
International Journal of Computer Applications (0975 – 8887)

Volume 36– No.5, December 2011

5

Reliability-Driven Fault Tolerant Scheduling Heuristics

for Distributed Embedded Real-Time Systems

Salim Kalla

Department of Computer
Science, University of Batna

Algeria

Hamoudi Kalla
Department of Computer

Science, University of Batna
Algeria

Chafik Arar
Department of Computer

Science, University of Batna
Algeria

ABSTRACT
We present a new scheduling approach to produce automatically

a fault tolerant distributed schedule for critical distributed and

real-time embedded systems. The approach that we propose take

as input a set of operations (tasks), a target distributed

architecture, some distribution constraints, some indications on

the execution times of the operations on the processors of the

target architecture, some indications on the communication

times of the data-dependencies on the media communications of

the target architecture, and the reliability of processors. IT

produces a fault-tolerant distributed and static scheduling of the

operations on the architecture, with an indication whether or not

the real-time constraints are satisfied. The scheduling approach

that we propose for architectures with multiple processors linked

by a set of channels (links), consist of a list scheduling heuristic

based on active replication strategy. In order to reduce the

probability of fault occurrence, the replication process of each

operation is based on a Global System Failure Rate (GSFR)

objective function. Finally, simulation results show the

performance of our approach.

Keywords

Embedded systems, distributed systems, real-time systems, fault

tolerance, transient faults, reliability, scheduling heuristics,

active replication.

1. INTRODUCTION
Heterogeneous systems are being increasingly used in a major

part of critical applications as transportations (aircrafts,

automobiles …), nuclear, robotics and telecommunication. In

these systems critical real-time constraints must be satisfied [1],

where timing constraints which are not met may involve a

system failure leading to a human, ecological, and/or financial

disaster. One of the major problems of these systems is

dependability [2, 3], where the malfunction or the failure of

systems components (hardware or software) can lead to a

catastrophe. The dependability of such real-time systems can be

increased through hardware or software fault tolerance

techniques, where a system built with fault tolerance capabilities

will manage to keep operating in the presence of failures [4].

Hardware fault tolerance improves dependability of distributed

real-time systems by adding extra hardware (processors,

communications media, actuators, sensors) into the system [5].

However, hardware fault tolerance techniques are not preferred

in most embedded systems due to the limited resources available

because of weight, encumbrance, energy consumption (e.g.,

autonomous vehicles), radiation resistance (e.g., nuclear or

space), or price constraints (e.g., consumer electronics). Critical

embedded systems are increasingly use software fault tolerance

to achieve the required dependability [6].

In this paper, we propose a new scheduling algorithm that

generates a fault tolerant distributed static schedule, called

Reliability-Driven Fault tolerant Scheduling heuristics (RDFS).

This algorithm is different than the ones that we have proposed

in [7, 8, 9] in the sense that we use active replication of

operations and reliability measures to improve both the system's

fault tolerance and the schedule length (and hence the system's

run-time). The scheduling approach (Figure 1) that we propose

for architectures with multiple processors linked by a set of

channels (links), consist of a list scheduling heuristic based on

two costs functions: the schedule pressure and the Global

System Failure Rate (GSFR).

Fig 1: Our approach

The paper is structured as follows. Section 2 gives related work

on fault tolerance. Section 3 presents the system and the

reliability models. Section 4 proposes our RDFS scheduling

algorithm; an example is detailed in Section 5. Section 6 gives

performances evaluation of our algorithm, and finally the article

concludes in Section 7.

