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ABSTRACT 

Unconstrained growth of synaptic activity and lack of references 

to synaptic depression in Hebb‟s postulate have diminished its 

value as a learning algorithm. The existing synaptic scaling 

mechanisms such as weight normalization, threshold updating, 

and spike time dependent plasticity have greatly contributed to 

address these issues in Hebb‟s postulate. However, all these 

mechanisms are based on the networks with single synaptic 

connection between neurons which process according to a 

central clock. This article presents a new threshold updating 

mechanism which behaves similar to the biological process 

called Homeostatic synaptic plasticity process and helps Hebb‟s 

presynaptic neuron to stabilize its activity in a dynamic 

stochastic multiple synaptic network. Our modeled network had 

neurons that (1) processed signals in different time scales, (2) 

having dynamic and multiple synaptic connections between 

neurons. And these synapses were modeled as stochastic 

computational units which had computational power to calculate 

their own signal release probability as a function of signal 

arrival time to these synapses, and (3) neurons regulated their 

own local excitation through the threshold updating mechanism. 

Under these significant features of the modeled network, the 

examined neuron exhibited the behavior similar to the 

presynaptic neuron of Hebb‟s postulate when its activity 

synchronized with the postsynaptic neuron‟s activity. And it 

demonstrated the behavior similar to the Stent‟s and Lisman‟s 

anti-Hebbian postulates when its activity asynchronized with the 

activity of the postsynaptic neuron.  
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1. INTRODUCTION 
Although it has been more than a half a century since Hebb‟s 

postulate was introduced by the Donald Hebb [1], it still 

deserves careful analysis about its behavioral explanation about 

the two neurons when their association account for learning; 

though it has been widely applied in the field of neural network, 

the lack of references to synaptic depression and unconstrained 

growth of synaptic gain have diminished its value as a learning 

algorithm. The issue of unconstrained gain of synapses in 

Hebbian learning based neural networks called node saturation 

abolishes the sensitivity of the entire network to the external 

updates. The approaches that have been taken so far to 

overcome the issues in Hebb‟s postulate can be classified mainly 

into three categories; techniques based on weight scaling or 

weight normalization [2, 3, 4, and 5], threshold updating 

mechanisms such as BCM theory [6] and algorithms based on 

Spike Time Dependent Plasticity (STDP) [7, 8, 9]. Weight 

normalization in unsupervised competitive Hebbian learning 

algorithm receives great attention because of their mathematical 

plausibility of explaining the effect of weight constraints very 

clearly on the behavior of the networks. However it has been 

shown that dynamic behavior [3] and learning ability [4 and 5] 

of these networks highly depends on the enforced weight 

constraints. BCM theory is another significant theory based on 

Hebb‟s postulate. This theory explains the synaptic activity as a 

temporal competition between input patterns and explains the 

dynamics of a neuron as a function of postsynaptic response. 

Synaptic inputs that drive postsynaptic firing to higher rate than 

a threshold value result in an increase of synaptic strength by 

inducing long-term potentiation (LTP) while synaptic inputs that 

drive postsynaptic firing to lower rate than the threshold value 

result in a decrease of synaptic strength by inducing long-term 

depression (LTD). Even though biological evidences support the 

sliding of threshold in neurons according to the sensitivity of the 

input it received, sliding of the threshold merely based on the 

postsynaptic activity as defined in the BCM theory is not 

directly biologically supported [10]. In addition, BCM theory 

considers instantaneous postsynaptic firing frequencies for its 

threshold updating mechanism rather than the effect of spike 

arrival time to the synapses. According to the latest biological 

findings, generation of LTP and LTD mainly depends on the 

spike arrival time to the synapses and the probability of spike 

release at these synapses is also controlled at synaptic levels 

than at neuronal levels [11, 12].  In contrast, STDP mainly 

depends on the timing between presynaptic and postsynaptic 

spikes. STDP is described by the window function that 

determines how the strength of synapses is modified by a pair of 

spikes. If presynaptic spikes occur before the postsynaptic 

spikes it strengthens the synaptic strength; if presynaptic spike 

occur after the postsynaptic spike it weakens the synaptic 

strength [13]. Although all these concepts are very important for 

a computational model, strengthening and weakening of 

synaptic connections further depend on other factors as well. 

