
International Journal of Computer Applications (0975 – 8887)

Volume 36– No.1, December 2011

46

An Interface Complexity Measure for Component-based
Software Systems

 Usha Kumari Shuchita Upadhyaya
Research Scholar Associate Professor

Deptt. of Computer Science, Deptt. of Computer Science,
Kurukshetra University Kurukshetra University

Kurukshetra, Haryana, India Kurukshetra, Haryana, India

ABSTRACT
Controlling and minimizing software complexity is one of the

most important objective of each software development

paradigm because it affects all other software quality attributes

like reusability, reliability, testability, maintainability etc. For

this purpose, a number of software complexity measures have

been reported to quantify different aspects of complexity. As

the development of component-based software is rising, more

and more complexity metrics are being developed for the

same. In this paper, we have attempted to design an interface

complexity metric for black-box components to quantify an

important aspect of complexity of a component-based system.

The proposed measure takes into account one major type of

complexity of a component. It is due to its interactions

(interfaces) with other components. Graph theoretic notions

have been used to illustrate interaction among software

components and to compute complexity. The proposed

measure has been applied to five cases chosen for this study

and yields quiet encouraging results which may further help in

controlling the complexity of component-based systems so as

to minimize both integration and maintenance efforts. As a

thumb rule, we propose that average number of interactions

(interfaces) per component in a component based system

(CBS) should not be greater than five, otherwise that CBS

would be highly complex and will be more prone to errors and

hence unreliable. However, this rule requires further empirical

support.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics – complexity metrics

General Terms
Measurements

Keywords
Software measurement, component-based software

development (CBSD), component-based system (CBS),

component-based software, reusability, reliability, testability,

maintainability, black-box components.

1. INTRODUCTION
From time to time, various complexity metrics have been

designed in an attempt to measure the complexity of software

systems. Software complexity directly affects maintenance

activities like software reusability, understandability,

modifiability and testability. Estimates suggest that about 50 to

70 % of annual software expenditure involve maintenance of

existing systems. Predicting software complexity can save

millions in maintenance [[11,,77,,99,,1100,,1188]].. Clearly, if complexities

could somehow be identified and measured, then software

developers could adjust development, testing and maintenance

procedures and effort accordingly. This concern has motivated

several researchers to define and validate software complexity

measures [[11,, 22,, 33,, 55,, 77,, 1166,, 1199]].. It is accepted by both software

developers and researchers that complexity of software can be

controlled more effectively through component-based and

object-oriented approach than traditional function-oriented

approach. It is because that objected-oriented and component-

based paradigms control complexity of a software system by

supporting hierarchical decomposition through both data and

procedural abstraction [[99]]. But, the complexity of software is

an essential attribute, not an accidental one [[66]]. Traditional

software complexity metrics are not appropriate for object-

oriented and component-based software systems due to their

distinguish features like class, inheritance, polymorphism,

coupling, interface, links and cohesion.

Component-based software development (CBSD) is one of the

most important, modern paradigm and is expected to be at the

forefront of new approaches to the construction of large and

complex software systems [21,24,25]. The main objective of

this approach is to minimize the development effort, time and

cost by means of reuse. CBSD improves quality, productivity

and maintainability of the software [26,27,29]. Due to this,

CBSD is likely to become the main and preferred stream for

software development. This paradigm focuses on developing

large software systems by integrating prefabricated software

components. It facilitates the process of software development

and solves many adaptation and maintenance problems [28]. It

is very much clear and visible that in the last few years

research has focused on methods and approaches that work

towards developing software systems by integrating already

developed components. As the development of component-

based software is rising, more and more complexity metrics

are being developed for the same. Most of the metrics

proposed so far are based on the source code of the component

and therefore cannot be used by the application developers,

who do not have the source code of these components.

 In this paper, we have attempted to design an interface

complexity metric for black-box components to quantify an

important aspect of complexity of a component-based system.

The proposed measure takes into account one major type of

complexity of a component. It is due to its interactions

(interfaces) with other components. Graph theoretic notions

have been used to illustrate interaction among software

components and to compute complexity. The proposed

measure has been applied to five cases chosen for this study

and yields quiet encouraging results which may further help in

controlling the complexity of component-based systems so as

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.1, December 2011

47

to minimize both integration and maintenance efforts. The

same has also been theoretically evaluated against Weyuker’s

properties. As a thumb rule, we propose that average number

of interactions (interfaces) per component in a component

based system (CBS) should not be greater than five, otherwise

that CBS would be highly complex and will be more prone to

errors and hence unreliable. However, this rule requires further

empirical support.