2. RELATED WORK
In the past decade of fault tolerant systems research, an array of

fault tolerant scheduling heuristics has been proposed [10, 11,

12, 13]. However, a few works is done to take into account

reliability and real-time criteria at the same time when

scheduling tasks when tolerating failures. In [14], Dogan et al.

propose a scheduling heuristic algorithm for heterogeneous

architectures that optimizes both the execution time and the

reliability of the system. It is called Reliable Dynamic Level

ALG

ARC

algorithm
graph

ALG architecture
graph

ALG

Fault hypothesis
NPF

execution
characteritics

distribution
constraints

Distribution & Scheduling
Heuristic

DIS

EXE

Distributed fault-tolerant, and
real-time schedule

Reliability

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.5, December 2011

6

Scheduling (RDLS) which is a variant of the Dynamic Level

Scheduling algorithm (DLS) [15]. The authors add a reliability

term to the cost function of DLS to take into account the

reliability. The main difference between the RDLS heuristic and

our algorithm is that the user can tolerate failures.

Several scheduling heuristics have been proposed to tolerate

exclusively processor faults. They are based on active software

redundancy [16, 9] or passive software redundancy [17, 18]. In

active redundancy, multiple replicas of a task are scheduled on

different processors, which are run in parallel to tolerate a fixed

number of processor faults. [16] presents an off-line scheduling

algorithm that tolerates a single processor faults in

multiprocessor systems, while [9] tolerates multiple processor

faults. In passive redundancy, also called primary/backup

approach, a task is replicated into one primary and several

backup replicas, but only the primary replica is executed. If it

fails, one of the backup replicas is selected to become the new

primary. For instance, [18] presents a scheduling algorithm that

tolerates one processor fault.

In [19], failures are tolerated using the fault recovery scheme

and a primary/backups strategy. In [20], Dima et al. propose an

original off-line fault tolerant scheduling algorithm which uses

the active replication of tasks and communications to tolerate a

set of failure patterns; each failure pattern is a set of processor

and/or communications media that can fail simultaneously, and

each failure pattern corresponds a reduced architecture. The

proposed algorithm starts by building a basic schedule for each

reduced architecture plus the nominal architecture, and then

merges these basic schedules to obtain a distributed fault

tolerant schedule. It has been implemented very recently by

Pinello et al. [21].

The heuristics presented in this paper is our most recent work

for integrating fault tolerance in the SynDEx tool (http://www-

rocq.inria.fr/syndex), a system level CAD software tool for

optimizing the implementation of real-time embedded

applications on multi-components architectures. Prior work has

been published in [22, 23, 24, 9].

3. MODELS

3.1 Algorithm
The algorithm is modeled by a data-flow graph, called algorithm

graph and noted ALG. Each vertex of ALG is an operation

(task) and each edge is a data-dependence. A data-dependence

corresponds to a data transfer from a producer operation to a

consumer operation, defining a partial order on the execution of

operations. This partial order relation is denoted by ''''. Based

on this partial order, we say that o2 is a successor of o1 if

(o1o2), and symmetrically that o1 is a predecessor of o2. We

also say that o1 is the source of the data dependence (o1o2)

and that o2 is its destination. An operation of ALG can be either

an external input/output operation or a computation operation.

Operations with no predecessor (resp. no successor) are the

input interfaces (resp. output), handling the events produced by

the sensors (resp. actuators). The inputs of a computation

operation must precede its outputs. Moreover, computation

operations are side-effect free, i.e. the output values depend only

of the input values. The algorithm graph is executed repeatedly

at each input event from the sensors in order to compute the

output events for the actuators; each execution is called an

iteration. Such a model is commonly used to specify periodic

sampled systems, which constitute most of embedded control

systems. For instance, it is used in many automotive and civil

avionics applications.

Figure 2 is an example of an algorithm graph, with six

operations v1, v2, v3, v4, v5 and v6. The data-dependencies

between operations are depicted by arrows. For instance, the

data-dependency v1 v4 corresponds to the sending of some

arithmetic result computed by v1 and needed by v4.

Fig 2: Example of an algorithm graph ALG

3.2 Architecture
The architecture is modeled by a graph, where each node is a

processor, and each edge is a communication link. Classically, a

processor is made of one computation unit, one local memory,

and one or more communication units, each connected to one

communication link. Communication units execute data

transfers. We assume that the architecture is heterogeneous and

fully connected.

