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ABSTRACT 
We present a new scheduling approach to produce automatically 

a fault tolerant distributed schedule for critical distributed and 

real-time embedded systems. The approach that we propose take 

as input a set of operations (tasks), a target distributed 

architecture, some distribution constraints, some indications on 

the execution times of the operations on the processors of the 

target architecture, some indications on the communication 

times of the data-dependencies on the media communications of 

the target architecture, and the reliability of processors. IT 

produces a fault-tolerant distributed and static scheduling of the 

operations on the architecture, with an indication whether or not 

the real-time constraints are satisfied. The scheduling approach 

that we propose for architectures with multiple processors linked 

by a set of channels (links), consist of a list scheduling heuristic 

based on active replication strategy. In order to reduce the 

probability of fault occurrence, the replication process of each 

operation is based on a Global System Failure Rate (GSFR) 

objective function. Finally, simulation results show the 

performance of our approach.    
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1. INTRODUCTION 
Heterogeneous systems are being increasingly used in a major 

part of critical applications as transportations (aircrafts, 

automobiles …), nuclear, robotics and telecommunication. In 

these systems critical real-time constraints must be satisfied [1], 

where timing constraints which are not met may involve a 

system failure leading to a human, ecological, and/or financial 

disaster. One of the major problems of these systems is 

dependability [2, 3], where the malfunction or the failure of 

systems components (hardware or software) can lead to a 

catastrophe. The dependability of such real-time systems can be 

increased through hardware or software fault tolerance 

techniques, where a system built with fault tolerance capabilities 

will manage to keep operating in the presence of failures [4]. 

Hardware fault tolerance improves dependability of distributed 

real-time systems by adding extra hardware (processors, 

communications media, actuators, sensors) into the system [5]. 

However, hardware fault tolerance techniques are not preferred 

in most embedded systems due to the limited resources available 

because of weight, encumbrance, energy consumption (e.g., 

autonomous vehicles), radiation resistance (e.g., nuclear or 

space), or price constraints (e.g., consumer electronics). Critical 

embedded systems are increasingly use software fault tolerance 

to achieve the required dependability [6]. 

 

In this paper, we propose a new scheduling algorithm that 

generates a fault tolerant distributed static schedule, called 

Reliability-Driven Fault tolerant Scheduling heuristics (RDFS). 

This algorithm is different than the ones that we have proposed 

in [7, 8, 9] in the sense that we use active replication of 

operations and reliability measures to improve both the system's 

fault tolerance and the schedule length (and hence the system's 

run-time). The scheduling approach (Figure 1) that we propose 

for architectures with multiple processors linked by a set of 

channels (links), consist of a list scheduling heuristic based on 

two costs functions: the schedule pressure and the Global 

System Failure Rate (GSFR). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Our approach 

The paper is structured as follows. Section 2 gives related work 

on fault tolerance. Section 3 presents the system and the 

reliability models. Section 4 proposes our RDFS scheduling 

algorithm; an example is detailed in Section 5. Section 6 gives 

performances evaluation of our algorithm, and finally the article 

concludes in Section 7. 

 

2. RELATED WORK 
In the past decade of fault tolerant systems research, an array of 

fault tolerant scheduling heuristics has been proposed [10, 11, 

12, 13]. However, a few works is done to take into account 

reliability and real-time criteria at the same time when 

scheduling tasks when tolerating failures. In [14], Dogan et al. 

propose a scheduling heuristic algorithm for heterogeneous 

architectures that optimizes both the execution time and the 

reliability of the system. It is called Reliable Dynamic Level 
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Scheduling (RDLS) which is a variant of the Dynamic Level 

Scheduling algorithm (DLS) [15]. The authors add a reliability 

term to the cost function of DLS to take into account the 

reliability. The main difference between the RDLS heuristic and 

our algorithm is that the user can tolerate failures. 

 

Several scheduling heuristics have been proposed to tolerate 

exclusively processor faults. They are based on active software 

redundancy [16, 9] or passive software redundancy [17, 18]. In 

active redundancy, multiple replicas of a task are scheduled on 

different processors, which are run in parallel to tolerate a fixed 

number of processor faults. [16] presents an off-line scheduling 

algorithm that tolerates a single processor faults in 

multiprocessor systems, while [9] tolerates multiple processor 

faults. In passive redundancy, also called primary/backup 

approach, a task is replicated into one primary and several 

backup replicas, but only the primary replica is executed. If it 

fails, one of the backup replicas is selected to become the new 

primary. For instance, [18] presents a scheduling algorithm that 

tolerates one processor fault. 

