussian discriminant analysis

(GDA), EM, and back propagation (NN) showing good

results. To speed up the process of training SVM, another

parallel methods have been proposed [7] by splitting the

problem into smaller subsets and training a network to assign

samples of different subsets. A parallel training algorithm on

large-scale classification problems is proposed, in which

multiple SVM classifiers are applied and may be trained in a

distributed computer system. As an improvement algorithm of

cascade SVM, the support vectors are obtained according to

the data samples distance mean and the feedback is not the

whole final output but alternating to avoid the problem that

the learning results are subject to the distribution state of the

data samples in different subsets. The experiment results on

real-world text dataset show that this parallel SVM training

algorithm is efficient and has more satisfying accuracy

compared with standard cascade SVM algorithm in

classification precision. The algorithm of Zanghirati and

Zanni (2003) decomposes the SVM training problem into a
sequence of smaller, though still dense, QP sub-problems.

Zanghirati and Zanni implement the inner solver using a

technique called variable projection method, which is able to

work efficiently on relatively large dense inner problems, and

is suitable for implementing in parallel. The performance of

the inner QP solver was improved in Zanni et al. (2006). In

the cascade algorithm introduced by Graf et al. (2005), the

SVMs are layered. The support vectors given by the SVMs of

one layer are combined to form the training sets of the next

layer. The support vectors of the final layer are re-inserted

into the training sets of the first layer at the next iteration,

until the global KKT conditions are met. The authors show

that this feedback loop corresponds to standard SVM training.

The algorithm of Durdanovic et al. (2007), implemented in

the Mild software, is a parallel implementation of the

sequential minimal optimization.

3. SUPPORT VECTOR MACHINE
Support vector machine[14] is relatively new method of

learning for two class classification problems the SVM maps

the input vectors non linearly to a high dimensional feature

space and build a linear decision boundary within this

decision plane that will give the best generalization among all

the hyper plane in the high dimensional feature space. The

optimal hyper plane is defined as a linear decision function

with the maximum distance between the vectors of two

classes to build the optimal hyper plane only a small amount

of training set examples need to be considered these examples

are support vectors Support vector machine learning means to

determine functions that can be used to classify data points the

SVM learning method is based on so called reference data of

given input output (training data). SVM is based on creating a

hyper plane as the decision plane, which separates the positive

(+1) and negative (-1) classes with the largest margin. An

optimal hyper plane is the one with the maximum margin of

separation between the two classes, where the margin is the

sum of the distances from the hyper plane to the closest data

points of each of the two classes. These closest data points are

called Support Vectors (SVs). Given a set of training data D, a

set of points of the type

{(,) | , { 1,1}}p

i i i iD x c x R c    (i)

Where ci is either 1 or -1 indicative of the class to which the

point xi belongs, the aim is to give a maximum margin

hyperplane which divide points having ci = 1 from those

having ci = -1. Any hyperplane can be constructed as a set of

point x satisfying

 w.x – b = 0. (ii)

Fig1 : SVM Process Presentation

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.6, December 2011

21

Fig2: Visual Description of Separating Hyperplane and

Support Vectors

The vector w is a normal vector. We want to choose w and b

to maximize the margin. These hyperplanes can be described

by the following equations:

. 1w x b 

. 1w x b  

The margin is given by

2

1/m w

The dual of the SVM is shown to be the following

optimization problem:

Maximize (in αi)

1 ,

1

2

n

i i j i j i j

i i j

y y x x 


 

Subject to

1

0 and 0
n

i i i

i

y 


 

yi indicates the class of an instance, there is a one-to-one

association between each Lagrange multiplier αi and each

training example xi. Once the Lagrange multipliers are

determined, the normal vector w and the threshold b can be

derived from the Lagranges multipliers as follow:

1

n

i i i

i

w y a x



 

.k k kb w x y 


for some ak > 0. Not all data sets are linearly separable. There

may be no hyperplane exist that separates the positive (+1)

and negative (-1) classes. SVMs can be further generalized to

non-linear classifiers. The output of a non-linear SVM is

computed from the Lagrange multipliers as follow:

1

(,)
n

i i i

i

u y a K X X b


 

Where K is a kernel function that measures the similarity or

distance between the input vector Xi and the stored training

vector X.