Figure 3 is an example of ARC, with four processors P1, P2, P3

and P4, and six communications links L12, L23, L34, L14, L13

and L24.

Fig 3: Example of an architecture graph ARC.

3.3 Execution
One of the characteristics of our real-time systems is that they

are based on cyclic executive; this means that a fixed schedule

of the operations of ALG is executed cyclically on ARC at a

fixed rate. This schedule must satisfy: one real-time constraint

RTC (the length of the schedule must be less than RTC), and a

set of distribution constraints DIS (each one specifying that one

operation of ALG cannot be executed on one processor of

ARC). In our execution model EXE, we associate to each

processor p a list of pairs (o, exe), where d is the worst case

execution time (WCET) of the operation o on the processor p.

Also, we associate to each communication link l a list of pairs

(dpd, c), where c is the worst case transmission time (WCTT) of

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.5, December 2011

7

the data-dependency dpd on the communication link l. Since the

target architecture is heterogeneous, the WCET (resp. WCTT)

for a given operation (resp. data-dependency) can be distinct on

each processor (resp. link). Finally, specifying the distribution

constraints DIS amounts to associating the value '''' to some

pairs of p, (o,) meaning that o cannot be executed on p.

For instance, EXE for ALG and ARC of Figure 2 and Figure 3 is

given in Figure 4 and Figure 5.

Fig 4: Execution times.

Fig 5: transmission times.

3.4 Fault Model and Problem Definition
We assume only hardware components (processors and

communication links) failures and we assume that the algorithm

is correct w.r.t. its specification, i.e., it has been formally

validated, for instance with model checking and/or theorem

proving tools. We assume that at most NPF (Number of

Processor Failures) processor faults can arise in the system. The

failure of a processor has an exponential distribution [25], i.e., it

follows a Poisson law with a constant failure rate .

Furthermore, components failures are assumed to be

independent. For instance, Figure 6 gives the failure rates of the

processors and communication links of the architecture of

Figure 3.

Fig 6: Failure rates for system components.

Our goal is to produce automatically a fault-tolerant distributed

static schedule of a given algorithm ALG onto a given

distributed architecture ARC, which must satisfy a set of

constraints. Actually, we want to solve the following problem:

Given:

 a distributed heterogeneous architecture ARC

composed of a set P of processors and a set L of links:

P ={…, pi,…}, L ={…, Lj,…}

 an algorithm ALG composed of a set O of operations

and a set E of data-dependencies:

O = {…, oi, …, o_j,…}, E = { …,(oi oj), …}

 all the execution characteristics EXE of the software

components of ALG onto the hardware components of

ARC,

 several distribution constraints DIS (if any),

 a real-time constraint RTC,

 a number NPF of processor faults that may affect the

system, with NPF<|P|,

the problem is to find a distributed static schedule of ALG onto

ARC, which minimizes the system's run-time (makespan),

maximizes system reliability and tolerates NPF processors with

respect to RTC, EXE, and DIS.

The makespan, noted by RTsched, is the end execution time of the

operation that is completed last among all operations. It is

computed as follows:

where end(oi, pj) is the time at which operation oi terminates its

execution on processor pj.

4. THE PROPOSED ALGORITHM
Our solution is based on active redundancy and on a global

system failure rate (GSFR). The GSFR is the failure rate per

time unit of the obtained multiprocessor schedule. Using the

GSFR is very satisfactory in the area of periodically executed

schedules. This is the case in most real-time embedded systems,

which are periodically sampled systems. In such cases, applying

brutally the exponential reliability model yields very low

reliabilities due to very long execution times (the same remark

applies also to very long schedules). Hence, one has to compute

beforehand the desired reliability of a single iteration from the

global reliability of the system during its full mission; but this

computation depends on the total duration of the mission (which

is known) and on the duration of one single iteration (which may

not be known because it depends on the length of the schedule

under construction). In contrast, the GSFR remains constant

during the whole system’s mission: the GSFR during a single

iteration is by construction identical to the GSFR during the

whole mission.