 

In [19], failures are tolerated using the fault recovery scheme 

and a primary/backups strategy. In [20], Dima et al. propose an 

original off-line fault tolerant scheduling algorithm which uses 

the active replication of tasks and communications to tolerate a 

set of failure patterns; each failure pattern is a set of processor 

and/or communications media that can fail simultaneously, and 

each failure pattern corresponds a reduced architecture. The 

proposed algorithm starts by building a basic schedule for each 

reduced architecture plus the nominal architecture, and then 

merges these basic schedules to obtain a distributed fault 

tolerant schedule. It has been implemented very recently by 

Pinello et al. [21].  

 

The heuristics presented in this paper is our most recent work 

for integrating fault tolerance in the SynDEx tool (http://www-

rocq.inria.fr/syndex), a system level CAD software tool for 

optimizing the implementation of real-time embedded 

applications on multi-components architectures. Prior work has 

been published in [22, 23, 24, 9].  

 

3. MODELS 
 

3.1 Algorithm 
The algorithm is modeled by a data-flow graph, called algorithm 

graph and noted ALG. Each vertex of ALG is an operation 

(task) and each edge is a data-dependence. A data-dependence 

corresponds to a data transfer from a producer operation to a 

consumer operation, defining a partial order on the execution of 

operations. This partial order relation is denoted by ''''. Based 

on this partial order, we say that o2 is a successor of o1 if 

(o1o2), and symmetrically that o1 is a predecessor of o2. We 

also say that o1 is the source of the data dependence (o1o2) 

and that o2 is its destination. An operation of ALG can be either 

an external input/output operation or a computation operation. 

Operations with no predecessor (resp. no successor) are the 

input interfaces (resp. output), handling the events produced by 

the sensors (resp. actuators). The inputs of a computation 

operation must precede its outputs. Moreover, computation 

operations are side-effect free, i.e. the output values depend only 

of the input values. The algorithm graph is executed repeatedly 

at each input event from the sensors in order to compute the 

output events for the actuators; each execution is called an 

iteration. Such a model is commonly used to specify periodic 

sampled systems, which constitute most of embedded control 

systems. For instance, it is used in many automotive and civil 

avionics applications.  

Figure 2 is an example of an algorithm graph, with six 

operations v1, v2, v3, v4, v5 and v6. The data-dependencies 

between operations are depicted by arrows. For instance, the 

data-dependency v1 v4 corresponds to the sending of some 

arithmetic result computed by v1 and needed by v4. 

 

 
 

Fig 2: Example of an algorithm graph ALG 

3.2 Architecture 
The architecture is modeled by a graph, where each node is a 

processor, and each edge is a communication link. Classically, a 

processor is made of one computation unit, one local memory, 

and one or more communication units, each connected to one 

communication link. Communication units execute data 

transfers. We assume that the architecture is heterogeneous and 

fully connected.  

Figure 3 is an example of ARC, with four processors P1, P2, P3 

and P4, and six communications links L12, L23, L34, L14, L13 

and L24. 

 

 

 
 

Fig 3: Example of an architecture graph ARC. 

3.3 Execution 
One of the characteristics of our real-time systems is that they 

are based on cyclic executive; this means that a fixed schedule 

of the operations of ALG is executed cyclically on ARC at a 

fixed rate.  This schedule must satisfy: one real-time constraint 

RTC (the length of the schedule must be less than RTC), and a 

set of distribution constraints DIS (each one specifying that one 

operation of ALG cannot be executed on one processor of 

ARC). In our execution model EXE, we associate to each 

processor p a list of pairs (o, exe), where d is the worst case 

execution time (WCET) of the operation o on the processor p. 

Also, we associate to each communication link l a list of pairs 

(dpd, c), where c is the worst case transmission time (WCTT) of 
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the data-dependency dpd on the communication link l. Since the 

target architecture is heterogeneous, the WCET (resp. WCTT) 

for a given operation (resp. data-dependency) can be distinct on 

each processor (resp. link). Finally, specifying the distribution 

constraints DIS amounts to associating the value '''' to some 

pairs of p, (o,) meaning that o cannot be executed on p. 

