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ABSTRACT 
In this paper, we study strong  convergence as well as  

stability results for a pair of nonself mappings using 

Jungck-SP iterative scheme and  a certain contractive 

condition. Moreover, with the help of computer programs 

in C++, we show that Jungck-SP iterative scheme 

converges faster than Jungck-Noor, Jungck-Ishikawa and 

Jungck-Mann iterative schemes through  example. 
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1. INTRODUCTION 
Most of the equations f(x) = y arising in physical 

formulations can equivalently be  transformed   into a fixed 

point problem x=Tx and then apply an approximate fixed 

point theorem to get information on the existence or  

existence and uniqueness of fixed point, that is, of the 

solution of the original equation. 

 

 Let (X, d) be a complete metric space and T : XX a 

selfmap of X. Suppose that F(T) ={ p X, Tp = p} is the set 

of fixed points of T. There are several iterative processes in 

the literature for which the fixed points of operators have  

been approximated over the years by various authors. In a 

complete metric space, the Picard iterative process 

 
0
 n n

x



defined by 

              1n nx Tx 
 
n = 0, 1,…                                       (1.1) 

is used to approximate the fixed points of mappings 

satisfying the inequality  

              ( , ) ( , )d Tx Ty d x y                                       (1.2) 

for all x , y  X and  [0, 1).                               

Condition (1.2) is called the Banach’s contraction 

condition.  

In 1953, W.R. Mann defined  the Mann iteration [9] as   

               1  (1 )  ,  n n n n nx x Tx                                (1.3)                                              

where { n } is a  sequence of positive  numbers in  [0,1].                                                                

In 1974, S. Ishikawa defined the  Ishikawa iteration [7] as  

                 
1 (1 )n n n n nx x Ty                                                                    

                    (1 )n n n n ny x Tx    ,                           (1.4)       

where {
n } and {

n } are  sequences of positive  numbers 

in  [0,1]. 

In 2000, M. A. Noor  defined the three step Noor iteration 

[10] as  

                          
1 (1 )n n n n nx x Ty                                                                    

                            (1 )n n n n ny x Tz              

                              
(1 )n n n n nz x Tx     ,                  (1.5)              

where {
n }, {

n } and { n } are  sequences of positive  

numbers in  [0,1]. 

Recently,  Phuengrattana  and  Suantai defined the SP 

iteration scheme [17]  as  

                          
1 (1 )n n n n nx y Ty                                                                    

                            (1 )n n n n ny z Tz              

                              
(1 )n n n n nz x Tx     ,                 (1.6)  

where {
n }, {

n } and { n } are  sequences of positive  

numbers in  [0,1]. 

Remarks:  

1. If n = 0, then Noor iteration (1.5) reduces to the  

Ishikawa iteration  (1.4). 

2. If 
n = n = 0, then Noor iteration (1.5) reduces to the 

Mann iteration  (1.3). 

3. If 
n = n = 0, then SP iteration (1.6) reduces to the 

Mann iteration (1.3). 

In 1972, Zamfirescu [21] obtained the following interesting 

fixed point theorem: 

Theorem 1.1. Let (X, d) be a complete metric space and T 

: XX a mapping for which there exists  real numbers a, 

b and c satisfying  a  (0,1), b , c (0, 
1

2
) such that for 

each pair x, y  X at least one of the following conditions 

hold  

(i) ( , ) ( , )

(ii) ( , ) [ ( , ) ( , )]

d Tx Ty a d x y

d Tx Ty b d x Tx d y Ty



   

(iii) ( , ) [ ( , ) ( , )]d Tx Ty c d x Ty d y Tx                            (1.7)                                            

Then T  has a unique fixed point p and the Picard iteration 

{xn} defined by                              

                    1n nx Tx  , n = 0, 1,… 

converges to p for any arbitrary but fixed  x0 X.   