4. PARALLEL SVM
Penalization of any algorithm is a concept to arrange or

partition the process of an algorithm such that it can be

parallel processed on cluster of computers. In context of this

particular paper we denoting Parallel SVM as the concept of

partitioning a large training dataset into small data

chunks and process each chunk in parallel utilizing the

resources of a cluster of computers.It’s already clear from

previous sections that training SVMs is computationally

intensive and increases dramatically as the size of a training

dataset increases. A SVM kernel usually involves an

algorithmic complexity of O(m2n), where n is the dimension

of the input and m represents the training instances [3]. The

computation time in SVM training is quadratic in terms of the

number of training instances. Hence parallel approximate

implementation to speed up SVM training on today’s

distributed computing infrastructures has proposed although

the Parallel SVM is the sole solution to speed up SVMs.

Algorithmic approaches such as (Lee & Mangasarian, 2001

[8]; Tsang et al., 2005; Joachims, 2006; Chu et al.,2006) [9],

can be more effective when memory is not a constraint or

kernels are not used.

5. K MEANS CLUSTERING
In statistics and data mining, k-means clustering is a method

of cluster analysis which aims to partition n observations

into k clusters in which each observation belongs to the cluster

with the nearest mean. This results into a partitioning of the

data space into Voronoi cells. The problem is computationally

difficult (NP-hard), however there are efficient heuristic

algorithms that are commonly employed that converge fast to

a local optimum. These are usually similar to the expectation-

maximization algorithm for mixtures of Gaussian

distributions via an iterative refinement approach employed

by both algorithms. Additionally, they both use cluster centers

to model the data, however k-means clustering tends to find

clusters of comparable spatial extend, while the expectation

maximization mechanism allows clusters to have different

shapes [10].

Given a set of observations (x1, x2, …, xn), where each

observation is a d-dimensional real vector, k-means clustering

aims to partition the n observations into k sets

(k ≤ n) S = {S1, S2, …, Sk} so as to minimize the within-cluster

sum of squares (WCSS):
2

1

arg min
j i

k

j i

i x s

s x 
 



where μi is the mean of points in Si

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.6, December 2011

22

6. PROPOSED ALGORITHM
Penalization of SVM has been already discussed in section 4.

The proposed algorithm also follows the concept developed in

that section. The proposed algorithm finds the minimum

numbers of data points which represents the abstracts of large

dataset this is performed by firstly partitioning the data points

into n numbers of clusters the n depends upon the size of

dataset, number of available processors, computational power

of processors and available memory. The first level

partitioning is performed by K means clustering, but before

using clustering the data points which does not participate or

influence the partitioning planes are removed. This process

also helps in balancing the both class data. The complete step

by step description of algorithm is given below

Algorithm in steps:

1. Let the positive and negative class datasets be DP

and DN

2. Choose the set with minimum size let it is DP

3. Calculate its centre point CP

4. Calculate the distance of all vectors of (DN) from CP

5. Choose the n minimum distance vectors form DN

dataset, where n is the size of DP

6. Name it DN1 now make a new data set Dnew = (DP +

DN)

7. Divide the Dnew in N sections by K mans clustering

8. Calculate the Support Vectors of each sections Sij

with their Class Lij , where i = {1,2,3…..N} and j =

{P, N}

9. Train the final SVM using Sij and Lij.

Explanation of the algorithm

1. The data set for training having two classes only

and having unequal sizes.

2. The steps 2, 3, 4 and 5 are used to eliminate the non

useful vectors from dataset and also balance the

classification dataset.

3. The purpose of k means is to divide data for parallel

processing it divides the dataset in most similar N

sets which are most difficult to classify when

grouped together.

4. The calculation of support vectors from each section

provides the abstracted information of all vector of

that section with only a fewer vectors which reduces

the load for final classifier. Creation of final

classifier for future classification

7. FLOW CHART

Fig3. Flow Chart of Parallel SVM with K Means

Clustering

8. SIMULATION RESULTS
The proposed algorithm is developed in MATLAB 7.12.7,

R2011B and the simulation results are obtained by running it

on intel celeron with 3 GB of RAM. The dataset is taken from

“ S. S. Medical College, Rewa, Master Chart (Study Group)”

and following parameters are taken for formation of vectors

1. Age

2. Sex

3. Family history of diabetes

4. BMI (body mass index)

5. SBP (Systolic blood pressure)

6. DBP (Diastolic blood pressure)

7. FSUG (Fasting blood sugar)

For number of cluster variations

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.6, December 2011

23

Table 1 Simple SVM

Data
Size

Cluster TPR TNR FPR FNR Accuracy Time
(sec.)

50 - 0.59 0.92 0.07 0.40 0.75 1.16

Table 2. Parallel SVM

Data
Size

Cluster TPR TNR FPR FNR Accuracy Time
(sec.)