 

For instance, EXE for ALG and ARC of Figure 2 and Figure 3 is 

given in Figure 4 and Figure 5.  

 

 
Fig 4: Execution times. 

 

 
Fig 5: transmission times. 

3.4 Fault Model and Problem Definition 
We assume only hardware components (processors and 

communication links) failures and we assume that the algorithm 

is correct w.r.t. its specification, i.e., it has been formally 

validated, for instance with model checking and/or theorem 

proving tools. We assume that at most NPF (Number of 

Processor Failures) processor faults can arise in the system. The 

failure of a processor has an exponential distribution [25], i.e., it 

follows a Poisson law with a constant failure rate . 

Furthermore, components failures are assumed to be 

independent. For instance, Figure 6 gives the failure rates of the 

processors and communication links of the architecture of 

Figure 3. 

 

 

 
 

Fig 6: Failure rates for system components. 

Our goal is to produce automatically a fault-tolerant distributed 

static schedule of a given algorithm ALG onto a given 

distributed architecture ARC, which must satisfy a set of 

constraints. Actually, we want to solve the following problem: 

 

Given: 

 a distributed heterogeneous architecture ARC 

composed of a set P of processors and a set L of links: 

P ={…, pi,…}, L ={…, Lj,…} 

 an algorithm ALG composed of a set O of operations 

and a set E of data-dependencies:  

O = {…, oi, …, o_j,…}, E = { …,(oi oj), …} 

 all the execution characteristics EXE of the software  

components of ALG onto the hardware components of 

ARC, 

 several distribution constraints DIS (if any), 

 a real-time constraint RTC, 

 a number NPF of processor faults that may affect the 

system, with NPF<|P|, 

 

the problem is to find a distributed static schedule of ALG onto 

ARC, which minimizes the system's run-time (makespan), 

maximizes system reliability and tolerates NPF processors with 

respect to RTC, EXE, and DIS. 

 

The makespan, noted by RTsched, is the end execution time of the 

operation that is completed last among all operations. It is 

computed as follows: 

 

                    
                  

where end(oi, pj) is the time at which operation oi terminates its 

execution on processor pj. 

 

4. THE PROPOSED ALGORITHM 
Our solution is based on active redundancy and on a global 

system failure rate (GSFR). The GSFR is the failure rate per 

time unit of the obtained multiprocessor schedule. Using the 

GSFR is very satisfactory in the area of periodically executed 

schedules. This is the case in most real-time embedded systems, 

which are periodically sampled systems. In such cases, applying 

brutally the exponential reliability model yields very low 

reliabilities due to very long execution times (the same remark 

applies also to very long schedules). Hence, one has to compute 

beforehand the desired reliability of a single iteration from the 

global reliability of the system during its full mission; but this 

computation depends on the total duration of the mission (which 

is known) and on the duration of one single iteration (which may 

not be known because it depends on the length of the schedule 

under construction). In contrast, the GSFR remains constant 

during the whole system’s mission: the GSFR during a single 

iteration is by construction identical to the GSFR during the 

whole mission. 

 

Our fault tolerance heuristic is GSFR-based to control precisely 

the scheduling of the NPF+1 replicas of each operation from the 

beginning to the end of the schedule. 

 

The GSFR of scheduling NPF+1 replicas of an operation oi, 

noted (Soi), is computed by the following equation: 

 

                          

                                                                                (1) 

 

 

The reliability R(Soi) is computed, for each operation oi and 

each processor p, by the following equation: 

 

                                                                                          (2) 
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The total utilization of the hardware resources U(Soi) is 

computed, for each operation oi and each processor p,  by the 

following equation: 

 

                                                                                           (3) 

       

Our scheduling algorithm is a greedy list scheduling heuristic, 

which schedules one operation at each step n. It generates a 

distributed static schedule of a given algorithm ALG onto a 

given architecture ARC, which minimizes the system's run-time, 

and tolerates upto NPF processors, with respect to the real-time 

constraint RTC and the distribution constraints DIS. At each 

step of the greedy list scheduling heuristic, GSFR and schedule 

pressure are used as a cost function to select the best operation 

to be scheduled. 