Among them the most significant factors are: the number of 

synaptic connections between two neurons, type of postsynaptic 

neuron, the size of the postsynaptic depolarization and the 

probability of spike release at each synapse [14, 11, and 15]. In 

order to understand the effects of some of these factors on the 
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behavior of Hebb‟s presynaptic neuron, we modeled a fully 

connected network with four neurons. Our network structure 

supported four significant features: First, The modeled neurons 

processed signals in different timescales, namely, slow, fast and 

medium; this arrangement allowed us to analysis the effect of 

different time scales on the behavior of Hebb‟s neurons. Second, 

each neuron was attached a large number of stochastic 

computational units, called receptors and transmitters. And the 

receptors in a neuron were grouped to establish to dedicated 

connections between the transmitters of a particular presynaptic 

neurons. Thus, the transmitters of the presynaptic neuron and the 

receptors of the corresponding receptor group of the 

postsynaptic neuron build an artificial synaptic connection 

between the two neurons. Third, these stochastic computational 

units updated their signal releasing probability through their own 

local feedback process which sensed the excitation of the 

synapse they attached. Furthermore, the mathematical process of 

these computational units modeled the biological process that 

occurs in a single synapse. Doing so we assumed that above 

second and third properties enable multiple and dynamic 

synaptic connectivity between two neurons. Finally, to calculate 

the signal release probability at each signal, a stochastic 

computational unit accounted all the preceding released signals 

and summed their contributions. This approach drove the 

network to a saturated state (similar behavior is discussed in 

[16]).  Therefore in order to stabilize the network activity a new 

threshold updating mechanism was introduced. The introduced 

threshold updating mechanism helped the neurons to measure its 

own excitation in terms of its receptors and transmitters. These 

four features successfully regulated the excitation of Hebb‟s 

presynaptic neuron while demonstrating the behaviors 

characterized in fundamental theorems in the learning process, 

namely Hebb‟s postulate, Stent‟s anti-Hebbian postulate and 

Lisman‟s anti-Hebbian postulate. Further, the introduced new 

threshold updating mechanism demonstrated the behavior 

similar to the homeostatic synaptic plasticity process, a 

biological process that helps neurons to maintain their firing 

frequencies within a feasible range through synaptic 

redistribution [17, 18].  

The synaptic depression in Hebb‟s postulate has been 

physiologically discussed by Stent [19] as a complementary 

statement of Hebb‟s postulate, “When the presynaptic axon of 

cell A repeatedly and persistently fails to excite the postsynaptic 

cell B while cell B is firing under the influence of other 

presynaptic axons, metabolic change takes place in one or both 

cells such that A‟s efficiency, as one of the cells firing B, is 

decreased”. As per Stent, neuron A‟s activity is decreased when 

it fails to excite the postsynaptic cell B. This occurs when cell A 

fails to synchronize its activity with the other presynaptic 

neurons of the postsynaptic cell B. Stent explanation to A‟s 

synchrony can be quoted as follows, “The activity of the 

synapse of cell A upon cell B is manifestly asynchronous with 

the activity of synapses of other cells converging on cell B if 

most the impulses that arise in cell B occur while the synapse of 

cell A is inactive”. He has further added that this asynchrony 

between the presynaptic neuron and postsynaptic neuron is 

detected at postsynaptically. Lisman [20] called the Stent‟s 

synaptic depression „post-not-pre‟ anti-Hebbian process and he 

has discussed another possibility of synaptic depression in 

Hebb‟s postulate called „pre-not-post‟ anti-Hebbian process. 

Lisman‟s synaptic depression occurs “when the presynaptic 

input is active but the postsynaptic cell is not active because of 

inadequate excitation by other inputs or too much inhibition by 

other neurons”.  

2. NETWORK MODEL 
A fully connected network was developed with four artificial 

neurons; namely two input layer neurons A and B, and two 

hidden neurons C and D (no signals were externally fed into 

these hidden neurons).  Each modeled neuron had thousands of 

artificial stochastic units. These units were classified into two 

classes based on the role they played in the network. An 

artificial unit in a neuron was called a receptor if it took signals 

into the neuron otherwise it was called a transmitter which 

transmitted signals to its postsynaptic neurons (the neuron that 

received the signal). Moreover the receptors attached to a neuron 

were grouped so that when a presynaptic neuron (the neuron that 

transmitted the signal) wanted to contact a postsynaptic neuron, 

a transmitter in the presynaptic neuron could contact a receptor 

in the corresponding receptor group of the target postsynaptic 

neuron, see figure 1. Thus neurons connected with other neurons 

through an artificial synaptic connection which mediated the 

communication between transmitters of the presynaptic neuron 

and the corresponding receptor group of the postsynaptic 

neuron.  