The operators satisfying the condition (1.7) are called  

Zamfirescu operators.  
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Berinde[1] introduced a new class  of operators on an 

arbitrary Banach space X  satisfying  

           
 

( , ) 2 ( , ) ( , )d Tx Ty d x Tx d x y                        (1.8)                                                          

 x, y   X  and δ  [0,1). He proved that this class is 

wider than the class of  Zamfirescu   operators and used the 

Ishikawa iteration process to approximate fixed points of 

this class of operators in  an arbitrary Banach space.  

The stability theory has extensively been studied by various 

authors due to its increasing importance in computational 

mathematics, especially due to revolution in computer 

programming. 

 

The first stability result on T-stable mappings was due to 

Ostrowski [16] where he established the stability of the 

Picard iteration by using  Banach  contraction condition . 

Harder and Hicks [6], Rhoades [19], Osilike [14] and Singh 

et al. [20] used the method of the summability theory of 

infinite matrices to prove various stability results for certain 

contractive definitions. Harder [6] established applications 

of stability results to first order differential equations. 

Osilike and Udomene [15] introduced a shorter method of 

proof of stability results and this has also been employed by 

Berinde [2], Imoru and Olatinwo [11], Olatinwo [12] and 

some others.  

 

2. PRELIMINARIES 
Let X  be a Banach space, Y an arbitrary set and S, T : Y → 

X such that T(Y)   S(Y). For x0   Y, consider the  

following iterative scheme : 

                      1n nSx Tx  n = 0, 1,…                              (2.1) 

This scheme is called Jungck  iterative scheme and  was 

essentially  introduced by Jungck [8] in 1976 , and it 

becomes the Picard iterative scheme when S=Id (identity 

mapping) and Y=X. 

For
n [0,1]   , Singh et al. [20]  defined the  Jungck-Mann 

iterative scheme  as           

                    1= (1 ) x +   n n n n nSx S Tx                       (2.2)  

For
n n n, , [0,1]    , Olatinwo defined the Jungck-

Ishikawa[12] and Jungck-Noor [13] iterative schemes   as           

                 
1 (1 )n n n n nSx Sx Ty                                                                    

                    (1 )n n n n nSy Sx Tx    ,                         (2.3)                                                      

and 

                  
1 (1 )n n n n nSx Sx Ty                                                                    

                  (1 )n n n n nSy Sx Tz              

                  
(1 )n n n n nSz Sx Tx     ,                      (2.4)  

respectively. 

 

Jungck[8] used the  iterative scheme (2.1) to approximate 

the common fixed points of the mappings S and T 

satisfying the following  Jungck-contraction 

           
( , ) α ( , ),    0 α <1d Tx Ty d Sx Sy   . 

Olatinwo [12] used the following more general contractive 

definitions than (1.8) to prove the  stability and strong 

convergence results for the Jungck-Ishikawa iteration 

process: 

(a) there exists a real number a ∈ [0, 1) and a monotone 

increasing function  : R+→ R+  such that  (0) = 0 and ∀x, 

y ∈ Y , we have 

          
( )Tx Ty Sx Tx a Sx Sy                     (2.5)                                                          

(b) there exists real numbers M ≥ 0, a ∈ [0, 1) and a 

monotone increasing  function  : R+→ R+ such that (0)  

= 0 and ∀x, y ∈ Y , we have 

( )

1

Sx Tx a Sx Sy
Tx Ty

M Sx Tx

   
 

                            (2.6) 

Olatinwo [13] used the convergences of Junck-Noor 

iterative scheme (2.4) to approximate the coincidence 

points (not common fixed points) of some pairs of 

generalized contractive-like operators satisfying (2.6) with 

the assumption that one of each of the pairs of maps is 

injective. 