 

The schedule pressure function, noted (n), is computed, for each 

operation oi and each processor pj, as follows: 

 

                     (4) 

         

where S(n)
oi,pj is the earliest time at which operation oi can start 

its execution on processor pj (computed in absence of faults), 

S(n)
oi is the latest start time from end of oi (defined to be the 

length of the longest path from the outputs operations to oi, and 

R(n-1) is the critical path length at step (n-1) (that is, before 

scheduling oi. The schedule pressure measures how much the 

scheduling of an operation lengthens the critical path of the 

algorithm in the absence of processors failures. For more details, 

please refer to [23].  

 

The algorithm is divided into four steps: initialization step, 

selection step, distribution and scheduling step, and finally an 

update step. The superscript number in parentheses refers to the 

steps of the heuristic, e.g., O(n)
sched. 

 

The RDFS Algorithm 

------------------------------------------------------------------------------ 

Inputs = ALG, ARC, NPF, EXE, RTC, Rel and DIS; 

Output = a fault-tolerant multiprocessor static schedule; 

Initialization Step 

- Compute the set  of all arbitrary combinaison of NPF+1 

processors; 

- Initialize the sets of candidate operations Ocand and 

scheduled operations Osched 

           O(1)
cand := {operations of ALG without predecessors}; 

           O(1)
sched := ; 

Distribution and Scheduling Loop 

While O(n)
cand    do 

Selection 

    -   select for each candidate operation ocand of O(n)
cand  a set   

        Pbest    of NPF+1 processors that minimizes the schedule  

        pressure function such that (Soi) < Rel; 

    -   select for each candidate operation ocand of O(n)
cand, among  

        the processors Pbest(ocand), the best processor Pbest that  

        maximizes the schedule pressure function; 

    -  select, among all the pairs (ocand, Pbest), the best pair 

       (obest,Pbest) that maximizes the schedule pressure function; 

Distribution and Scheduling 

    - Let Pbest(obest) be a best set of NPF+1 processors of obest  

       computed at the selection step; 

    - Schedule each replica ok
best on the processor Pk

best of  

      Pbest(obest). 

Update Sets 

    - Update the sets of candidate and scheduled operations for 

       the next step (n+1):  

        O(n+1)
sched := O(n)

sched U {obest}; 

 

        O(n+1)
cand  := O(n)

cand  - {obest} U {onew successors of obest 

                        | {predecessors of onew}   O(n+1)
sched }; 

end While 

------------------------------------------------------------------------------ 

End of the algorithm 

 

The initialization step involves initializing the list of candidate 

operations O(1)
cand with the operations without predecessor. 

Later, an operation is said to be a candidate if all its 

predecessors are already scheduled. Moreover, the list of 

scheduled operations O(1)
sched is initially empty. 

 

In the selection step, for each candidate operation ocand of 

O(n)
cand, a set Pbest of NPF+1 processors is selected among all the 

processors of P to schedule NPF+1 replicas of ocand. The rule of 

selection is based on the schedule pressure function and the 

GSFR function. Note that, since all candidates operations at step 

n have the same value R(n-1), it is not necessary to compute R(n-1). 

 

The set Pbest of each candidate operation ocand is composed from 

NPF+1 processors that minimize the schedule pressure, i.e., 

processors that minimize the length of the schedule. Then, 

among all these candidates operations, the most urgent candidate 

obest, with a processor pbest of Pbest(obest) that maximizes this 

function, is selected to be placed and scheduled. 

 

The distribution and scheduling step involves first replicating 

the best candidate obest into NPF replicas, and second scheduling 

each replica ok
best of obest respectively onto the processor pk

 best of 

Pbest.   

 

The updating step involves updating the list of scheduled 

operations and then the list of candidates operations.  The 

scheduled operation obest is removed from O(n)
cand, while the new 

operations added to O(n)
cand are the operations of ALG which 

have all their predecessors in the new list of scheduled 

operations. 

 

5. AN EXAMPLE 
We have implemented our RDFS heuristic within the SynDEx 

tool [26], a system level CAD software tool for optimizing the 

implementation of real-time embedded applications on multi-

component architectures. To illustrate the principles of our 

heuristic, we apply it to the example of Figure 2 for ALG and 

Figure 3 for ARC. The execution characteristics are specified by 

Figure 4 and Figure 5. The user requires the system to tolerate 

one processor failure, i.e., NPF=1. 