Our fault tolerance heuristic is GSFR-based to control precisely

the scheduling of the NPF+1 replicas of each operation from the

beginning to the end of the schedule.

The GSFR of scheduling NPF+1 replicas of an operation oi,

noted (Soi), is computed by the following equation:

 (1)

The reliability R(Soi) is computed, for each operation oi and

each processor p, by the following equation:

 (2)

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.5, December 2011

8

The total utilization of the hardware resources U(Soi) is

computed, for each operation oi and each processor p, by the

following equation:

 (3)

Our scheduling algorithm is a greedy list scheduling heuristic,

which schedules one operation at each step n. It generates a

distributed static schedule of a given algorithm ALG onto a

given architecture ARC, which minimizes the system's run-time,

and tolerates upto NPF processors, with respect to the real-time

constraint RTC and the distribution constraints DIS. At each

step of the greedy list scheduling heuristic, GSFR and schedule

pressure are used as a cost function to select the best operation

to be scheduled.

The schedule pressure function, noted (n), is computed, for each

operation oi and each processor pj, as follows:

 (4)

where S(n)
oi,pj is the earliest time at which operation oi can start

its execution on processor pj (computed in absence of faults),

S(n)
oi is the latest start time from end of oi (defined to be the

length of the longest path from the outputs operations to oi, and

R(n-1) is the critical path length at step (n-1) (that is, before

scheduling oi. The schedule pressure measures how much the

scheduling of an operation lengthens the critical path of the

algorithm in the absence of processors failures. For more details,

please refer to [23].

The algorithm is divided into four steps: initialization step,

selection step, distribution and scheduling step, and finally an

update step. The superscript number in parentheses refers to the

steps of the heuristic, e.g., O(n)
sched.

The RDFS Algorithm

--

Inputs = ALG, ARC, NPF, EXE, RTC, Rel and DIS;

Output = a fault-tolerant multiprocessor static schedule;

Initialization Step

- Compute the set  of all arbitrary combinaison of NPF+1

processors;

- Initialize the sets of candidate operations Ocand and

scheduled operations Osched

 O(1)
cand := {operations of ALG without predecessors};

 O(1)
sched := ;

Distribution and Scheduling Loop

While O(n)
cand   do

Selection

 - select for each candidate operation ocand of O(n)
cand a set

 Pbest   of NPF+1 processors that minimizes the schedule

 pressure function such that (Soi) < Rel;

 - select for each candidate operation ocand of O(n)
cand, among

 the processors Pbest(ocand), the best processor Pbest that

 maximizes the schedule pressure function;

 - select, among all the pairs (ocand, Pbest), the best pair

 (obest,Pbest) that maximizes the schedule pressure function;

Distribution and Scheduling

 - Let Pbest(obest) be a best set of NPF+1 processors of obest

 computed at the selection step;

 - Schedule each replica ok
best on the processor Pk

best of

 Pbest(obest).

Update Sets

 - Update the sets of candidate and scheduled operations for

 the next step (n+1):

 O(n+1)
sched := O(n)

sched U {obest};

 O(n+1)
cand := O(n)

cand - {obest} U {onew successors of obest

 | {predecessors of onew}  O(n+1)
sched };

end While

--

End of the algorithm

The initialization step involves initializing the list of candidate

operations O(1)
cand with the operations without predecessor.

Later, an operation is said to be a candidate if all its

predecessors are already scheduled. Moreover, the list of

scheduled operations O(1)
sched is initially empty.

In the selection step, for each candidate operation ocand of

O(n)
cand, a set Pbest of NPF+1 processors is selected among all the

processors of P to schedule NPF+1 replicas of ocand. The rule of

selection is based on the schedule pressure function and the

GSFR function. Note that, since all candidates operations at step

n have the same value R(n-1), it is not necessary to compute R(n-1).

The set Pbest of each candidate operation ocand is composed from

NPF+1 processors that minimize the schedule pressure, i.e.,

processors that minimize the length of the schedule. Then,

among all these candidates operations, the most urgent candidate

obest, with a processor pbest of Pbest(obest) that maximizes this

function, is selected to be placed and scheduled.