 

 

 

 

 

 

 

Fig 1: Architecture of the network and neurons. The number 

of receptor groups in a neuron was equal to the number of 

presynaptic neurons the neuron communicated with. For 

example, if a transmitter in neuron C wants to contact neuron A, 

the transmitter should contact a receptor in the receptor-group C 

of neuron A. 

2.1 Signal Transmission in Computational 

Stochastic Units. 
The dynamic behavior of these artificial units was modeled as a 

two state (i.e., active and inactive) stochastic process and 

according to a predefined behavioral rule, Rule1: When a 

receptor receives a signal from the corresponding presynaptic 

neuron at time step t, the signal is propagated within the network 

according to following two conditions. Cond.1: Once the 

received signal is applied to the receptor, if the receptor updated 

itself to an inactive state then the received signal is not 

propagated any further. Otherwise the signal is propagated to a 

randomly selected transmitter of the same neuron. Cond.2: 

Once a transmitter of a particular neuron receives a signal at 

time step t, if the transmitter updated itself to an active state 

after receiving the signal, the signal is transmitted to a randomly 

selected receptor of the relevant receptor group of a randomly 



International Journal of Computer Applications (0975 – 8887) 

Volume 36– No.3, December 2011 

31 

RDB(θDB) 

RAB(θAB) 

TB(θB) 

TC(θC) 

A 

RAD(θAD) 

RAC(θAC) 

D 

RDA(θDA) 
TD(θD) 

B 

RBD(θBD) 
RBA(θBA) 

RBC(θBC) 

C 

RCB(θCB) 

RCA(θCA) 

RCD(θCD) 

TA(θA) 

RDC(θDC) 

selected postsynaptic neuron. Otherwise the received signal is 

dropped. This behavioral rule defined the underlying mechanism 

of signal transmission between a presynaptic neuron and a 

postsynaptic neuron; i.e., the signal was successfully transmitted, 

only when the connection between the transmitter of the 

presynaptic neuron and the receptor of the postsynaptic neuron 

were in active state. The total amount of input a particular 

neuron received at a given time step t was determined by the 

total number of active receptors in that neuron at the given time 

step t. Similarly, the total amount of output a neuron produced at 

a given time step t was determined by the number of active 

transmitters in that neuron at the given time step t. Moreover 

active and inactive states of these stochastic units were 

determined by a combined process of signal transmission and 

the newly introduced threshold updating mechanism.  

 

Dynamic stochastic states of these units were determined by 

adapting to the theory proposed by Maass and Zador [21] for a 

single synapse. Here we have mapped the process of a single 

synapse to a single stochastic unit (which allowed multiple and 

dynamic synaptic connectivity between neurons). Maass and 

Zador defined the single synapse response to its signal arrival 

times by a two state stochastic process. If )( itPs  is the 

probability that signal is released by the synapse S  at time it

and train ,..},...,,{ 21 ntttt   consists of exact signal releasing 

times of the synapse S , )(tS  consists of the sequences of times 

where the synapse S has successfully released the signals. The 

map )(tSt    at the synapse S forms a stochastic process with 

two states; i.e., Release (R) for )(tSti   and Failure of Release 

(F) for )(tSti  . The probability )( itPs  in Eq.(1) describes a 

signal release probability at time it  by the synapse S as a 

function of facilitation 0)( tC  in Eq.(2) and a depletion 

0)( tV  in Eq.(4) at time t. 0C and 0V are the facilitation and 

depression constants respectively. Function )(sC  given in Eq.(3) 

defines the response of )(tC  to presynaptic signal that had 

reached to the synapse S at time st  ;   is the magnitude of 

the response. Similarly )(sV   given in Eq.(5) models the 

response of )(tV  to the preceding releases of the synapse S at 

time tst   and, c  and v  are time decay constants of 

facilitation and depression. Maass and Zador allowed the 

synapse S  to release the signal at time t, if 0)( itPs . We 

updated this rule by introducing a new   threshold value. So 

that if )( itPs , an artificial stochastic unit S is allowed to 

release the received signal. And we called it is in active state.  
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2.2 Stabilizing Neuronal Activity 
A new threshold updating mechanism was introduced as an anti-

