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MHD Convection Slip Fluid Flow with Radiation and Heat 
Deposition in a Channel in a Porous Medium      

 

 

  

 

ABSTRACT 
This paper examines the MHD convection slip fluid flow with 

radiation and heat deposition in a channel in a porous medium. 

The dimensionless governing equations were solved using the 

perturbation technique to obtained the analytical expressions of 

velocity, temperature and concentration profiles of the fluid with  

expression of Skin friction, mass and heat transfer in terms of 

Shear stress, Nusselt number and Sherwood number 

respectively. The effects of various parameters associated with 

flow like Prandtl number Pr, Peclet number Pe, Reynold number 

Re, Grashof number Gr, Porous medium shape factor parameter 

S, Eckert number Ec, Hartmann number H, Radiation parameter 

N, and time t are studied with the help of graphs and tables. It 

follows that the velocity increase with increasing H and S, and 

decrease with increase in Pr, Pe, Gr, Re and Ec, while the 

temperature increase with increasing Pe and decrease when there 

is increase in Pr and Ec. 

 

Keywords: MHD (Magnetohydrodynamics), Porous 

medium, Slip fluid flow and heat deposition 

 

1.INTRODUCTION   
A survey of magnetohydrodynamics (MHD) studies in the 

technological fields can be found in Moreau (1990). In recent 

years, the flow of fluids through porous media has become an 

important topic because of the recovery of crude oil from the 

pores of the reservoir rocks, in this case, Darcy’s law represents 

the gross effect. Meanwhile, there has been a renewed interest in 

studying magnetohydrodynamic (MHD) flow and heat transfer 

in porous media because of the effect on magnetic fields on the 

performance of many systems Makinde (1998).  Aldoss et al 

(1995) have studied mixed convection flow from a vertical plate 

embedded in a porous medium in the presence of a magnetic 

field. Chamkha (2000) has considered MHD free convection 

flow from a vertical plate embedded in a thermally stratified 

porous medium with Hall effects. In the present paper, we 

investigate the combined effects of a transverse magnetic field 

and radiative heat transfer on unsteady flow of a conducting 

optically thin fluid through a channel filled with saturated 

porous medium and non-uniform walls temperature. In the 

following sections, the problem is formulated, solved and the 

pertinent results are discussed. Panda et al (2003) have analyzed 

the unsteady free convective flow and mass transfer of a rotating 

elastico-viscous liquid through porous media past a vertical 

porous plate. Sattar (1994) has discussed the free convection and 

mass transfer flow through a porous medium past an infinite 

vertical porous plate with time dependent temperature and 

concentration. Rashed (2007) studied the effect of radiation on  

 

the heat transfer from a stretching surface in a porous medium. 

Elbashbeshy et al (2004) have analyzed the effect of internal 

heat generation and suction or injection on the heat transfer in a 

porous medium over a stretching surface. Sultana et al (2009) 

have analyzed the effects of internal heat generation, radiation 

and suction or injection on the heat transfer in a porous medium 

over a stretching surface. Rajeswari et al (2009) have studied the 

effect of chemical reaction, heat and mass transfer on nonlinear 

MHD boundary layer flow through vertical porous surface with 

heat source in the presence of suction. Mahmoud (2010) studied 

the effect of slip velocity at the wall on flow and mass transfer 

of an electrically conduction visco-elastic fluid past a stretching 

sheet embedded in a porous medium in the presence of chemical 

reaction and concentration dependent viscosity. Kandasamy et al 

(2007) have studied the effect of variable viscosity, heat and 

mass transfer on nonlinear mixed convection flow over a porous 

wedge with chemical reaction in the presence of heat radiation. 

