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ABSTRACT 

The present study is focused on the multi-objective optimization 

of performance parameters such as specific energy (u), metal 

removal rate (MRR) and surface roughness(Ra) obtained in 

grinding of Al-SiC35P composites. The enhanced elitist non-

dominated sorting genetic algorithm (NSGA -II) is used to solve 

this multi-objective optimization problem. Al-SiC specimens 

containing 8 vol. %, 10 vol. % and 12 vol. % of silicon carbide 

particles of mean diameter 35µm, feed and depth of cut were 

chosen as process variables. A mathematical predictive model 

for each of the performance parameters was developed using 

response surface methodology (RSM). Further, an enhanced 

NSGA-II algorithm is used to optimize the model developed by 

RSM. Finally, the experiments were carried out to validate the 

results obtained from RSM and enhanced NSGA-II. The results 

obtained were in close agreement, which indicates that the 

developed model can be effectively used for the prediction. 
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1. INTRODUCTION 

The aluminium alloy reinforced with discontinuous ceramic 

reinforcements is rapidly replacing conventional materials in 

various aerospace and automobile industries. But grinding of 

DRACs is one of the major problems, which resist its 

widespread engineering application. When Al-SiC specimen 

slides over a hard cutting tool edge during grinding, due to 

friction, high temperature and pressure the particles of Al-SiC 

adhere to the grinding wheel which affects the surface quality of 

the specimen [1]. Hence, cost effective grinding with generation 

of good surface finish on the Al/SiC-MMC specimen during the 

grinding operation is a challenge to the manufacturing engineers 

in practice. 

Process modeling and optimization are two important issues in 

grinding. The grinding process is characterized by a multiplicity 

of dynamically interacting process variables. Surface finish, 

metal removal rate and specific energy are considered to be the 

important factors in predicting performance of grinding process. 

Several authors have developed the mathematical model for 

grinding process using RSM [2-5]. Wen et al. [6] applied 

quadratic programming [QP] to solve the problem by 

formulating the problem as a multi-objective function model. 

The optimization problem has also been solved applying various 

non-traditional optimization methods including genetic 

algorithms (GA) [7], particle swarm optimization (PSO) [8], 

scatter search (SS) [9], and differential evolution (DE) [10]. 

However, the classical multi-objective optimization technique, 

the method of weighted sum has been used in all these earlier 

works reported. Suresh et.al [11], applied genetic algorithm for 

optimization of surface roughness while machining mild steel 

using TiN-coated tungsten carbide tool. Saravanan et.al [12] 

applied multi-objective GA approach for optimization of 

grinding process and compared the results with quadratic 

programming and observed that improved results are obtained 

by GA approach. Hsu [13] demonstrated the superiority of GAs 

over other network capability in terms of its optimized search.  

Optimization of machining parameters not only increases the 

utility for machining economics, but also the product quality to a 

great extent [14]. As a result, there have been a great many 

research development in modeling of performance parameters in 

machining and optimization of controlling parameters to obtain 

an output of desired level [15]. But such studies are far from 

complete since it is very difficult to consider all the parameters 

that control the performance parameters of a particular 

manufacturing process [16]. 

The proposed study discusses the application of RSM and 

enhanced NSGA-II for the multi-objective optimization of 

grinding process during grinding of Al-SiC35P composites. The 

task is to maximise the metal removal rate, minimise the surface 

the roughness and specific energy while considering vol % of 

SiC, feed and depth of cut as the process variables. 

2. EXPERIMENTAL PROCEDURE 
Al-SiC specimens having aluminum alloy 6061 as the matrix 

and containing 8 vol.%,10 vol.% and 12 vol.%  of silicon 
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carbide particles of mean diameter 35µm by Stir casting process 

with pouring temperature 700-710°C, stirring rate 195rpm. The 

specimens were extruded at 457°C, with extrusion ratio 30:1, 

and direct extrusion speed 6.1m/min to produce length 120mm 

and Ø22mm cylindrical bars. The machined specimens were 

solution treated for 2 hours at a temperature of 540oC in a muffle 

furnace; Temperatures were accurate to within ±2oC and quench 

delays in all cases were within 20s. After solution treatment, the 

samples were water quenched to room temperature. Grinding 

method as machining process was selected. 