 

Bosede and Rhoades [4] proved the stability of Picard and 

Mann iterations for a general class of functions. In 2010, 

Bosede [3] also proved some strong convergence results for 

the Jungck-Ishikawa and Jungck-Mann iteration processes 

by using the following more general contractive condition 

than (1.8) :
 

{2 }
L Sx Tx

Tx Ty e Sx Tx Sx Sy


                      (2.7) 

∀x, y ∈ Y, where L≥ 0,    is  a real number ∈ [0, 1).  

Recently, Renu Chugh and Vivek Kumar[5] studied  the 

strong convergence of SP iterative scheme (1.6) for quasi-

contractive operators satisfying (1.8) in Banach spaces and  

showed  its fastness as compared to Picard, Mann and 

Ishikawa  iterative schemes. 

Motivated by the above facts , we define the following 

Jungck-SP iterative scheme: 

                          
1 (1 )n n n n nSx Sy Ty                                                                    

                           (1 )n n n n nSy Sz Tz              

                              
(1 )n n n n nSz Sx Tx     ,               (2.8)  

where {
n }, {

n } and { n } are  sequences of positive  

numbers in  [0,1] . 

Also, we employ the following contractive condition which 

is more general than (2.5) and (1.8): 

{ ( ) }
L Sx Tx

Tx Ty e Sx Tx a Sx Sy


                    (2.9) 

∀x, y ∈ Y, where L≥0,  : R+→ R+  is a monotone increasing 

function such that  (0) = 0 and a is  a real number ∈ [0, 1).  

We shall need the following  Definition and  Lemma: 

Definition 2.1.[12] Let S, T : Y → X such that T(Y)   

S(Y)  and z a coincidence point of S and T, that is, Sz = Tz = 

p(say). For any x0 Y, let the sequence  
0
 n n

Sx



generated 

by the iteration procedure  

                                ( , ), 0n nSx f T x n                (2.10) 

converge to p. Let  
0n n

Sy X



  be an arbitrary sequence 

and set 
1( ( , ))n n nd Sy f T y    , n = 0, 1, · · · .Then  

the iteration procedure (2.10) will be called (S,T)-stable if 

and only if 
n
lim


0n  implies that 
n
lim


.nSy p  

Lemma 2.1.[1] If   is a real number such that 0 ≤   < 1 

and 0{ }n n



  is a sequence of positive numbers such that

n
lim


0,n  then for any sequence of positive numbers 
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0{ }n nu 


 satisfying 

                              
1n n nu u   ,  n = 0,1,2,…. 

we have  
n
lim


0nu  . 

Remark 1. If X=Y and S=Id (identity mapping), then the 

Jungck-SP (2.8), Jungck-Noor (2.4),  Jungck-Ishikawa 

(2.3) and the Jungck-Mann (2.2) iterations, respectively, 

become the SP (1.6), Noor (1.5), Ishikawa (1.4) and the 

Mann (1.3) iterative procedures. 

Remark 2. If L= 0 and X=Y , S=Id, L= 0, ( ) ,x x a     

in (2.9), then we get contractive conditions (2.5) and (1.8 ) 

respectively. 

The purpose  of this paper is to study the strong 

convergence of Jungck-SP iterative scheme (2.8) for 

nonself mappings in an arbitrary Banach space and   obtain 

some stability results for these nonself mappings in normed 

linear space by employing the contractive conditions (2.9). 

Moreover, with the help of C++ programming, we show 

that   the  Jungck-SP iterative scheme converges faster  

than the Jungck-Noor, Jungck-Ishikawa and Jungck-Mann 

iterative schemes by taking example of cubic equation. 

 

3. STABILITY IN NORMED SPACE 
Theorem 3.1. Let (X, ||.||) be a normed space and  S, T : 

Y→ X  are  nonself operators on an arbitrary set Y such that 

( ) ( )T Y S Y , where S(Y)  is a complete subspace of X and   

S  an injective operator. Let z be a coincidence point of S 

and T , i.e., Sz = Tz = p(say). Suppose that S and T satisfy 

condition (2.9) . For x0   Y, let 
0
 n n

Sx



 be the Jungck-

SP iterative scheme (2.8) converging to p, where {
n }, {

n },
n{ }  are  sequences of positive  numbers in  [0,1] 

with 

 {
n } satisfying  0 n n     .Then, the Jungck-SP 

iterative  scheme is (S, T)-stable. 