Khanafer and Chamkha (1999) examined numerically mixed 

convection flow in a lid-driven enclosure filled with a fluid 

saturated porous medium and reported on the effects of the 

Darcy and Richardson numbers on the flow and heat transfer 

characteristics. Also, the porous media heat transfer problems 

have several practical engineering applications, such as the 

crude oil extraction, the ground water pollution, and many other 

practical applications, i.e., in biomechanical problems (e.g., 

blood, flow in the pulmonary alveolar sheet) and in the filtration 

transpiration cooling. Hiremath and Patil (1993) studied the 

effect of free convection currents on the oscillatory flow of the 

polar fluid through a porous medium, which is bounded by the 

vertical plane surface with a constant temperature. The unsteady 

hydromagnetic free convection flow of a Newtonian and polar 

fluid has been investigated by Helmy (1998). El-Hakien et al 

(1999) studied the effects of the viscous and Joule heating on 

MHD free convection flows with variable plate temperatures in 

a micropolar fluid. El-Amin (2001) considered MHD free 

convection and mass transfer flow in a micropolar fluid over a 

stationary vertical plate with a constant suction. Kim (2001) 

investigated the unsteady free convection flow of a micropolar 

fluid past a vertical plate embedded in a porous medium, and 

extended his work in (2004) to study the effects of heat and 

mass transfer in the MHD micropolar fluid flow past a vertical 

moving plate. At the macroscopic level, it is well accepted that 

the boundary condition for a viscous fluid at a solid wall is one 

of no-slip, i.e., the fluid velocity matches the velocity of the 

solid boundary. While the no-slip condition has been processed 

experimentally to be accurate for a number of macroscopic 

flows, it remains an assumption that is not based on physical 

principles. In many practical applications, the particle adjacent 
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to a solid surface no longer takes the velocity of the surface. The 

particle at the surface has a finite tangential velocity. It slips 

along the surface. The flow regime is called a slip-flow regime, 

and this effect can not be neglected. The study of magneto-

micropolar fluid flows in the slip-flow regimes with heat 

transfer has important engineering applications, e.g., in power 

generators, refrigeration coils, transmission lines, electric 

transformers, and heating elements. Khandelwal et al (2003) 

studied the effects of permeability variation on the MHD 

unsteady flow of polar fluid through a porous medium in a slip-

flow regime over an infinite porous flat plate. Sharma and 

Chaudhary (2003) studied the effect of variable suction on 

transient free convective viscous incompressible flows past a 

vertical plate in a slip-flow regime. Interestingly, Makinde and 

Mhone (2005) studied heat transfer to MHD oscillatory flow in a 

channel filled with porous medium. 

This work will carry all along the study of MHD convection slip 

fluid flow with radiation and heat deposition in a channel in a 

porous medium which is an extension of Makinde and Mhone 

(2005) with addition of Eckert and Prandtl number with velocity 

into the energy equation. 

 

2. PROBLEM FORMULATION 
Consider the flow of a conducting optically thin fluid in a 

channel filled with saturated porous medium under the influence 

of an externally applied homogeneous magnetic field and 

radiative heat transfer. It is assumed that the fluid has small 

electrical conductivity and the electromagnetic force produced is 

very small. Take a Cartesian coordinate system  * *,x y  

where 
*0x  lies along the centre of the channel, 

*y  is the 

distance measured in the normal section. Then, assuming a 

Boussinesq incompressible fluid model, the equations governing 

the motion are given as 

 

2* * 2 *
1 * *0

* * *2

* *
0

Bu P u e
u u

kt x y

g T T



 

   
     
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  

                    (1) 

2
* 2 * *
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    
 

                        (2) 

Subject to the boundary conditions 

* * * *
0,

*
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u
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
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







  

                        (3) 

Where 
*u  is the axial velocity, 

*t  the time, 
*T  the fluid 

temperature, 
*P  the pressure, 

*g  the gravitational force, q the 

radiative heat flux, β the coefficient of volume expansion due to 

temperature, cp the specific heat at constant pressure, k the 

thermal conductivity, K the porous medium permeability 

coefficient,  0 0eB H  the electromagnetic induction, e  

the magnetic permeability, 0H  the intensity of magnetic field, 

e  the conductivity of the fluid, ρ the fluid density and ν is the 

kinematic viscosity coefficient. It is assumed that both walls 

temperature 0 , wT T  are high enough to induce radiative heat 

transfer. Following Cogley et al (1968), it is assumed that the 

fluid is optically thin with a relatively low density and the 

radiative heat flux is given by 

 2 * *
4 0*

q
T T

y



 


          

                        (4) 

where α is the mean radiation absorption coefficient.  

