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ABSTRACT 

The paper proposes a Parallel SVM for predicting the diabetes 

chances in human based on a survey dataset which relates the 

different body parameters with diabetic and non diabetic 

persons. The aim of the paper is to correctly predict the future 

possibility of diabetes for any person. Since the survey dataset 

size could be very large with large numbers of parameters 

which makes it difficult to handle by simple SVM hence a 

parallel SVM concept is proposed in this paper to distribute 

these datasets into n different sets for n different machines 

which reduces the computational complexity, processing 

power and memory requirements for each machine. The 

proposed method is simple but quite reliable for parallel 

operation of SVM and can be used for large and unbalanced 

datasets the method also provide the flexibility to modify 

according to the dataset size, processors and memory 

available on different units. We have tested the proposed 

method using MATLAB and results are very encouraging. 
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Clustering, Parallel Support Vector Machine, Binary 
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1. INTRODUCTION 
Diabetes is a chronic disease and a major public health 

challenge worldwide.  According to IDF(international diabetic 

federation) there are currently 246 million diabetic people 

worldwide and this no is expected to rise to 380 million by 

2025. 3.8milion deaths are attributing to diabetes 

complications each year. 80% of type 2 diabetes 

complications can be prevented or delayed by early 

identification of people at risk. Disease prediction can be used 

for many government organizations to manage their 

functionality and preparing for future risks, and for private 

sectors like insurance companies can make evidence based 

decisions and can optimize, validate and refine the rules that 

govern their business.  There are several machine learning 

approaches. Lot of research carried out on this context in 

support vector machine. There are many methods are 

available for prediction but because natural process of this 

kind are very complex which involves large number of input 

variables so we need very large dataset for proper prediction. 

Present days the support vector machines are emerges as 

excellent classifier and also SVM has advantages over other 

techniques like artificial neural networks that solution from 

SVM is global and unique while ANN suffers from local 

minima other advantages are  1.) The SVM has a clear 

geometrical explanation and representation and the 2.) 

Complexity of SVM does not depend upon the dimensions of 

input data. 3.) The SVM utilizes the structural risk 

minimization not the empirical risk minimization as in case of 

ANN. 4.) SVM is less prone to over-fitting. The reasons of 

selecting is clear but it also has disadvantage from a practical 

point of view and this is the most serious problem with SVMs 

is the high algorithmic complexity and extensive memory 

requirements of the required quadratic programming in large-

scale tasks [1]. Because this paper mainly deals with parallel 

processing of SVM now we are going to discuss the need of 

parallel processing. As we know that it’s a machine learning 

technique and like many machine learning techniques, SVMs 

involve a training stage, where the machine learns a pattern in 

the data from training data set. The process of learning allows 

parameters to be adjusted towards optimal values, while 

guarding against over fitting. The training stage for Support 

Vector Machines involves at its core a dense convex quadratic 

optimization problem (QP). Solving this optimization problem 

is computationally expensive, primarily due to the dense 

Hessian matrix.  Solving the QP with a general-purpose QP 

solver would result in the time taken to scale cubically with 

the number of data points (O(n3)). Such a complexity result 

means that, in practice, the SVM training problem cannot be 

solved by general purpose optimization solvers [2]. The 

complexity cubically increases with data points hence for very 

large data sets its better to divide data points in parts which 

not only decrease the complexity but also provide the 

capability of handling the tasks in parallel on separate 

systems. Although the dividing or partitioning or points 

selection technique must be reliable that it should not affect 

the abstract of the data points. 

 

2. PREVIOUS APPROACH 
Many schemes have been proposed in past for predicting 

disease and parallelization of SVM some of the techniques 

that helps in development of our concepts in writing this paper 

are discussed here. For disease prediction Wei Yu*, Tiebin 

Liu, Rodolfo Valdez, Marta Gwinn, Muin J Khoury [11] used 

data from the 1999-2004 National Health and Nutrition 

Examination Survey (NHANES) to develop and validate 

SVM models for two classification schemes: Classification 

Scheme I (diagnosed or undiagnosed diabetes vs. pre-diabetes 

or no diabetes) and Classification Scheme II (undiagnosed 

diabetes or pre-diabetes vs. no diabetes). The SVM models 

were used to select sets of variables that would yield the best 

classification of individuals into these diabetes categories. 

Mohammed Khalilia, Sounak Chakraborty and Mihail 

Popescu [12] employed the National Inpatient Sample (NIS) 

data, which is publicly available through Healthcare Cost and 

Utilization Project (HCUP), to train random forest classifiers 

for disease prediction. Since the HCUP data is highly 

imbalanced, we employed an ensemble learning approach 

based on repeated random sub-sampling. This technique 

divides the training data into multiple sub-samples, while 

ensuring that each sub-sample is fully balanced. We compared 
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the performance of support vector machine (SVM), bagging, 

boosting and RF to predict the risk of eight chronic diseases. 