Hebbian mechanism to the network which increased the 

threshold values of responsible groups of a neuron when the 

neuron was excited (or decreased when the neuron was 

depressed). A neuron had four threshold values; one for each 

receptor-group (a modeled neuron had 3 receptor groups) and 

one for the transmitters. Let JIR  denotes the receptor group in 

neuron J that communicates with transmitters of the presynaptic 

neuron I, and let )(txJI be the output and )(tJI  be the 

threshold value of JIR at time step t. Similarly let IT denotes the 

transmitters in neuron I and let )(tOI be the output and )(tI  be 

the threshold value of IT at time step t.  The threshold value of 

the receptor-group JIR was defined as in Eq.(6) and it was 

exponentially increased as the activity of JIR  to IT is increasing 

(or decreased when the activity of JIR  to IT is decreasing). 

Threshold value for transmitters in neuron I, i.e. IT was defined 

as a function of total synaptic inputs from all its presynaptic 

neurons into the total output of the neuron I as in Eq. (7). Figure 

2 shows these terms in abstract form. 
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G is the number of components in G and )(GAct t  is the 

number of active components in G at time t. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Signal Transmission between neurons. The developed 

network had four neurons, each neuron had three „receptor-

groups‟, and set of „transmitters‟. )( IIT  denotes the 

„transmitters‟ in neuron I and its threshold value. Similarly, 

)( JIJIR  denotes the „receptor-group‟ in neuron J that is 

contacted by the „transmitters‟ in neuron I. For simplicity the 

figure illustrates the communication between the „transmitters‟ 

in neuron A with relevant the „receptor-groups‟ of postsynaptic 

neurons only. The dotted connected lines in the network indicate 

the dynamicity of the synaptic connection between neurons 

since it depends on the number of „active-transmitters‟ in neuron 

A, and the number of „active-receptors‟ in the relevant receptor-

group of the corresponding postsynaptic neurons. 
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3. EXPERIMENT 
Sine waves with variable frequency f, amplitude 0.2, 4/ offset 

and ],0[   length of time were applied to the input layer neurons 

externally. The frequency of the sine waves that was applied to 

neuron A, denoted by Af  ,was set to 1Hz while the frequency of 

the sine waves that was applied to neuron B, denoted by Bf  , 

was randomly selected from the ranges ((0.95,1.05), (0.5,0.8), 

(1.2, 1.5)) depending on the session neuron B was in (discuss 

later). Each generated sine wave was then digitized into square 

wave as a stream of one and zero. Each binary value in this 

stream represented a signal. Signals represented by binary one 

were applied to the network and signals represented by binary 

zero were neglected by the input layer neurons as defined in 

Rule 2. Rule 2: If an input layer neuron receives a signal which 

holds value zero at time step t, the signal is not fed to its 

receptor-groups at that time step t. If the received signal has 

value one and pr  , the signal is fed to each receptor-group of 

that input neuron. r is a random number in between 0 and 1 

which is generated at each time step t. p is the proportion of the 

number of active receptors to the total number of receptors in 

the target receptor-group. 

 

The parameter values of the stochastic computational units were 

set to model the effect of three different timescales on the 

developed neural network; slow, fast and medium. Generally a 

biological synapse exhibits mainly three different synaptic 

plasticities at a given time. A synapse is called a slow synapse if 

it exhibits long-term plasticity [14]. We can call a synapse is 

operating under a medium phase if it exhibits short-term 

plasticity [22], if a synapse operates in a fast time scale, it is 

called a fast synapse [23]. The stochastic computational units 

attached to neuron A and neuron B processed the signal similar 

to slow synapses while computational units in neuron C worked 

as fast synapses and computational units in neuron D processed 

the signals as medium phase synapses. This network 

arrangement was necessary to evaluate the Hebb‟s postulate 

because both presynaptic neuron and postsynaptic neuron in 

Hebb‟s postulate (in our case it is neurons A and B), require to 

have internal characteristics that support long-term plasticity 

(which is the main substrate for the formation of long-term 

memory). Therefore the values for the parameters c and v of 

theses computational units of the four neurons were taken from 

Maass and Zador [24] and are summarized in table 1. The values 

for the other parameters, i.e. 0C , 0V  and  were determined 

according to [21] which grants a higher probability to both 

neuron A and neuron B to remain in an active state while neuron 

C and neuron D demonstrate counter and neutralize behavior to 

these two input layer neurons respectively.  