Proof. Suppose that 0{ }n nSy E

  , 

1 (1 )n n n n n nSy Sb Tb      , n= 0,1,2,3…, 

where (1 ) ,  (1 )n n n n n n n n n nSb Sc Tc Sc Sy Ty        
 

and let 
n
lim


0.n   

Then, it  follows  from (2.8) and (2.9) that 

1 1|| || || (1 ) ||

|| (1 ) (1 ) ||

n n n n n n

n n n n n n

Sy p Sy Sb Tb

Sb Tb p

 

   

     

     
   

                    (1 )n n n n nSb p Tb p           
    

                    
(1 )n n n n nSb p Tz Tb                  

                   

(1 )

{ ( ) }

n n n

L Sz Tz

n n

Sb p

e Sz Tz a Sz Sb

 

 


   

   
 

                  
0

(1 )

{ ( 0 ) }

n n n

L

n n

Sb p

e a Sz Sb

    

   
 

                    [1 (1 )]n n na Sb p                       (3.1) 

Now, we have the following estimates: 

|| || || (1 ) (1 ) ||n n n n n n nSb p Sc Tc p         
 

                
(1 )n n n nSc p Tc p     

 

               || (1 )n n n nSc p Tz Tc       

                

n(1 β )

{ ( ) }

n

L Sz Tz

n n

Sc p

e Sz Tz a Sz Sc 


  

   
                

                (1 (1 ))n na Sc p                              (3.2) 

and 

|| || || (1 ) (1 ) ||n n n n n n nSc p Sy Ty p         
 

                
(1 )n n n nSy p Ty p     

 

               (1 )n n n nSy p Tz Ty       

                

(1 )

{ ( ) }

n n

L Sz Tz

n n

Sy p

e Sz Tz a Sz Sy



 


  

   
                

               (1 (1 ))n na Sy p                                (3.3) 

It follows from (3.1),(3.2) and (3.3)that  

1|| ||

[1 (1 )][1 (1 )][1 (1 )] || ||

n

n n n n

Sy p

a a a Sy p  

 

       
                                      

                                       n                                   (3.4) 

Using 0 n   and a  [0,1) we have 

[1 (1 )][1 (1 )][1 (1 )]n n na a a        <1.
 

Hence using Lemma (2.1), (3.4) yields
n
lim


1 .nSy p 
 

Conversely, let 
n
lim


1nSy p  .Then using contractive 

condition (2.9) and the triangle inequality , we have      

1

1

1

|| (1 ) ||

|| || || (1 ) (1 ) ||

|| || (1 )

n n n n n n

n n n n n n n

n n n n n

Sy Sb Tb

Sy p p Sb Tb

Sy p p Sb p Tb

  

   

 







   

       

      

    

    
1

1

|| || (1 )

|| || (1 )

n n n n n

n n n n n

Sy p Sb p Tz Tb

Sy p Sb p a Sz Sb

 

 





      

      
 

    1|| || [1 (1 )]n n nSy p a Sb p                         (3.5)                                                                            

Using estimates (3.2) and (3.3),  (3.5) yields 

1

1

[1 (1 )][1 (1 )][1 (1 )] || ||

|| ||

n n n n n

n

a a a Sy p

Sy p

    



       

 
 

Hence ,
 n
lim


0n 
 

Therefore, the SP iterative scheme (2.8) is (S,T) stable. 