Substituting (4) into (2) 

 
2
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1 12 * *

4 0* *2 *
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 

                        (5) 

3. ANALYTICAL SOLUTION 
To solve the governing equations in dimensionless form, we 

introduce the following non-dimensional quantities: 
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           (6) 

We reduce the governing equations into dimensionless form 

using (6) into (1), (3) and (5) as follows 

2
2 2

Re ( )
2

U P U
S H U Gr

t x y


  
     

  
                         (7)                                                                                    (7) 

22
2

Pr
2

U
Pe N Ec

t yy

 

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  

 

 
 
 

                                     (8)                                                                                               (8) 

Subject to the boundary conditions 

0, 0, 0

0, 1, 1

U
U r y

y

U y






   


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





                                                  (9)                                                                                               

Where Re, S, H, Gr, Pe, N, Ec and Pr are the Reynolds number, 

porous medium shape factor, Hartmann number, Grashof 
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number, Peclet number, radiation parameter, Eckert number and 

Prandtl number respectively. 

To solve the equations (7) and (8) subject to (9), we assume the 

pressure gradient of the form 

P iwt
A Be

x


  


                                                                    (10)                                                                                                                          (10) 

where A and B are constants. 

Similarly, the solution of the velocity and temperature are taken 

as 

( ) ( ) ( )0 1

( ) ( ) ( )0 1

iwt
U y U y U y e

iwt
y y y e  

 

 





                                                 (11)                                                                                                         (11) 

Using (10) and (11) into (7) – (9), we obtain the following 

                                                                                                  (12
 

                                                                                                 (13)

 

The  boundary conditions becomes 
/ /

0 1 0 1 0 1

0 1 0 1

( ) 0, 0, 0

0, 1, 1

iwt iwt iwt

iwt iwt

U U e r U U e e y

U U e e y

 

 

       


           (14)

 

Separating the fluctuating and non-fluctuating terms 

 For the non-fluctuating terms, let 
2 2 2a S H   

/ / 2

0 0 0U a U Gr A                                                                                                                  (15) 

 
2

// 2 /

0 0 0PrN Ec U                                              (15)                                                                                                    (16) 

Subject to the boundary conditions 
/

0 0 0

0 0

0, 0, 0

0, 1, 1

U rU y

U y





   

  

                                           (16)                                                                                          (17) 

To solve (15), (16) subject to (17), we assume the solution of 

0 0U and as 

0 00 01 0 00 01( ) ( ) ( ) ( ) ( ) ( )U y U y EcU y and y y Ec y     
                      

                                                   (18) 

Using (18) into (15) - (17), we get 
/ / / / 2 2

00 01 00 01 00 01U EcU a U a EcU Gr EcGr A       
    (19)         

   (19)                  
                                                   

     
2 22// / / 2 2 / / / /
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  

    

                                                                                      (20) 

Subject to the boundary conditions 
/ /

00 01 00 01 00 01

00 01 00 01
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0, 1, 1

U EcU rU EcrU Ec y

U EcU Ec y

 
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
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 (21) 

Separating the coefficients of 
0Ec and

1Ec respectively yield 
/ / 2

00 00 0N  
                                                                

(22)
                                                                                                                             (23) 

 
2
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/
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/
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U rU y and U y
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 

 
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

       

    

                                                                                                (26)                                                          

Solving (23) to (25) subject to (26), we obtain the following 

00( ) sin( )y g Ny 
                                                       (27)                                                                                                                    (28)

 

where: 1

sin
g

N
  

00 2 1 3 4( ) sin( )ay ayU y a e a e a a Ny   
           (28)

                                                                                       

where: 
3 42 2 2

;
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A Grg
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a N a
 