50 2 0.55 0.92 0.07 0.44 0.74 0.28

50 3 0.48 0.92 0.07 0.51 0.70 0.37

50 4 0.48 0.92 0.07 0.51 0.70 0.40

50 5 0.25 0.92 0.07 0.74 0.59 0.42

50 6 0.25 0.92 0.07 0.74 0.59 0.44

Table 3. Simple SVM

Data
Size

Cluster TPR TNR FPR FNR Accuracy Time
(sec.)

100 - 0.59 0.88 0.11 0.40 0.74 1.32

 Table 4.Parallel SVM

Data
Size

Cluster TPR TNR FPR FNR Accuracy Time
(sec.)

100 2 0.59 0.92 0.07 0.40 0.75 0.31

100 3 0.59 0.92 0.07 0.40 0.75 0.27

100 4 0.59 0.92 0.07 0.40 0.75 0.31

100 5 0.37 0.92 0.07 0.62 0.64 0.32

100 6 0.37 0.92 0.07 0.62 0.64 0.36

Table 5. Simple SVM

Data
Size

Cluster TPR TNR FPR FNR Accuracy Time
(sec.)

200 - 0.62 0.92 0.07 0.37 0.77 2.10

Table 6.Parallel SVM

Data
Size

Cluster TPR TNR FPR FNR Accuracy Time
(sec.)

200 2 0.62 0.92 0.07 0.37 0.77 0.30

200 3 0.62 0.92 0.07 0.37 0.77 0.31

200 4 0.62 0.92 0.07 0.37 0.77 0.33

200 5 0.62 0.92 0.07 0.37 0.77 0.36

200 6 0.62 0.92 0.07 0.37 0.77 0.39

9. ANALYSIS

Fig4: Clusters vs Accuracy

Fig5: Clusters vs Time in sec

Fig3: Datset size vs Time in sec

Fig4: Dataset size vs Accuracy

10. CONCLUSION
The simulation results shows that proposed algorithm takes

only 1/3 of time taken by normal SVM for training and this

result is for single machine so expected results for multi

machine case should be dropped by n times where n is

number of machines. The proposed method also maintained

the approximately same accuracy when compared with

normal SVM, although it shows that dividing data into larger

number of clusters decreases the accuracy but it could be

controlled by selecting proper starting point for K means

clustering we leaved this work for future.

11. AKNOWLEDGEMENT
Our sincere thanks to the those who contribute there valuable

guidance for our work

12. REFERENCES
[1] Horváth (2003) in Suykens et al. p 392

[2] Kristian Woodsend and Jacek Gondzio“Hybrid

MPI/OpenMP Parallel Linear Support Vector Machine

Training” Journal of Machine Learning Research 10

(2009) 1937-1953.

[3] Nasullah Khalid Alham brunel university PHD thesis on

“Parallelizing Support Vector Machines for Scalable

Image Annotation”

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.6, December 2011

24

[4] Yumao Lu and Vwani Roychowdhury “Parallel

Randomized Support Vector Machine” PAKDD 2006,

LNAI 3918, pp. 205–214, 2006.

[5] Tamir Hazan Amit Man Amnon Shashua “A

Parallel Decomposition Solver for SVM: Distributed

Dual Ascend using Fenchel Duality”

[6] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan

Yu, Gary Bradski, Andrew Y. Ng, Kunle Olukotun

“Map-Reduce for Machine Learning on Multicore” CS.

Department, Stanford University 353 Serra Mall,

Stanford University, Stanford CA 94305-9025 Rexee

Inc.

[7] “Jian-Pei Zhang; Zhong-Wei Li; Jing Yang; “A

parallel SVM training algorithm on large-scale

classification problems” Coll. of Comput. Sci. &

Technol., Harbin Eng. Univ., China IEEE Machine

Learning and Cybernetics, 2005. Proceedings of 2005.

[8] Lee, Y.-J., & Mangasarian, O. L. (2001). “Rsvm: Reduced

support vector machines”. First SIAM International

Conference on Data Mining. Chicago.

[9] Joachims, T. (1998). “Making large-scale svm learning

practical. Advances in Kernel Methods Support Vector

Learning.”

[10] K-means clustering available at: http://en.wikipedia.org/

wiki/Kmeans_clustring

[11] Wei Yu, Tiebin Liu, Rodolfo Valdez, Marta Gwinn,

Muin J Khoury “Application of support vector machine

modeling for prediction of common diseases: the case of

diabetes and prediabetes”. BMC Medical Informatics

and Decision Making 2010, 10:16

[12] Mohammed Khalilia, Sounak Chakrabortyand Mihail

Popescu “Predicting disease risks from highly

imbalanced data using random forest” BMC Medical

Informatics and Decision Making 2011,11:51