For parallel SVM the Yumao Lu and Vwani Roychowdhury 

[4] proposes A parallel support vector machine based on 

randomized sampling technique they modeled a new LP-type 

problem so that it works for general linear-nonseparable SVM 

training problems a unique priority based sampling 

mechanism is used so that we can prove an average 

convergence rate that is so far the fastest bounded 

convergence rate.  Amit Maan et al.[5] introduce a distributed 

algorithm for solving large scale Support Vector Machines 

(SVM) problems. Their algorithm divides the training set into 

a number of processing nodes each running independently an 

SVM sub-problem associated with its subset of training data.  

The algorithm is a parallel (Jacobi) block-update scheme 

derived from the convex conjugate (Fenchel Duality) form of 

the original SVM problem. Each update step consists of a 

modified SVM solver running in parallel over the sub-

problems followed by a simple global update. We derive 

bounds on the number of updates showing that the number of 

iterations (independent SVM applications on sub-problems) 

required to obtain a solution of accuracy ε is O(log(1/ε)).  The 

work proposed by Cheng-Tao Chu , Gary Bradski et el.[6] in 

their paper for a programming framework for processing with 

multicore processors in simple and unified way for machine 

learning to take advantage of the potential speed up. In paper, 

they develop a broadly applicable parallel programming 

method, one that is easily applied to many different learning 

algorithms.  Our work is in distinct contrast to the tradition in 

machine learning of designing (often ingenious) ways to 

speed up a single algorithm at a time. Specifically, they show 

that algorithms that fit the Statistical Query model can be 

written in a certain “summation form,” which allows them to 

be easily parallelized on multicore computers the proposed 

parallel speed up technique is tested on a variety of learning 

algorithms including locally weighted linear regression 

(LWLR), k-means, logistic regression (LR), naive Bayes 

(NB), SVM, ICA, PCA, Gaussian discriminant analysis 

(GDA), EM, and back propagation (NN) showing good 

results. To speed up the process of training SVM, another 

parallel methods have been proposed [7] by splitting the 

problem into smaller subsets and training a network to assign 

samples of different subsets. A parallel training algorithm on 

large-scale classification problems is proposed, in which 

multiple SVM classifiers are applied and may be trained in a 

distributed computer system. As an improvement algorithm of 

cascade SVM, the support vectors are obtained according to 

the data samples distance mean and the feedback is not the 

whole final output but alternating to avoid the problem that 

the learning results are subject to the distribution state of the 

data samples in different subsets. The experiment results on 

real-world text dataset show that this parallel SVM training 

algorithm is efficient and has more satisfying accuracy 

compared with standard cascade SVM algorithm in 

classification precision. The algorithm of Zanghirati and 

Zanni (2003) decomposes the SVM training problem into a 
sequence of smaller, though still dense, QP sub-problems.  

Zanghirati and Zanni implement the inner solver using a 

technique called variable projection method, which is able to 

work efficiently on relatively large dense inner problems, and 

is suitable for implementing in parallel. The performance of 

the inner QP solver was improved in Zanni et al. (2006). In 

the cascade algorithm introduced by Graf et al. (2005), the 

SVMs are layered. The support vectors given by the SVMs of 

one layer are combined to form the training sets of the next 

layer. The support vectors of the final layer are re-inserted 

into the training sets of the first layer at the next iteration, 

until the global KKT conditions are met.  The authors show 

that this feedback loop corresponds to standard SVM training. 

The algorithm of Durdanovic et al. (2007), implemented in 

the Mild software, is a parallel implementation of the 

sequential minimal optimization.   

 

3. SUPPORT VECTOR MACHINE 
Support vector machine[14] is relatively new method of 

learning for two class classification problems the SVM maps 

the input vectors non linearly to a high dimensional feature 

space and build a linear decision boundary within this 

decision plane that will give the best generalization among all 

the hyper plane in the high dimensional feature space. The 

optimal hyper plane is defined as a linear decision function 

with the maximum distance between the vectors of two 

classes to build the optimal hyper plane only a small amount 

of training set examples need to be considered these examples 

are support vectors Support vector machine learning means to 

determine functions that can be used to classify data points the 

SVM learning method is based on so called reference data of 

given input output (training data). SVM is based on creating a 

hyper plane as the decision plane, which separates the positive  

(+1)  and negative (-1) classes with the largest margin. An 

optimal hyper plane is the one with the maximum margin of 

separation between the two classes, where the margin is the 

sum of the distances from the hyper plane to the closest data 

points of each of the two classes. These closest data points are 

called Support Vectors (SVs). Given a set of training data D, a 

set of points of the type    

 