The distribution and scheduling step involves first replicating

the best candidate obest into NPF replicas, and second scheduling

each replica ok
best of obest respectively onto the processor pk

 best of

Pbest.

The updating step involves updating the list of scheduled

operations and then the list of candidates operations. The

scheduled operation obest is removed from O(n)
cand, while the new

operations added to O(n)
cand are the operations of ALG which

have all their predecessors in the new list of scheduled

operations.

5. AN EXAMPLE
We have implemented our RDFS heuristic within the SynDEx

tool [26], a system level CAD software tool for optimizing the

implementation of real-time embedded applications on multi-

component architectures. To illustrate the principles of our

heuristic, we apply it to the example of Figure 2 for ALG and

Figure 3 for ARC. The execution characteristics are specified by

Figure 4 and Figure 5. The user requires the system to tolerate

one processor failure, i.e., NPF=1.

We obtain the fault tolerant schedule presented in Figure 7 (a

screen capture from SynDEx). Each operation of the algorithm

graph is replicated twice and these replicas are assigned to

different processors; furthermore, each replica receives its inputs

twice and from disjoint paths.

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.5, December 2011

9

0,9999990

0,9999991

0,9999992

0,9999993

0,9999994

0,9999995

0,9999996

0,9999997

0,9999998

0,9999999

1,0000000

10 20 30 40 50 60 70 80 90 100

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80 90 100

Fig 7: A final fault tolerant schedule of ALG on ARC.

6. SIMULATIONS

To evaluate our heuristic, we have applied the RDFS heuristic to

a set of random algorithm graphs and a heterogeneous and

completely connected architecture graph composed of 4, 5 and 6

processors. The following figures have been obtained by

generating randomly 50 ALG graphs of 10,20,…,100 operations

each, with a CCR set to 0.1, 1, 10. CCR (Communication-to-

Computation Ratio) is the ratio between the average

communication cost (over all the data dependencies) and the

average computation cost (over all the operations).

A random algorithm graph is generated as follows: given the

number of operations N, we randomly generate a set of levels

with a random number of operations. Then, operations at a given

level are randomly connected to operations at a higher level. The

execution times of each operation are randomly selected from a

uniform distribution with the mean equal to the chosen average

execution time. Similarly, the communication times of each data

dependency are randomly selected from a uniform distribution

with the mean equal to the chosen average communication time.

The advantage of this method is that the randomly generated

algorithm graphs are as close as possible to real applications: in

particular, the nodes are not generated randomly but within a

square matrix whose height and width depend on the total

number of nodes N.

The general objective of our simulations is to study the impact

of the number of processors P, number of operations N, and

CCR on the schedule length and reliability introduced by RDFS

and the fault tolerance heuristic AAA-TP presented in [9].

Figure 8 shows the impact on schedule length obtained by AAA-

TP and RDFS with respect to GSFR, averaged over 50 ALG

graphs, for each N, P=4, NPF=2, and CCR=1. As we can see,

the schedule length grows almost linearly when N increases

from 10 to 100.

Fig 8: Impact on schedule length of the number of

operations for CCR=1 and P=4.

Figure 9 shows the impact on reliability obtained by RDFS and

AAA-TP with respect to GSFR, averaged over 50 ALG graphs,

for each N, P=4, NPF=2, and CCR=1. As we can see, RDFS

performs better than AAA-TP.

Fig 9: Impact on reliability of the number of operations for

CCR=1 and P=4.

Figure 10 shows the impact on schedule length obtained by

RDFS and AAA-TP with respect to GSFR, averaged over 50

ALG graphs, for each N=50, NPF=2, and CCR=1.

R
el

ia
b

ili
ty

Number of operations

Number of operations

Sc
h

ed
u

le
 le

n
gt

h

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.5, December 2011

10

0

200

400

600

800

1000

1200

1400

1600

4 5 6

0

2000

4000

6000

8000

10000

12000

14000

0.1 1 10

Fig 10: Impact on schedule length of number of processors

for: CCR=1 and N=50.