Table 1. Neurons’ parameter values 

Neurons 
vc and  

0
C  

0
V    

A and B 30 min 1.5 0.5 0.7 

C 100 ms 0.5 1.5 0.7 

D 15 min 1.0 1.0 0.7 

 

Each experiment consisted of three uniform stages and each 

stage had two phases; namely correlated phase and uncorrelated 

phase. Further, each phase consisted of two sessions called 

training session and testing session. In between stages, in 

between phases and in between sessions, a random delay was 

introduced. The structure of a stage in an experiment is given in 

table 2. In correlated training sessions, Bf  was randomly 

selected from the interval (0.95, 1.05) Hz while at uncorrelated 

training sessions Bf was randomly selected either from interval 

(0.5, 0.8) Hz or from interval (1.2, 1.5) Hz. At all the testing 

sessions no signals were externally applied to input layer neuron 

B and threshold updating process was also not executed on the 

network. At the end of each training session, the threshold 

values of the receptors and the transmitters of all the four 

neurons were fixed to their final threshold values and these 

values were taken as constants throughout the corresponding 

testing session.  

Table 2. Structure of a stage 

Phase Correlated RD Uncorrelated 

Session Tr. RD Tst. RD Tr. RD Tst. 

RD stands for random delay, Tr. stands for Training and Tst. stands for 

Testing. 

Two experiments were conducted by switching the order of the 

stages to observe the effect of one stage on another and the 

consistency of the behaviors generated. Stages were named 

according to the signal processing time step value of the neuron 

A as given in table 3-4 (Each neuron was modeled using a Java 

thread by setting the neuron‟s signal processing time step value 

as the thread activation time. For example, when neuron A‟s 

signal processing time step was 1000 ms, A‟s thread was 

activated at every 1000 ms. When neuron A‟s thread got 

activated, it either received a signal to its receptor or its 

transmitter transmitted a signal to a postsynaptic neuron.). As 

given in table 3, at stage  each neuron had unique firing rate 

1Hz, tf /1 ; t is the time step. At stages  and  signal 

processing time steps of neuron A were 2000 ms (0.5 Hz) and 

500 ms (2 Hz) respectively. Therefore, at stage  , neuron A was 

slower than the rest of the other neurons in the network. 

Moreover, each neuron had 60,000 artificial stochastic units 

which were equally distributed between transmitters and 

receptors of that neuron. And receptors in a neuron were 

uniformly distributed between receptor groups. Initially one 

percent of the number of receptors in each receptor-group was 

set to active state. Similarly, one percent of the transmitters in a 

neuron were initially set to active state to study the neuronal 

growth and its stabilization. Moreover, within each session 20 

sine waves were externally applied to both input layer neurons, 

only if it was permitted by the relevant session. And at the end 

of each sine wave,   values of the four neurons were updated if 

it was allowed by the relevant session. Finally the number of 

active receptors and the number of active transmitters in neuron 

A at every 1000 ms were recorded to generate the outputs. 

Table 3. Signal processing time step value (t) of the neurons  

 Name of the stage 

Neurons   
 


 

A 1000 ms 2000 ms 500 ms 

B, C and D 1000 ms 1000 ms 1000 ms 
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Table 4. Order of the stages in each experiment 

 Order of the stages 

Experiment number 1st 2nd 3rd 

1   
 


 

2   
 

 

 

4. RESULTS 
The distributions of the number of active receptors and the 

number of active transmitters of neuron A at each stage of the 

two experiments are shown in figure 3-8. Each of these figures 

consists of two subfigures, (a) and (b). Sub figure (a) shows the 

distributions of the number of active receptors in neuron A while 

sub figure (b) illustrates the distributions of the number of active 

transmitters in neuron A. The boundary lines in these subfigures, 

i.e. CTr, CTs, UTr and UTs, specify the end of “correlated 

training”, “correlated testing”, “uncorrelated training” and 

“uncorrelated testing” sessions respectively. When discussing 

the behavior of neuron A at a given stage, the mean number of 

active transmitters in the neuron A at that stage was taken as the 

measurement because it denotes the average output produced by 

neuron A at the stage.  Similarly the average input that neuron A 

received at a stage is discussed in terms of the mean number of 

active receptors the neuron A had at that stage. 

 
   

 

 

 

 

   

Fig 3: Distributions of (a) the number of active receptors (b) the number of active transmitters, of neuron A at stage 1 of exp.1. 