{( , ) | , { 1,1}}p

i i i iD x c x R c                  (i) 

 
Where ci is either 1 or -1 indicative of the class to which the 

point  xi belongs, the aim is to give a maximum margin  

hyperplane which divide points having ci = 1 from those 

having ci = -1. Any hyperplane can be constructed as a set of 

point x satisfying  

 
      w.x – b = 0.                                                                 (ii) 

 

 
 

Fig1 : SVM Process Presentation 
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Fig2: Visual Description of Separating Hyperplane and 

Support Vectors 

 

The vector w is a normal vector. We want to choose w and b 

to maximize the margin. These hyperplanes can be described 

by the following equations: 

 

. 1w x b   
 

. 1w x b    

The margin is given by 

 
2

1/m w  

The dual of the SVM is shown to be the following 

optimization problem: 
 

Maximize (in αi)      
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yi indicates the class of an instance, there is a one-to-one 

association between each Lagrange multiplier αi and each 

training example xi. Once the Lagrange multipliers are 

determined, the normal vector w and the threshold b can be 

derived from the Lagranges multipliers as follow: 
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n

i i i
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for some  ak > 0. Not all data sets are linearly separable. There 

may be no hyperplane exist that separates the positive (+1) 

and negative (-1) classes.  SVMs can be further generalized to 

non-linear classifiers. The output of a non-linear SVM is 

computed from the Lagrange multipliers as follow: 

         

1

( , )
n

i i i

i

u y a K X X b


   

Where K is a kernel function that measures the similarity or 

distance between the input vector Xi and the stored training 

vector X.  

 

4.   PARALLEL SVM 
Penalization of any algorithm is a concept to arrange or 

partition the process of an algorithm such that it can be 

parallel processed on cluster of computers. In context of this 

particular paper we denoting Parallel SVM as the concept of 

partitioning  a  large  training  dataset  into  small  data  

chunks  and  process  each  chunk  in  parallel utilizing the 

resources of a cluster of computers.It’s already clear from 

previous sections that training SVMs is computationally 

intensive and increases dramatically as the size of a training 

dataset increases. A SVM kernel usually involves an 

algorithmic complexity of O(m2n), where n is the dimension 

of the input and  m represents the training instances [3]. The 

computation time in SVM training is quadratic in terms of the 

number of training instances. Hence parallel approximate 

implementation to speed up SVM training on today’s 

distributed computing infrastructures has proposed although 

the Parallel SVM is the sole solution to speed up SVMs. 

Algorithmic approaches such as (Lee & Mangasarian, 2001 

[8]; Tsang et al., 2005; Joachims, 2006; Chu et al.,2006) [9], 

can be more effective when memory is not a constraint or 

kernels are not used.  

 

5. K MEANS CLUSTERING 
In statistics and data mining, k-means clustering is a method 

of cluster analysis which aims to partition n observations 

into k clusters in which each observation belongs to the cluster 

with the nearest mean. This results into a partitioning of the 

data space into Voronoi cells. The problem is computationally 

difficult (NP-hard), however there are efficient heuristic 

algorithms that are commonly employed that converge fast to 

a local optimum. These are usually similar to the expectation-

maximization algorithm for mixtures of Gaussian 

distributions via an iterative refinement approach employed 

by both algorithms. Additionally, they both use cluster centers 

to model the data, however k-means clustering tends to find 

clusters of comparable spatial extend, while the expectation 

maximization mechanism allows clusters to have different 

shapes [10]. 

 

Given a set of observations (x1, x2, …, xn), where each 

observation is a d-dimensional real vector, k-means clustering 

aims to partition the n observations into k sets 

(k ≤ n) S = {S1, S2, …, Sk} so as to minimize the within-cluster 

sum of squares (WCSS): 
2

1

arg min
j i

k

j i

i x s

s x 
 

  

where μi is the mean of points in Si 
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6. PROPOSED ALGORITHM 
Penalization of SVM has been already discussed in section 4. 

The proposed algorithm also follows the concept developed in 

that section. The proposed algorithm finds the minimum 

numbers of data points which represents the abstracts of large 

dataset this is performed by firstly partitioning the data points 

into n numbers of clusters the n depends upon the size of 

dataset, number of available processors, computational power 

of processors and available memory. The first level 

partitioning is performed by K means clustering, but before 

using clustering the data points which does not participate or 

influence the partitioning planes are removed. This process 

also helps in balancing the both class data. The complete step 

by step description of algorithm is given below 

 

Algorithm in steps: 

1. Let the positive and negative class datasets be DP 

and DN  

2. Choose the set with minimum size let it is DP 

3. Calculate its centre point CP 

4. Calculate the distance of all vectors of (DN) from CP 

5. Choose the n minimum distance vectors form DN 

dataset, where n is the size of DP 

6. Name it DN1 now make a new data set Dnew = (DP + 

DN) 

7. Divide the Dnew in N sections by K mans clustering 

8. Calculate the Support Vectors of each sections Sij  

with their Class Lij , where i = {1,2,3…..N} and j = 

{P, N}   

9. Train the final SVM using Sij and Lij. 

 

Explanation of the algorithm  

 

1. The data set for training having two classes only 

and having unequal sizes. 