Figure 11 shows the impact on schedule length obtained by

RDFS and AAA-TP with respect to GSFR, averaged over 50

ALG graphs, for N=50, P=4, and NPF=2.

Fig 11: Impact on schedule length of CCR for: P=4 and

N=50.

Figure 11 shows that, when the average communication time is

strictly greater than the average execution time, the schedule

length increase. This is due to the communication overhead.

In this simulation, RDFS outperforms AAA-TP, and AAA-TP is

less efficient for the reliability.

7. CONCLUSION
The literature about fault-tolerance of distributed and/or

embedded real-time systems is very abundant. Yet, there are few

attempts to combine fault-tolerance and automatic generation of

distributed code for embedded systems. In this paper, we have

studied this problem and proposed a software implemented

fault-tolerance solution based on GSFR.

We have proposed a new scheduling heuristic, called RDFS,

which produces automatically a static distributed fault-tolerant

schedule of a given algorithm ALG on a given distributed

architecture ARC. Our solution is based on the software

redundancy of both the computation operations and the

communications. All replicated operations send their results but

only the one which is received first by the destination processor

is used; the other results are discarded. The implementation uses

a scheduling heuristic for optimizing the critical path of the

distributed algorithm obtained. SynDEx is able to generate

automatically executable distributed code, by first producing a

static distributed schedule of a given algorithm on a given

distributed architecture, and then by generating a real-time

distributed executive implementing this schedule. Experimental

results show that RDFS performs better than AAA-TP. Finally,

we plan to experiment our method on an electric autonomous

vehicle, with a 5-processor distributed architecture.