 

Table 1.  Levels of independent Factors 

Factors 

Levels 

Low(-1) Medium(0) High(+1) 

Percentage  SiC (X1)  8 10 12 

Feed (mm/s)  (X2) 60 70 80 

Depth of Cut (μm) (X3)  8 12 16 

 

Experiments were conducted on 1.5 HP, 2880rpm, conventional 

surface grinding machine (Bhuraji make) with automatic 

(hydraulic) table-feed and Norton make diamond grinding wheel 

ASD76R100B2. The honing stick having specification 

GN0390220K7V7 is used for dressing the wheel. The 

experiments were performed under dry conditions.  

The experiments were conducted with three levels and three 

factors. Vol % of SiC, table feed and depth of cut were chosen 

as the input parameters for evaluating the performance 

parameters; specific energy, metal removal rate and surface 

roughness.  

The levels and factors selected for the experimentation is given 

in Table 1. Selection of factors for optimization was based on 

preliminary experiments [17] and known instrumental 

limitations. The specific energy is calculated using the relation 
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where Ft is the tangential cutting force, vs is the peripheral speed 

of the grinding wheel, f is the table feed in mm/s, a is the depth 

of cut in mm and b is the width of cut in mm. The tangential 

cutting force necessary to calculate the specific energy is 

measured using Kistler dynamometer type 9272. 

Metal removal rate is calculated by volume of material loss/unit 

time after grinding process. The surface roughness of the 

specimen is measured using Taylor/Hobson surtronoic 3+ 

surface roughness measuring instrument 

3. RESULTS AND DISCUSSION 
The necessary data for building the response models are 

generally collected by the experimental design. In this study, the 

collections of experimental data were adopted using central 

composite design (CCD). The factorial portion of CCD is a full 

factorial design with all combinations of the factors at two levels 

(high, +1 and low, −1) and comprised of the six axial points and 

six central points (coded level 0) which is the midpoint between 

the high and low levels[18-20]. The axial points are on the face 

of the cubic portion of the design which corresponds to a value 

of rotatability index α =1 and this type of design is commonly 

called the face-centered CCD. Table 2 shows the data collected 

during the experimentation. 

The mathematical relationship between the responses, specific 

energy (u), MRR and surface roughness (Ra)  and the grinding 

variables SiC vol.% (X1), feed (X2), and depth of cut (X3) were 

established using experimental test results from a planned set of 

experiments; face-centered CCD.  The relationship between the 

performance parameters and grinding variables has been 

expressed as follows: 
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where 32,1
ˆˆˆ yandyy are the predicted responses for specific 

energy, metal removal rate and surface roughness respectively.

   

 

Table 2. Experimental results 

Sr. 

No 

Coded Values Actual values Response 

A B C 
SiC 

(Vol % ) 

(X1) 

Feed 

(mm/s) 

(X2) 

DOC 

(μm) 

(X3) 

Y1 

(u, J/mm3) 

Y2 

(MRR,   

mm3/s) 

Y3 

(Ra, μm) 

1 -1 -1 -1 8 60 8 99.044 7.324 1.05 

2  1 -1 -1 12 60 8 76.436 9.293 0.62 

3 -1  1 -1 8 80 8 148.768 6.054 1.15 
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4  1  1 -1 12 80 8 127.495 6.644 0.69 