 

4. STRONG CONVERGENCE IN AN 

ARBITRARY BANACH SPACE 
Theorem 4.1. Let (X, ||.||) be an arbitrary Banach space  

and  S, T : Y→ X  are  nonself operators on an arbitrary set 

Y such that ( ) ( )T Y S Y , where S(Y)  is a complete 

subspace of X and  S   is an injective operator. Let z be a 

coincidence point of S and T , i.e., Sz = Tz = p(say). 

Suppose that S and T satisfy condition (2.9) . For x0   Y, 
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let 
0
 n n

Sx



be the Jungck-SP iterative scheme defined by 

(2.8) , where  {
n }, {

n },
n{ }  are  sequences of positive  

numbers in  [0,1] with {
n } satisfying 

0

n

n





  .Then the 

Jungck-SP iterative  scheme  
0n n

Sx



  converges strongly 

to p . 
Proof . Let C(S,T) be the set of the coincidence points of S 

and T. We use condition (2.9) to establish that S and T have 

a unique coincidence point z, i.e. Sz = Tz = p (say). 

Suppose that there exists z1, z2  C(S, T) such that Sz1 = 

Tz1 = p1 and Sz2 = Tz2 = p2. If p1 = p2, then Sz1 = Sz2 and 

since S is injective, it follows that z1=z2  . 

If p1  p2, then  using  contractive condition (2.9) we have 

1 1

1 2 1 2 1 1 1 20 { ( ) }
Sz Tz

p p Tz Tz e Sz Tz a Sz Sz


        

                                          
= 1 2a p p , 

which leads to 1 2 0a p p  , from which it follows that 

1 2 0p p  since a ∈ [0, 1),  which is a contradiction 

since norm is nonnegative. 

Therefore, we have that 1 2 0p p  , that is, p1 = p2=p.  

Again p1 = p2 implies  p1 =Sz1= Tz1 = Sz2 = Tz2 = p2, 

leading to Sz1= Sz2  which again yields  z1=z2 = z (since S is 

injective). Hence z ∈ C(S,T), that is, z is a unique 

coincidence point of S and T. 

 We now prove that  
0n n

Sx



converges strongly to p  

It  follows  from (2.8) and (2.9) that 

1|| || || (1 ) (1 ) ||n n n n n n nSx p Sy Ty p            

     

(1 )

(1 )

(1 )

{ ( ) }

(1 ) }

n n n n

n n n n

n n

Sz Tz

n n

n n n n

Sy p Ty p

Sy p Tz Ty

Sy p

e Sz Tz a Sz Sy

Sy p a Sy p

 

 



 

 



    

    

  

   

    

                             

                   [1 (1 )]n na Sy p                              (4.1) 

Now, we have the following estimates: 

|| || || (1 ) (1 ) ||n n n n n n nSy p Sz Tz p         
 

                 
(1 )n n n nSz p Tz p     

 

         
(1 )n n n nSz p Tz Tz     

 

                 

(1 )

{ ( ) }

n n

Sz Tz

n n

Sz p

e Sz Tz a Sz Sz



 


  

   
           

                  (1 (1 ))n na Sz p                                 (4.2) 

and 

|| || || (1 ) (1 ) ||n n n n n n nSz p Sx Tx p         
 

             
|| (1 )n n n nSx p Tx Tz     

 

                  

(1 )

{ ( ) }

n n

Sz Tz

n n

Sx p

e Sz Tz a Sx Sz



 


  

   
               

                   (1 (1 ))n na Sx p                                (4.3) 

It follows from (4.1), (4.2) and (4.3) that  

    

1|| ||

[1 (1 )][1 (1 )][1 (1 )] || ||

n

n n n n

Sx p

a a a Sx p  

 

       
 

       

 [1 (1– )] || || n na Sx p      

          0

0

[1 (1 )] || ||
n

k

k

a Sx p


                                      

          0

(1 ) k

k

a

e






  
0Sx p                                             (4.4)                                        

Since 0  a <1, k [0,1] and 
0

n

n





  , so 0

(1 )   

n

k

k

a

e




  
 

→0  as  n → ∞.  