8. REFERENCES
[1] Rushby, J. Critical System Properties: Survey and

Taxonomy Reliability Engineering and Systems Safety,

1994, 43, 189-219

[2] Suri, N. & Ramamritham, K. Editorial: Special Section on

Dependable Real-Time Systems IEEE Trans. on Parallel

and Distributed Systems, 1999, 10, 529-531

[3] Avizienis, A.; Laprie, J. & Randell, B. Fundamental

Concepts in Dependability 3rd IEEE Information

Survivability Workshop, ISW'00, 2000, 7-12

[4] Jalote, P. Fault-Tolerance in Distributed Systems Prentice-

Hall, 1994

[5] Kopetz, H. & Bauer, G. The Time-Triggered Architecture

Proceedings of the IEEE, 2003, 91, 112-126

[6] Torres-Pomales, W. Software Fault Tolerance: a Tutorial

2000

[7] Girault, A. & Kalla, H. A Novel Bicriteria Scheduling

Heuristics Providing a Guaranteed Global System Failure

Rate IEEE TRANSACTIONS ON DEPENDABLE AND

SECURE COMPUTING, 2009, 6, 241-254

[8] Assayad, I.; Girault, A. & Kalla, H. A Bi-Criteria

Scheduling Heuristics for Distributed Embedded Systems

Under Reliability and Real-Time Constraints International

Conference on Dependable Systems and Networks,

DSN'04, IEEE, 2004, 347-356

[9] Girault, A.; Kalla, H.; Sighireanu, M. & Sorel, Y. An

Algorithm for Automatically Obtaining Distributed and

Fault-Tolerant Static Schedules International Conference

on Dependable Systems and Networks, DSN'03, IEEE,

2003

[10] Chen, H.; Luo, W.; Wang, W. & Xiang;, J. A novel real-

time fault-tolerant scheduling algorithm based on

distributed control systems International Conference on

Computer Science and Service System, 2011

[11] Chen, J.; Yang, C.; Kuo, T. & Tseng;, S. Real-Time Task

Replication for Fault Tolerance in Identical Multiprocessor

Systems 13th IEEE Symposium on Real Time and

Embedded Technology and Applications, 2007

[12] Gan, J.; Gruian, F.; Pop, P. & Madsen, J. Energy/reliability

trade-offs in fault-tolerant event-triggered distributed

embedded systems 16th Asia and South Pacific on Design

Automation Conference, 2011

[13] Jinyong, Y.; Hanguang, S.; Li, Y. & Qiangqiang, C. A

Real-time Fault-tolerant Scheduling Algorithm for

Software/Hardware Hybrid Tasks International Conference

Sc
h

ed
u

le
 L

en
gt

h

Sc
h

ed
u

le
 L

en
gt

h

Number of processors

CCR

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.5, December 2011

11

on Mechatronic Science, Electric Engineering and

Computer, 2011

[14] Dogan, A. & Özgüner, F. Matching and Scheduling

Algorithms for Minimizing Execution Time and Failure

Probability of Applications in Heterogeneous Computing

IEEE Trans. on Parallel and Distributed Systems, 2002, 13,

308-323

[15] Sih, G. & Lee, E. A Compile-Time Scheduling Heuristic

for Interconnection Constraint Heterogeneous Processor

Architectures IEEE Trans. on Parallel and Distributed

Systems, 1993, 4, 175-187

[16] Hashimoto, K.; Tsuchiya, T. & Kikuno, T. Effective

Scheduling of Duplicated Tasks for Fault-Tolerance in

Multiprocessor Systems IEICE Trans. on Information and

Systems, 2002, E85-D, 525-534

[17] Ahn, K.; Kim, J. & Hong, S. Fault-Tolerant Real-Time

Scheduling using Passive Replicas Pacific Rim

International Symposium on Fault-Tolerant Systems,

PRFTS'97, 1997

[18] Qin, X.; Jiang, H. & Swanson, D. An Efficient Fault-

tolerant Scheduling Algorithm for Real-time Tasks with

Precedence Constraints in Heterogeneous Systems

International Conference on Parallel Processing, ICPP'02,

2002, 360-386

[19] Gummadi, K.; Pradeep, M. & Murthy, C. R. An Efficient

Primary-Segmented Backup Scheme for Dependable Real-

Time Communication in Multihop Networks IEEE/ACM

Trans. on Networking, 2003, 11

[20] Dima, C.; Girault, A.; Lavarenne, C. & Sorel, Y. Off-Line

Real-Time Fault-Tolerant Scheduling 9th Euromicro

Workshop on Parallel and Distributed Processing, PDP'01,

2001, 410-417

[21] Pinello, C.; Carloni, L. & Sangiovanni-Vincentelli, A.

Fault-Tolerant Deployment of Embedded Software for

Cost-Sensitive Real-Time Feedback-Control Applications

Design, Automation and Test in Europe, DATE'04, IEEE,

2004

[22] Girault, A.; Kalla, H. & Sorel, Y. Transient Processor/Bus

Fault Tolerance for Embedded Systems IFIP Working

Conference on Distributed and Parallel Embedded Systems,

DIPES'06, Springer, 2006, 135-144

[23] Girault, A.; Kalla, H. & Sorel, Y. A Scheduling Heuristics

for Distributed Real-Time Embedded Systems Tolerant to

Processor and Communication Media Failures International

Journal of Production Research, 2004, 42, 2877-2898

[24] Girault, A.; Kalla, H. & Sorel, Y. An Active Replication

Scheme that Tolerates Failures in Distributed Embedded

Real-Time Systems IFIP Working Conference on

Distributed and Parallel Embedded Systems, DIPES'04,

Kluwer Academic Publishers, 2004

[25] Shatz, S.; Wang, J. & Goto, M. Task Allocation for

Maximizing Reliability of Distributed Computer Systems

IEEE Trans. on Computers, 1992, 41, 1156-1168

[26] Grandpierre, T. & Sorel, Y. From Algorithm and

Architecture Specifications to Automatic Generation of

Distributed Real-Time Executives: A Seamless Flow of

Graphs Transformations International Conference on

Formal Methods and Models for Codesign,

MEMOCODE'03, IEEE, 2003.