5 -1 -1  1 8 60 16 70.483 11.915 1.13 

6  1 -1  1 12 60 16 66.933 14.102 0.80 

7 -1  1  1 8 80 16 134.844 8.962 1.29 

8  1  1  1 12 80 16 134.722 9.553 0.85 

9 -1  0 0 8 70 12 90.904 7.894 1.14 

10  1  0 0 12 70 12 65.471 8.558 0.75 

11  0 -1 0 10 60 12 70.565 12.31 0.85 

12  0  1 0 10 80 12 116.273 7.927 0.97 

13 0  0 -1 10 70 8 113.858 6.799 0.86 

14  0  0 1 10 70 16 85.552 9.877 0.95 

15  0  0  0 10 70 12 91.942 8.379 0.92 

16  0  0  0 10 70 12 95.097 8.994 0.95 

17  0  0  0 10 70 12 84.498 8.379 0.89 

18 0 0  0 10 70 12 88.498 8.364 0.92 

19 0  0 0 10 70 12 94.436 8.994 0.91 

20 0  0 0 10 70 12 95.543 8.979 0.93 

 

3.1 Non-dominated Sorting Genetic 

Algorithm-II (NSGA-II) 
In the following section the working of the NSGA-II algorithm 

is described as given in [21-22]. The original version has been 

enhanced by improving the non-dominated sorting method as 

given in [23]. This enhanced version is discussed further. 

In NSGA-II, first the offspring population Qt (of size N) is 

created using the parent population Pt (of size N), as shown in 

Figure 1. The usual genetic operators such as single-point 

crossover and bit-wise mutation operators are used in this 

process. Next, the two populations are combined to form an 

intermediate population Rt of size 2N. Thereafter, the fitness of 

each offspring in the 2N population is evaluated using the 

multiple objective functions.  At this stage, the non-dominated 

sorting procedure is carried out over the 2N population to rank 

and divide the individuals into different non-dominated fronts. 

Thereafter, the new parent population Pt+1 is created by choosing 

individuals of the non-dominated fronts, one at a time. The 

individuals of best ranked fronts are chosen first, followed by 

the next-best and so on, till N individuals are obtained 

Since the intermediate population Rt has a size of 2N, those 

fronts which could not be accommodated are discarded. In case 

there is space only for a part of a front in the new population, the 

individuals as per existing order are selected, so as to complete 

the new parent population.  

The complete NSGA-II procedure is explained below: 
BEGIN 

While generation count is not reached 

Begin Loop 

 Apply selection, crossover and mutation to new parent 

population Pt+1 and obtain the new offspring 

population Qt+1. 

 Combine parent Pt and offspring population Qt to 

obtain population Rt of size 2N. 

 Perform Non-dominated Sorting on Rt and assign 

ranks to each pareto front with fitness Fi. 

 Starting from the Pareto front with fitness F1, add each 

Pareto-front Fi to the new parent population Pt+1 until a 

complete front Fi cannot be included. 

 From the current Pareto-front Fi, add individual 

members to new parent population Pt+1 until it reaches 

the size N. 

 Increment generation count. 

End Loop 

END. 
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Fig 1: Working Principle of NSGA-II 

 

3.2 Enhanced Non-dominated Sorting 

Genetic Algorithm 
In the current enhanced version of non-dominated sorting 

genetic algorithm-II [23], sorting of individuals based on each of 

the objectives are performed, one after the other, till all 

objectives are considered. During this sort, the index of each 

individual is tracked so that the position value of any given 

individual in each sorted array is known. This information is 

critical since it helps in ranking the fronts in the next step.  

Each individual is ranked by summing up the position value of 

that individual in all the objectives. Since similar position values 

were assigned to individuals having similar objective values, the 

sum of the position values becomes equivalent to the rank which 

the individual would have obtained through non-dominated 

comparison. Hence the non-dominated sort is completed in a 

single iteration of the sorted individuals, thereby reducing the 

time required for processing each generation. 

The flow chart for optimization of the grinding of MMC using 

enhanced non-dominated sorting genetic algorithm is shown in 

Figure 2. In this figure, generate initial population means the 

possible solutions of the optimization problem, and each 

possible solution is called an individual. The possible solution is 

formed by binary strings of Vol % of SiC, feed and depth of cut. 