Hence, it follows from (4.4) that
n
lim


1nSx p  =0. 

Therefore 
0{ }n nSx 


 converges strongly to p. 

 

5. EXPERIMENTS 
Recently , Bhagwati and Ritu[18] solved the cubic equation 

                   x3+4x2 –5x–10 = 0  .                                  (5.1) 

using Jungck-Ishikawa  iterative  scheme. Rewrting (5.1) as  

                         Sx = Tx,                                              (5.2) 

where Sx=5x and Tx= x3+4x2 –10, they observed that 

neither Picard iteration nor Jungck-Picard iteration scheme 

converges toward the solution of cubic equtaion (5.1). 

But the claim made by the authors regarding the use of 

Jungck-Ishikawa itérative scheme  in Table on page 32 

is false and it is actually Jungck-Mann iterative scheme. 

Now, to solve cubic equation x3+4x2 –5x–10 using  Jungck 

type iterative schemes (Jungck-SP, Jungck-Noor, Jungck-

Mann, Jungck-Ishikawa), we rewrite the equation (5.1)  as 

in (5.2). 

To solve cubic equation (5.1) using  simple  iterative 

schemes (Noor, SP, Mann, Ishikawa), we rewrite this 

equation as follows :  

                   x=Tx=( x3+4x2 –10 )/5.                          ( 5.3) 

 

Then, coincidence point of S and T in (5.2) and fixed point 

of  T in (5.3) leads to the solution of (5.1). 

 

We  develope and execute seprate programs in C++ for  

Jungck type iterative  schemes and the corresponding  

simple iterative schemes. The  outcome is listed in the form 

of  Tables1   and 2  for Jungck type and the corresponding  

simple iterative schemes, respectively, by taking intial 

approximation x0=1 and n=n=n=0.9   for both type of 

iterative schemes. 

 

6.  CONCLUSION 
Keeping in mind Bhagwati and Ritu’s result’s [i. e. Table in 

[9]] and Table1 we observe that the decreasing order of 

convergence of  Jungck type iterative schemes is as 

follows :Jungck-SP, Jungck-Noor, Jungck-Mann and 

Jungck-Ishikawa iterative scheme.  
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From Table 2, we observe that  the decreasing order of 

convergence of   simple  iterative schemes is as follows : 

SP, Noor , Mann  and Ishikawa  iterative scheme .  

Also, from Table 1 and 2 we conclude that SP, Noor and 

Mann iterative schemes  converges  fast as compared to  

corresponding Jungck type iterative schemes . 

                                                                                  

Table 1 

 

   

 

 

 

No. of 
Iterations 

 
              Jungck-SP iteration 

 
            Jungck-Noor   iteration 

 
     Jungck-Ishikawa iteration        

n Sxn+1 Txn xn+1 Sxn+1 Txn xn+1 Sxn+1n Txn xn+1 

0 -7.5568 -5 -0.927913 -6.6568 -5 -0.848561 -6.6568 -5 -1.33136 

1 -5.042186 -7.354865 -1.353238 -4.473539 -7.730788 -1.437413 -6.592527 -5.269784 -1.318505 

2 -6.54513 -5.153111 -1.100902 -7.060505 -4.705293 -1.014879 -6.534847 -5.338338 -1.306969 

3 -5.639365 -6.486337 -1.255135 -5.1701 -6.925386 -1.330669 -6.482958 -5.399849 -1.296592 

4 -6.194718 -5.67584 -1.161024 -6.589429 -5.273471 -1.094563 -6.436189 -5.455166 -1.287238 

5 -5.855019 -6.173127 -1.218834 -5.522614 -6.519091 -1.273625 -6.39397 -5.505004 -1.278794 

- - - - - - - - - - 

30 -5.984435 -5.984433 -1.196887 -5.984943 -5.983841 -1.196801 -6.020619 -5.942323 -1.204124 