 

We obtain the fault tolerant schedule presented in Figure 7 (a 

screen capture from SynDEx). Each operation of the algorithm 

graph is replicated twice and these replicas are assigned to 

different processors; furthermore, each replica receives its inputs 

twice and from disjoint paths. 
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Fig 7: A final fault tolerant schedule of ALG on ARC. 

 

6. SIMULATIONS 
 

To evaluate our heuristic, we have applied the RDFS heuristic to 

a set of random algorithm graphs and a heterogeneous and 

completely connected architecture graph composed of 4, 5 and 6 

processors. The following figures have been obtained by 

generating randomly 50 ALG graphs of 10,20,…,100 operations 

each, with a CCR set to 0.1, 1, 10.  CCR (Communication-to-

Computation Ratio) is the ratio between the average 

communication cost (over all the data dependencies) and the 

average computation cost (over all the operations). 

 

A random algorithm graph is generated as follows: given the 

number of operations N, we randomly generate a set of levels 

with a random number of operations. Then, operations at a given 

level are randomly connected to operations at a higher level. The 

execution times of each operation are randomly selected from a 

uniform distribution with the mean equal to the chosen average 

execution time. Similarly, the communication times of each data 

dependency are randomly selected from a uniform distribution 

with the mean equal to the chosen average communication time. 

The advantage of this method is that the randomly generated 

algorithm graphs are as close as possible to real applications: in 

particular, the nodes are not generated randomly but within a 

square matrix whose height and width depend on the total 

number of nodes N. 

 

The general objective of our simulations is to study the impact 

of the number of processors P, number of operations N, and 

CCR on the schedule length and reliability introduced by RDFS 

and the fault tolerance heuristic AAA-TP presented in [9].  

 

 

 

 

 

 

 

 

 

Figure 8 shows the impact on schedule length obtained by AAA-

TP and RDFS with respect to GSFR, averaged over 50 ALG 

graphs, for each N, P=4, NPF=2, and CCR=1. As we can see, 

the schedule length grows almost linearly when N increases 

from 10 to 100.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 8: Impact on schedule length of the number of 

operations for CCR=1 and P=4. 
 

 

Figure 9 shows the impact on reliability obtained by RDFS and 

AAA-TP with respect to GSFR, averaged over 50 ALG graphs, 

for each N, P=4, NPF=2, and CCR=1. As we can see, RDFS 

performs better than AAA-TP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9: Impact on reliability of the number of operations for 

CCR=1 and P=4. 

Figure 10 shows the impact on schedule length obtained by 

RDFS and AAA-TP with respect to GSFR, averaged over 50 

ALG graphs, for each N=50, NPF=2, and CCR=1.  
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Fig 10: Impact on schedule length of number of processors 

for: CCR=1 and N=50. 

Figure 11 shows the impact on schedule length obtained by 

RDFS and AAA-TP with respect to GSFR, averaged over 50 

ALG graphs, for N=50, P=4, and NPF=2.  

 

 

 

 

 

 

 

Fig 11: Impact on schedule length of CCR for: P=4 and 

N=50. 

Figure 11 shows that, when the average communication time is 

strictly greater than the average execution time, the schedule 

length increase. This is due to the communication overhead. 

 

In this simulation, RDFS outperforms AAA-TP, and AAA-TP is 

less efficient for the reliability. 

 

7. CONCLUSION 
The literature about fault-tolerance of distributed and/or 

embedded real-time systems is very abundant. Yet, there are few 

attempts to combine fault-tolerance and automatic generation of 

distributed code for embedded systems. In this paper, we have 

studied this problem and proposed a software implemented 

fault-tolerance solution based on GSFR. 

 

We have proposed a new scheduling heuristic, called RDFS, 

which produces automatically a static distributed fault-tolerant 

schedule of a given algorithm ALG on a given distributed 

architecture ARC. Our solution is based on the software 

redundancy of both the computation operations and the 

communications. All replicated operations send their results but 

only the one which is received first by the destination processor 

is used; the other results are discarded. The implementation uses 

a scheduling heuristic for optimizing the critical path of the 

distributed algorithm obtained. SynDEx is able to generate 

automatically executable distributed code, by first producing a 

static distributed schedule of a given algorithm on a given 

distributed architecture, and then by generating a real-time 

distributed executive implementing this schedule. Experimental 

results show that RDFS performs better than AAA-TP. Finally, 

we plan to experiment our method on an electric autonomous 

vehicle, with a 5-processor distributed architecture. 
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