Later these binary strings are converted into decimals to obtain 

the output. Thus generated population is selected based on 

roulette wheel selection and they are arranged depending on the 

dominance of one solution over the other 

 

Fig 2: Flow chart of enhanced NSGA-II 

The crossover and mutation genetic operators are applied on the 

selected population in a manner similar to that used during 

single objective GA. For real parameter implementations, binary 

crossover and mutation operators are used. Further an elitist 

recombination strategy is used by combining the current 

population and the offspring population. For an initial 

population size of N, the combined population contains 2N 

members. The new population is obtained by picking members 
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Table 4  Validation of experimental results 

Test No. 

Process variables 

Method 

Performance Parameters 

SiC vol % 
Feed 

(mm/s) 

DOC 

(microns) 

Specific 

energy 

(J/mm3) 

MRR 

(mm3/s) 

Surface 

roughness 

(microns) 

1 10 60 12 

Experimental 70.565 12.31 0.85 

RSM 69.427 11.53 0.90 

NSGA-II 69.42 11.58 0.85 

2 8 60 12 

Experimental 77.17 9.96 1.07 

RSM 70.95 10.07 1.08 

NSGA-II 72.0 9.73 1.08 

. 

from each front successively until the size exceeds N. A suitable 

number of members from the first front that cannot be 

completely added are then picked so that a total of N members 

are obtained. All the steps starting from non–dominated sorting 

are repeated until the desired number of generations is 

completed.     

3.3 Implementation of Enhanced NSGA-II 

for RSM Optimization 
A multi objective algorithm was implemented using enhanced 

NSGA-II for performing the evolutionary optimization. Java 

(Version 2.0) programming language was used to code the 

algorithm. Each of the objective function was coded along with 

the parameters used for RSM Optimization. The constraints on 

each parameter were also specified in the program. As described 

in the NSGA-II algorithm in the previous section, a population 

of 100 individuals was generated with various initial values of 

parameters which were initialized randomly, keeping 

appropriate minimum and maximum ranges in view. Thereafter 

the program was allowed to iterate over 500 generations and the 

final optimized parameter values of the non-dominated solutions 

resulting from this run were noted. After several such runs, 

results were tabulated and analyzed 

3.4 Validation of Results 
The response surface models given by Eq. (2) –Eq. (4) were 

validated by the set of test runs. Table-4 gives the results 

obtained from experimental test, and the results obtained by the 

developed response surface model. Test No. 1 refers to the 

comparison of the results obtained from experiment, RSM and 

NSGA-II for the factor levels listed in Table-2. Test No.2 refers 

to the factors levels other than listed in Table-2.  

It is observed from Table 4 that the variation among the results 

obtained from experiment, RSM and enhanced NSGA-II is 

within 9%. Hence the developed RSM model and enhanced 

NSGA-II model can effectively be used to predict the specific 

energy, MRR and surface roughness. 
 

4. CONCLUSION 
In this study, the Response surface methodology was applied for 

analyzing specific energy, MRR and surface roughness in the 

surface grinding of DRACs. Further, enhanced Non-dominated 

Sorting Genetic Algorithm-II (NSGA-II) an improved version of 

NSGA was used, to optimize the RSM models developed by 

experimentation. It can be observed from the analysis that RSM 

can be used to develop second order equations for specific 

energy MRR and surface roughness in terms of the process 

variables. Genetic algorithm codes are developed in java for 

multi objective optimization of the responses. It is observed that 

results obtained by genetic algorithm are in very close 

agreement with those obtained by RSM. 

Therefore, from this study, it may be concluded that the 

enhanced NSGA-II can effectively be used to optimize the 

model developed from RSM. This approach can be extended to 

optimize the parameters of other machining processes such as 

milling, drilling, cylindrical grinding and un-conventional 

machining processes 
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