2. The steps 2, 3, 4 and 5 are used to eliminate the non 

useful vectors from dataset and also balance the 

classification dataset. 

3. The purpose of k means is to divide data for parallel 

processing it divides the dataset in most similar N 

sets which are most difficult to classify when 

grouped together. 

4. The calculation of support vectors from each section 

provides the abstracted information of all vector of 

that section with only a fewer vectors which reduces 

the load for final classifier. Creation of final 

classifier for future classification 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. FLOW CHART 
 

 
Fig3.  Flow Chart of Parallel SVM with K Means 

Clustering 

 

8. SIMULATION RESULTS  
The proposed algorithm is developed in MATLAB 7.12.7, 

R2011B and the simulation results are obtained by running it 

on intel celeron with 3 GB of RAM. The dataset is taken from 

“ S. S. Medical College, Rewa, Master Chart (Study Group)” 

and following parameters are taken for formation of vectors 

 

1.    Age 

2.    Sex 

3.    Family history of diabetes  

4.    BMI (body   mass   index) 

5.    SBP (Systolic blood pressure) 

6.    DBP (Diastolic blood pressure) 

7.     FSUG (Fasting blood sugar) 

For number of cluster variations  

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 36– No.6, December 2011 

23 

Table 1  Simple SVM 

Data 
Size 

Cluster TPR TNR FPR FNR Accuracy Time 
(sec.) 

50 - 0.59 0.92 0.07 0.40 0.75 1.16 

 

Table 2. Parallel SVM        

Data 
Size 

Cluster TPR TNR FPR FNR Accuracy Time 
(sec.) 

50 2 0.55 0.92 0.07 0.44 0.74 0.28 

50 3 0.48 0.92 0.07 0.51 0.70 0.37 

50 4 0.48 0.92 0.07 0.51 0.70 0.40 

50 5 0.25 0.92 0.07 0.74 0.59 0.42 

50 6 0.25 0.92 0.07 0.74 0.59 0.44 

 

Table 3. Simple SVM 

Data 
Size 

Cluster TPR TNR FPR FNR Accuracy Time 
(sec.) 

100 - 0.59 0.88 0.11 0.40 0.74 1.32 

 

  Table 4.Parallel SVM        

Data 
Size 

Cluster TPR TNR FPR FNR Accuracy Time 
(sec.) 

100 2 0.59 0.92 0.07 0.40 0.75 0.31 

100 3 0.59 0.92 0.07 0.40 0.75 0.27 

100 4 0.59 0.92 0.07 0.40 0.75 0.31 

100 5 0.37 0.92 0.07 0.62 0.64 0.32 

100 6 0.37 0.92 0.07 0.62 0.64 0.36 

 

Table 5. Simple SVM 

Data 
Size 

Cluster TPR TNR FPR FNR Accuracy Time 
(sec.) 

200 - 0.62 0.92 0.07 0.37 0.77 2.10 

   

Table 6.Parallel SVM        

Data 
Size 

Cluster TPR TNR FPR FNR Accuracy Time 
(sec.) 

200 2 0.62 0.92 0.07 0.37 0.77 0.30 

200 3 0.62 0.92 0.07 0.37 0.77 0.31 

200 4 0.62 0.92 0.07 0.37 0.77 0.33 

200 5 0.62 0.92 0.07 0.37 0.77 0.36 

200 6 0.62 0.92 0.07 0.37 0.77 0.39 

 

 

9. ANALYSIS 

 
Fig4: Clusters vs Accuracy 

 
Fig5: Clusters vs Time in sec 

 
Fig3: Datset size vs Time in sec 

 
Fig4: Dataset size vs Accuracy 

 

10. CONCLUSION 
The simulation results shows that proposed algorithm takes 

only 1/3 of time taken by normal SVM for training and this 

result is for single machine so expected results for multi 

machine case should be dropped by n times where n is 

number of machines. The proposed method also maintained 

the approximately same accuracy when compared with 

normal SVM, although it shows that dividing data into larger 

number of clusters decreases the accuracy but it could be 

controlled by selecting proper starting point for K means 

clustering we leaved this work for future.  
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