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   

2 2
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                                                                                                (29)

     2 2
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 
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ay ay ay
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 
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
  

  

   

   

sin cos23 24
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cos sin25 26
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
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
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
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   (31) 

Furthermore, for the fluctuating terms 
// 2

1 1 1 1ReiwU B U a U Gr   

  Or   
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where: 2 Reb a iw   ; 
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/

1 1 1

1 1
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U rU y

U y





   

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(34) 

To solve (32), (33) subject to (34), we assume the solution of 

1 1U and  as 

1 11 12 1 11 12( ) ( ) ( ); , ( ) ( ) ( )U y U y EcU y and y y Ec y     

                     (35) 

Using (35) into (32) - (35), we have  
/ / / / 2 2
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(38) 

Separating the coefficients of 
0Ec and

1Ec respectively 

/ / 2

11 11 0c                                                                                                                                  (39)       

/ / 2 / /
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/ / 2
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                                                                                    (43)                                                               

Solving (39) to (42) subject to (43), we get 

11 1 2 3( ) by byU y d e d e d                               (44)                                                                                                         

where: 
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                                                                            (46) 

The solution of the velocity field is 

   0 1

iwtU U y U y e   
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Substituting (29), (31), (44) and (46) 
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Similarly, 
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The Skin friction is given by 
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Similarly, the Nusselt number become 
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4. RESULTS AND DISCUSSION 
From the analytical solutions, we obtain numerical solutions for 

different values of the Prandtl number Pr,  Hartmann number H, 

radiation parameter N, Peclet number, Reynolds number Re, 

Grashof number Gr, Eckert number Ec. We fixed the values of 

the following parameters throughout the calculations, Pr = 0.71, 

Pe = 0.2, S = 0.1, H = 1.6, y = 0:0.001:1, Gr = 0.2, Re = 0.5, r = 

0.5, N = 0.1, A = 2, B = 1, Ec = 0.2, t = 0.1, Omega = 1.  

The velocity profiles have been studied and presented in Figures 

1 to 7 with different values of Prandtl number (Pr = 0.60, 0.71, 

0.85, 1),   Hartmann number (H = 1.0, 1.5, 2.0, 2.5), Peclet 

number (Pe = 0.2, 0.4, 0.6, 0.8), Grashof number (Gr = 0.2, 

0.12, 0.22, 0.32), Reynolds number (Re = 0.5, 1, 1.5, 2), porous 

medium shape factor parameter (S = 0.1, 0.3, 0.5, 0.7) and 

Eckert number (Ec = 0.2, 0.5, 0.8, 1.1). Figures 1and 2 reveals 

that the velocity increase with increase in the porous medium 

shape factor parameter and the Hartmann number respectively. 

While Figures 3 to 7 shows that the velocity decrease with 

increase in the Prandtl number, Peclet number, Grashof number, 

Reynolds number and Eckert number respectively. 

The temperature profiles are illustrated in Figures 8 to 10 for 

different values of Prandtl number (Pr = 0.60, 0.71, 0.85,1), 

Eckert number (Ec = 0.2, 0.4, 0.6, 0.8) and peclet number(Pe = 

1, 1.5, 2, 2.5) shown in Figures 8-10respectively. In Figures 8 

and 9, we observed that  the temperature decrease with increase 

in the Prandtl number and Eckert number. Figure 10 reveals that 

the temperature increase with increase in the peclet number. 

Tables 1 to 6 are the tables of Skin friction and Nusselt number 

for the analytical solution. 

The Skin frictions are illustrated in Tables 1 to 3 for different 

values of Hartmann number (H = 1.0, 1.5, 2.0) and porous 

medium shape factor parameter (S = 0.1, 0.3, 0,5), Peclet 

number (Pe = 0.2, 0.4, 0.6) and Prandtl number (Pr = 0.60, 0.71, 

0.85) , and radiation parameter (N = 0.1, 0.11, 0.21) and Eckert 

number (Ec = 0.2, 0.5, 0.8) shown in Tables 1, 2 and 3 

respectively. In Table 1, we observed that the Skin friction is 

decreasing with increasing Hartmann number and porous 

medium shape factor parameter. Table 2 shows that increase in 

the Peclet number decreases the Skin friction while increase in 

the Prandtl number increases the Skin friction. Table 3 indicates 

that the Skin friction decrease whenever the radiation parameter 

increase and increase in the Eckert number results to increasing 

Skin friction. 