 

 

 

 

 

 

Fig 4: Distributions of (a) the number of active receptors (b) the number of active transmitters, of neuron A at stage 2 of exp.1. 

 

 

 

 

      Fig 5: Distributions of (a) the number of active receptors (b) the number of active transmitters, of neurons A at stage 3 of exp. 1. 

 

 

    

 

 Fig 6: Distributions of (a) the number of active receptors (b) the number of active transmitters, of neuron A at stage 1 of exp.2.     
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Fig 7: Distributions of (a) the number of active receptors (b) the number of active transmitters, of neuron A at stage 2 of exp. 2. 

  

 

 

 

    Fig 8: Distributions of (a) the number of active receptors (b) the number of active transmitters, of neuron A at stage 3 of exp.2. 

5. DISCUSSION 

5.1 Behavior of neuron A at Correlated 

Phases 
Findings of the two experiments support fact that at all the 

correlated training sessions in spite of the signal processing time 

step of neuron A; i.e. At , neuron A has increased its average output 

(in terms of the mean number of active transmitters) when we 

moved from the 2nd stage to the 3rd stage in both experiments as 

summarized in table 5 (we could not evaluate the behavior of 

neuron A at the correlated training session of the 1st  stage because 

throughout the session neuron A was in a growth state). 

Conversely, at correlated testing sessions, we could see a 

continuous decrease in average output that was produced by 

neuron A in terms of the mean number of active transmitters when 

we moved from 2nd stage to 3rd stage of the both experiments, see 

table 5.  Although neuron A has stabilized its activity in terms of 

the output that it produced in both correlated training and 

correlated testing sessions, see figure 3-8, we could not see the 

properties of Hebb‟s postulate or its anti-Hebbian postulates at any 

correlated testing sessions as expected. This could be because of 

the strong binding of the activity between neuron A and neuron B 

due to the correlation of the sine waves applied to both neurons at 

the correlated training sessions of the two experiments.   

Table 5. Behavior of neuron A at Correlated Phase 

Experiment 
Number 

Stages 

1st stage 2nd stage 3rd stage 

1 

Name )1( HzfA 
 

)5.0( HzfA 
 

)2( HzfA 
 

Session  Correlated Training 

T  
N/A 19324.3 19341.4 

Session  Correlated Testing 

T  
19774.3 19286.2 19227.4 

2 
Name )1( HzfA   )2( HzfA   )5.0( HzfA   

Session Correlated Training 

T  N/A 19216.7 19238.5 

Session Correlated Testing 

T  19601.1 19437.0 19184.4 

The notation T denotes the mean number of active transmitters. 

N/A is used when neuron A showed a growth continuously 

throughout the stage.  
 

5.2  Behavior of neuron A at Uncorrelated 

Training Sessions 
In contrast to the correlated phase, behavior of neuron A at 

uncorrelated phase was different. The analysis of neuron A‟s 

behavior at the uncorrelated training session in experiment 1 

(summarized in table 6) shows that when we externally decreased 

the firing rate of neuron A when moving from stage  to stage  , 

neuron A has increased its average output in terms of the mean 

number of active transmitters to stabilize its behavior. Moreover, 

when we externally increased the neuron A‟s firing rate from 0.5 

Hz to 2 Hz at the uncorrelated training session of the experiment 1 

when moving from stage  to stage  , neuron A has decreased its 

average output in terms of the mean number of active transmitters 

to stabilize its behavior. Furthermore when we analyze the 

behavior of neuron A in experiment 2, we could see that, when we 

moved from stage  to stage   while externally increasing neuron 

A‟s firing rate from 1 Hz ms to 2 Hz (see table 6) it has further 

increased its average output in terms of the mean number of active 

transmitters instead of decreasing it. This behavior of neuron A 

contradicts with the observations at the uncorrelated training 

sessions of the 1st experiments. Nevertheless when we externally 

decreased neuron A‟s firing rate by moving further from stage   

to stage  , neuron A has increased its average output in terms of 

the mean number of active transmitters to stabilize its activity as 

expected. The behavior that was shown by neuron A when moving 

from stage   to stage   in experiment 2 may be because neuron 

A could not significantly detect the change we made to its signal 
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processing time step value as we discuss in section 5.3. However 

in general at all the uncorrelated training sessions of both 

experiments, neuron A has shown a resistance to the external 

manipulations and has been able to stabilize its behavior within 

each session. This resilient behavior of neuron A to external 

manipulations has been governed by the newly introduced 

threshold updating mechanism as discussed in section 5.4.   