31 -5.984433 -5.984434 -1.196887 -5.984046 -5.984885 -1.196952 -6.017273 -5.946219 -1.203455 

32 -5.984434 -5.984434 -1.196887 -5.98473 -5.98409 -1.196837 -6.014235 -5.949755 -1.202847 

33 -5.984434 -5.984434 -1.196887 -5.984209 -5.984696 -1.196925 -6.011478 -5.952965 -1.202296 

- - - - - - - - - - 

55 -5.984434 -5.984434 -1.196887 -5.984433 -5.984435 -1.196887 -5.987952 -5.980342 -1.19759 

56 -5.984434 -5.984434 -1.196887 -5.984434 -5.984433 -1.196887 -5.987626 -5.980721 -1.197525 

57 -5.984434 -5.984434 -1.196887 -5.984434 -5.984434 -1.196887 -5.98733 -5.981064 -1.197466 

58 -5.984434 -5.984434 -1.196887 -5.984434 -5.984434 -1.196887 -5.987062 -5.981376 -1.197412 

- - - - - - - - - - 

149 -5.984434 -5.984434 -1.196887 -5.984434 -5.984434 -1.196887 -5.984434 -5.984433 -1.196887 

150 -5.984434 -5.984434 -1.196887 -5.984434 -5.984434 -1.196887 -5.984434 -5.984434 -1.196887 

151 -5.984434 -5.984434 -1.196887 -5.984434 -5.984434 -1.196887 -5.984434 -5.984434 -1.196887 

152 -5.984434 -5.984434 -1.196887 -5.984434 -5.984434 -1.196887 -5.984434 -5.984434 -1.196887 
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Table 2 

 

 

                                                                                        

                                                                                   

 

 

 

No. of 

Iterations 
SP Iteration         Noor Iteration Ishikawa  Iteration Mann iteration  

n Txn xn+1 Txn xn+1 Txn xn+1 Txn xn+1 

0 -1.419125       -1.216246  0              -1       -1        -1.33136 -1            -0.8 

1 -1.176424        -1.19676  -1       -1.546158       -1.053957       -1.318505 -1.5904        -1.51136 

2 -1.19702       -1.196887  -2       -0.941059       -1.067668       -1.306969 -0.863085       -0.927913 

- - - - - - - - - 

28 -1.196886       -1.196886 -1.196683       -1.196739 -1.18666       -1.205674 -1.192326       -1.193214 

29 -1.196887       -1.196887 -1.197042       -1.196999 -1.187606       -1.204861 -1.200763       -1.200008 

30 -1.196887       -1.196887 -1.196768       -1.196801 -1.188465       -1.204124 -1.193592       -1.194233 

- - - - - - - - - 

52 -1.196887       -1.196887 -1.196886       -1.196887 -1.195893       -1.197741 -1.196795       -1.196813 

53 -1.196887       -1.196887 -1.196887       -1.196887 -1.195985       -1.197662 -1.196965        -1.19695 

54 -1.196887       -1.196887 -1.196887       -1.196887 -1.196068        -1.19759 -1.19682       -1.196833 

- - - - - - - - - 

86 -1.196887       -1.196887 -1.196887       -1.196887 -1.19685       -1.196918 -1.196886       -1.196886 

87 -1.196887       -1.196887 -1.196887       -1.196887 -1.196854       -1.196915 -1.196887       -1.196887 

88 -1.196887       -1.196887 -1.196887       -1.196887 -1.196857       -1.196913 -1.196887       -1.196887 

- - - - - - - - - 

136 -1.196887       -1.196887 -1.196887       -1.196887 -1.196886       -1.196887 -1.196887       -1.196887 

137 -1.196887       -1.196887 -1.196887       -1.196887 -1.196887       -1.196887 -1.196887       -1.196887 

138 -1.196887       -1.196887 -1.196887       -1.196887 -1.196887       -1.196887 -1.196887       -1.196887 
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