The Nusselt numbers are illustrated in Tables 4 to 6. 

In Table 4, we noticed that the Nusselt number is increasing 

with increasing Hartmann number and porous medium shape 

factor parameter. Table 5 shows that increase in the Peclet 

number slightly increase the Nusselt number while increase in 

the Prandtl number slightly decrease the Nusselt number. More 

over, Table 6 indicates that the Nusselt number decrease 

whenever the radiation parameter increase and increase in the 

Eckert number leads to increase of the Nusselt number. 

Figure 1: Variation of Velocity against y for different values 

of S. 

Figure 2: Variation of Velocity against y for different values 

of H. 

Figure 3: Variation of Velocity against y for different values 

of Pr. 
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Figure 4: Variation of velocity against y for different values 

Pe. 

Figure 5: Variation of Velocity against y for different values 

of Gr. 

Figure 6: Variation of Velocity against y for different values 

of Re. 

Figure 7: Variation of Velocity against y for different values 

of Ec. 
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Figure 8: Variation of Temperature against y for different 

values of Pr. 

Figure 9: Variation of Temperature against y for different 

values of Ec. 

   

Figure 10: Variation of Temperature against y for different 

values of Pe. 

H 1.0 1.5 2.0 

     SF 

S 

   

0.1 2.3211 0.9877 0.6161 

0.3 2.1094 0.9598 0.5960 

0.5 1.7882 0.9107 0.5670 

Table 1: Skin Friction for various values of H and S.  

Pe 0.2 0.4 0.6 

      SF 

Pr 

   

0.60 0.8423 0.8170 0.8020 

0.71 0.8916 0.8617 0.8439 

0.85 0.9543 0.9185 0.8972 

Table 2: Skin Friction for various values of Pe and Pr. 

N 0.1 0.11 0.21 

      SF 

Ec 

   

0.2 0.8916 0.8560 0.6997 

0.5 1.3687 1.2795 0.8868 

0.8 1.8459 1.7031 1.0738 

 Table 3: Skin Friction for various values of N and Ec. 

H 1.0 1.5 2.0 

       Nu 

S 

   

0.1 9.6166 9.8745 9.9390 

0.3 9.6528 9.8804 9.9403 

0.5 9.7113 9.8907 9.9426 

 Table 4: Nusselt Number for various values of H and S. 
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Pe 0.2 0.4 0.6 

       Nu 

Pr 

   

0.60 9.9136 9.9137 9.9140 

0.71 9.8947 9.8948 9.8952 

0.85 9.8706 9.8708 9.8713 

Table 5: Nusselt Number for various values of Pe and Pr.  

N 0.1 0.11 0.21 

       Nu 

Ec  

   

0.2 9.8947 8.9853 4.6559 

0.5 9.9593 9.0497 4.7176 

0.8 10.0239 9.1141 4.7792 

 Table 6: Nusselt Number for various values of N and Ec. 

5. CONCLUSION 
This paper examines the MHD convection slip fluid flow with 

radiation and heat deposition in a  

channel in a porous medium. The dimensionless governing 

equations were solved using the perturbation technique. The 

effect of different parameters such as the Prandtl number, 

Grashof number, Reynolds number, Peclet number, Eckert 

number, radiation parameter, porous medium shape factor 

parameter and the Hartmann number were studied. The 

conclusion reveals that: 

 The velocity increase with increase of the 

Hartmann number and porous medium shape 

factor parameter. 

 The velocity decrease with increase in the Prandtl 

number, Peclet number, Grashoff number, 

Reynolds number and Eckert number. 