5.3 Behavior of neuron a at Uncorrelated 

Testing Sessions 
At testing sessions we did not apply the threshold updating 

process to any neuron; however neuron A has stabilized its activity 

in terms of the mean output it produced while being responsive to 

the external updates that we made to its firing rate, see figure 3-8. 

Especially at uncorrelated testing sessions, neuron A has not only 

stabilized its activity but also has been able to demonstrate the 

behavior that is explained in Hebbian postulate and its anti-

Hebbian postulates. In experiment 1, when we decreased firing 

rate of neuron A from 1Hz to 0.5Hz when moving from stage  to 

stage   under the uncorrelated testing sessions, neuron A has 

decreased its average output in terms of the number of active 

transmitters, see table 6.  Moreover when we increased the firing 

rate of neuron A from 0.5 Hz to 2 Hz when moving from stage   

to stage  , the average output of neuron A has further decreased. 

We postpone the interpretation of this behavior of neuron A for a 

later discussion and move to analyze the neuron A‟s behavior in 

experiment 2.  In experiment 2, when we increased the neuron A‟s 

firing rate from 1 Hz to 2 Hz when moving from stage  to stage

 under the uncorrelated testing sessions, neuron A has increased 

its average output in terms of the mean number of active 

transmitters, see table 6. This observation and the decrease of the 

average output produced by neuron A at uncorrelated testing 

sessions of experiment 1 (when moving from stage  to stage   

of experiment 1) confirm the Stent‟s anti-Hebbian postulate.  

As per Stent neuron A which is the presynaptic neuron of the 

postsynaptic neuron B, decreases its activity (the mean output it 

produced) when its firing rate is asynchronous with the firing rate 

of other presynaptic neurons (C and D) of the postsynaptic neuron 

B. Stent has further described that this asynchrony is detected by 

the postsynaptic neuron B. Thus, according to Hebb‟s postulate 

and Stent‟s anti-Hebbian postulate, neuron A should always 

increase its output when we increase neuron A‟s firing rate from 

0.5 Hz to 1 Hz or from 0.5 Hz ms to 2 Hz.  And neuron A should 

always decrease its output when we decrease its firing rate from 2 

Hz to 0.5 Hz or from 1 Hz to 0.5 Hz (see table 6-7). When we 

increased the firing rate of neuron A from 1 Hz to 2Hz, neuron A 

continuously increased its average output in our experiment 2 

because neuron B could not detect any asynchrony from this 

change.  

Why did neuron A decreased its average output at uncorrelated 

testing sessions when moving from stage   to stage  in 

experiment 1 (see table 6)? This behavior of neuron A may have 

supported the Lisman‟s postulate of synaptic depression. 

According to Lisman, neuron A should decrease its average output 

when neuron A is in active state and postsynaptic neuron B is in 

inactive state due to inadequate excitation or inhibition by other 

neurons. We can see that at uncorrelated testing session of 

experiment 1, when moving from stage  to stage  , neuron A 

has decreased its average output (see table 6). Although we did not 

update the neuron B‟s signal processing time step value, this 

behavior of neuron A has influenced the neuron B to decrease its 

average output when moving from stage  to stage  in 

experiment 1 (see table 8). Here neuron B has decreased its 

average output by increasing the average input of the receptor-

group BAR that communicated with the transmitters of neuron A 

(see table 8). As discuss in the section 5.4, generally at 

uncorrelated testing sessions neuron A increased its average output 

by decreasing its average input in terms of the number of active 

receptors (refer table 6 under experiment 2). Therefore, we 

presume that the synaptic connections between neurons A and B 

was in a depression at stage  in experiment 1. This depression 

may have affected the neuron A to decrease its average output 

when moving from stage   to stage  . 