 The temperature increase when the Peclet number 

increase 

 The temperature decrease with increase of the 

Prandtl number and Eckert number. 

6.   REFERENCES 
[1] El-Amin, M. F. (2001). Magnetohydrodynamic free 

convection and mass transfer flow in  micropolar 

fluid with constant suction. Journal of Magnetohydro 

Material, 234:567–574. 

[2] Elbashbeshy, E.M.A. and Bazid, M.A.A. (2004). Heat 

transfer in a porous medium over a  stretching 

surface with internal heat generation and suction or 

injection. Journal  of Applied Mathematics and 

Computations, 158(3):799-807. 

[3] El-Hakiem, M. A., Mohammadein, A. A., El-Kabeir, S. M. 

M. and Gorla R. S. R. (1999).  Joule heating effects on 

magnetohydrodynamic free convection flow of a 

micropolar fluid. International  Journal of Heat Mass 

Transfer, 26(2):219–227. 

[4] Helmy, K. A. (1998). MHD unsteady free convection flow 

past a vertical porous plate. Journal of ZAMM, 98:255–

270. 

[5] Hiremath, P. S., Patil P. M. (1993). Free convection effects 

on oscillatory flow of couple  stress  field through a 

porous medium. Journal Acta Mechanik, 98:143–158. 

[6] Kandasamy, R., Hashim, I. Muhaimin and Ruhaila (2007). 

Effects of variable viscosity,  Heat  and Mass 

transfer on nonlinear mixed convection flow over a porous 

wedge with heat  radiation in the presence of 

homogenous chemical reaction. Journal of Engineering and 

Applied Sciences, 2:1819-6608. 

[7] Khanafer, K., Chamkha, A. J. (1999). Mixed convection 

flow in a lid-driven enclosure  filled  with a fluid 

saturated porous medium. International Journal of Heat 

Mass  Transfer,  42:2465-2481. 

[8]  Khandelwal, K., Gupta, A. and Poonam N. C. (2003). 

Effects of couple stresses on the  flow  through a 

porous medium with variable permeability in slip flow 

regime.  Journal  Ganita, 54(2):203–212. 

[9]  Kim Y. J. (2001). Unsteady convection flow of micropolar 

fluids past a vertical plate  embedded in a porous 

medium. Journal Acta Mechanik, 148:105–116. 

[10] Mahmoud, M.A.A. (2010). Chemical reaction and variable 

viscosity effects on flow and  mass  transfer of a 

non-Newtonian visco-elastic fluid past a stretching surface 

embedded in a  porous medium. Journal 

Meccanica, 10(1007):9292. 

[11] Makinde, O. D and P. Y. Mhone (2005). Heat transfer to 

MHD oscillatory flow in a  channel filled with 

porous medium. Rom Journal of Physics, 50(9-10):931-

938. 

[12]  Moreau, R. (1990). Magnetohydrodynamics. Kluwer 

Academic Publishers, Dordrecht. 

[13] Panda, J. P., Dash, G. C. and Das, S. S. (2003). Unsteady 

free convective flow and mass  transfer of a rotating 

elastico-viscous liquid through porous media past a vertical 

porous  plate. AMSE Journal of Modelling, 

Measurement and Continuity, 72(3):  47-59. 

[14] Rajeswari, R., Jothiram, B. and Nelson, V.K. (2009). 

Chemical reaction, Heat and Mass Transfer on nonlinear 

MHD boundary layer flow through a vertical porous 

surface in the presence of suction. Journal of Applied 

Mathematical Science, 3(50):2469-2480.  

[15] Rashed, A.M. (2007). Radiation effects on heat transfer 

from a stretching surface in a porous  medium. 

Journal of Applied Mechanics and Engineering, 3(4):14-23. 

[16] Satter, M. A. (1994). Free convection and mass transfer 

flow through a porous medium  past an  infinite 

vertical porous plate with time dependent temperature and 

concentration.  Journal of Pure and Applied Mathematics, 

23:759-766. 