Table 6. Behavior of neuron A at Uncorrelated Phase 

Experiment 

Number 

Stages 

1st stage 2nd stage 3rd stage 

1 

Name 
)1( HzfA 

 
)5.0( HzfA 

 
)2( HzfA 

 

Session  Uncorrelated Training 

T  
19234.7 19347.7 19294.8 

R  
21873.5 22108.6 22121.3 

Session  Uncorrelated Testing 

T  19391.4 19269.1 19250.7* 

R  21994.5 22060.9 22018.8 

 

2 

Name 
)1( HzfA 

 
)2( HzfA 

 
)5.0( HzfA 

 

Session Uncorrelated Training 

T  19166.5 19213.4 19257.2 

R  21941.3 21779.3 22228.5 

Session Uncorrelated Testing 

T  
19246.5 19300.0 19219.9 

R  
22050.4 22048.7 22129.3 

The notations R denotes the mean number of active receptors, 

*Because of Lisman‟s effect neuron A might be in depression.       
 

 Table 7. Asynchrony detection at postsynaptic neuron B 

t (ms) Neuron A‟s firing rate Neurons C and 
D‟s firing rate 

2 Hz 

(1/500 ms) 

1 Hz 

(1/1000 

ms) 

0.5 Hz 

(1/2000 

ms) 

1 Hz  

(1/1000 ms) 

t + 500 √    

t + 1000 √ √  √ 

t +1500 √    

t +2000 √ √ √ √ 

Let t is an arbitrary time. Neuron B receives signals from neurons 

A, C and D concurrently at all the times only when A‟s firing rate 

is 2 Hz or 1 Hz 

 

Table 8. Neuron B at Uncorrelated Testing Session 

Experiment 

Number 

Stages 

1st stage 2nd stage 3rd stage 

1 Name )1( HzfA   )5.0( HzfA   )2( HzfA 
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T  19454.0 19358.3 19383.8 

R  22299.5 22279.5 22226.8 

BAR  7423.5 7456.9 7417.7 

BCR
 

7365.7 7348.6 7356.5 

BDR
 

7510.3 7473.9 7452.6 

5.4 Properties of the New Threshold Updating 

Mechanism 
The introduced threshold updating mechanism helped the neuron 

A to stabilize its activity throughout both experiments. It has 

demonstrated the behavior similar to homeostatic synaptic 

plasticity process [17, 18] identified in biological synapses only at 

the uncorrelated training sessions. During uncorrelated training 

sessions, the threshold updating mechanism helped neuron A to 

increase its average output when we decreased neuron A‟s firing 

rate from 1 Hz to 0.5 Hz and from 2 Hz ms to 0.5 Hz (see table 6).  

Also when we increased neuron A‟s firing rate from 0.5 Hz to 2 

Hz, the threshold updating mechanism helped neuron A to 

decrease its average output (see table 6).  Although we did not 

execute the threshold updating process on neurons at uncorrelated 

testing sessions, neuron A demonstrated the behavior characterize 

in Hebb‟s postulate and its anti-Hebbian postulates accordingly.  

Neuron A has shown these behaviors by appropriately updating its 

average input in terms of the mean number of active receptors. As 

shown in table 6 under uncorrelated testing sessions, when we 

externally decreased the firing rate of neuron A while moving 

from stage  to stage  in experiment 1 and while moving from 

stage  to   in experiment 2, neuron A has decreased its average 

output by increasing its average input. Conversely, when we 

externally increased the firing rate of neuron A while moving from 

stage  to stage   in experiment 2, neuron A has increased its 

average output by decreasing the average input. This internal 

metabolic changes of neuron A in terms of the number of active 

receptors and the number of active transmitters to generate 

appropriate output according to the external fluctuations under 

Hebb‟s postulate and its anti-Hebb‟s postulate has been defined in 

the  Levy and Desmond excitatory synaptic rules [25] and further 

biologically observed under the process of Synaptogenesis [17].  

6. CONCLUSION 
Neuron A which is the Hebb‟s presynaptic neuron of the 

postsynaptic neuron B stabilized its activity without any 

predefined constraints. Meanwhile it demonstrated the behavior 

characterized in Hebb‟s postulate and Stent‟s anti-Hebbian 

postulates during the uncorrelated phase with the support of newly 

introduced threshold updating mechanism which demonstrated the 

behavior similar to homeostatic synaptic plasticity mechanism. 

Therefore, we presume that the distinguished factors incorporated 

to our network, i.e. (1) neurons with different signal processing 

time scales, (2) the role of dynamic stochastic computational units 

which played the role of a single synapse allowing dynamic and 

multiple connectivity between neurons, and (3) the introduced 

threshold updating mechanism, have significantly contributed to 

regulate the Hebb‟s presynaptic neuron‟s excitation as defined in 

the basic learning postulates. 
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