Rest of this paper is organized as follows: Section 2 presents

overview of software complexity and existing complexity

measures. Software component definition, its dependency and

interaction issues are discussed in section 3. Section 4

describes proposed composite complexity measure. Section 5

reports theoretical evaluation of proposed metric using

Weyuker’s properties. Section 6 discusses the case study and

experimental results. Finally, section 7 concludes the paper

with directions for future work.

2. OVERVIEW OF SOFTWARE

COMPLEXITY AND EXISTING

COMPLEXITY MEASURES

2.1 Software Complexity
In literature, software complexity has been defined differently

by many researchers. IEEE defines software complexity as

“the degree to which a system or component has a design or

implementation that is difficult to understand and verify” [32].

Zuse [[1111]] defines software complexity as the difficulty to

maintain, change and understand software. It deals with the

psychological complexity of programs. According to

Henderson-Sellers [[1122]] the cognitive complexity of software

refers to those characteristics of software that affect the level

of resources used by a person performing a given task on it.

Basili [44]] defines software complexity as a measure of the

resources expended by a system while interacting with a piece

of software to perform a given task. Here, interacting system

may be a machine or human being. Complexity is defined in

terms of execution time and storage required to perform the

computation when computer acts as an interacting system. In

case of human being (programmer) as an interacting system,

complexity is defined by the difficulty of performing tasks

such as coding, testing, debugging or modifying the software.

Bill Curtis [[1133]] has reported two types of software complexity

– Psychological and Algorithmic. Psychological complexity

affects the performance of programmers trying to comprehend

or modify a class/module whereas algorithmic or

computational complexity characterizes the run-time

performance of an algorithm. Brooks [[66]] states that the

complexity of software is an essential attribute, not an

accidental one. Essential complexity arises from the nature of

the problem and how deep a skill set is needed to understand a

problem. Accidental complexity is the result of poor attempts

to solve the problem and may be equivalent to what some are

calling complication. Implementing wrong design or selecting

an inappropriate data structure adds accidental complexity to a

problem.

Software complexity can not be defined by a single definition

because it is multidimensional attribute of software. So,

different researchers/users have different view on software

complexity. Therefore, no standard definition exits for the

same in literature. However, knowledge about software

complexity is useful in many ways. It is indicator of

development, testing, and maintenance efforts, defect rate,

fault prone modules and reliability. Complex software/module

is difficult to develop, test, debug, maintain and has higher

fault rate.

2.2 Software Complexity Measures
Software complexity can not be removed completely but can

be controlled only. But, for effective controlling of complexity,

we need software complexity metrics to measure it. From time

to time, many researchers have proposed various metrics for

evaluating, predicting and controlling software complexity.

Traditional software metrics have been designed and applied to

the measurement of software complexity of structured systems

since 1976 [5, 17, 18, 34]. Halstead’s software science metrics,

Source line of code, McCabe’s cyclomatic number and

Kafura’s & Henry’s fan-in, fan-out, function point analysis,

bugs or faults per line of code, code coverage are the best

known early reported complexity metrics for traditional

function-oriented approach. Traditional software metrics are

usually applicable to small programs, whereas the metrics for

object-oriented and component-based software systems should

depend mainly on the granularity and interoperability aspects

of the classes and components. So traditional software

complexity metrics are not suitable for measuring complexity

of object oriented and component-based software systems.

Various researchers have proposed many object oriented

metrics to compute complexity of object oriented software.

Chidamber and Kemerer [[11]] proposed a suite of six metrics :

Number Of Children (NOC) - number of immediate derived

classes, Depth Of Inheritance Tree (DIT) - maximum path

length from root to node in inheritance tree, Weighted

Methods per Class (WMC) - sum of all methods of a class,

Coupling Between Objects (CBO) - number of classes to

which a class is coupled, Lack Of Cohesion in Methods

(LCOM) - measures the dissimilarity of methods in a class and

Response For a Class (RFC) - number of methods of a class to

be executed in response to a message received by an object of

that class. These metrics measure complexity of object-

oriented software by using design of classes. WMC measures

the complexity of a class as a sum of complexity of individual

methods. Higher values of NOC and DIT are indicator of

higher complexity due to involvement of many methods. CBO

value for a class is the indicator of total number of other

classes to which it is coupled. Mishra [[1144]] proposed a metric

for computing the complexity of a class at method level by

considering internal structure of method. Fothi et al [[88]]

designed a metric which computes complexity of a class on the

basis of complexity of control structures, data and relationship

between data and control structures. A metric which calculates

overall complexity of design hierarchy was proposed by

Mishra [[1144]]. It computes complexity by considering inherited

methods only and does not take into account internal

characteristics of methods.

For component-based systems, complexity metrics reported in

[23, 28, 29, 30, 31, 35] are based on complexity attributes like

interaction, coupling, cohesion, interface etc. Most of the

metrics proposed so far are based on the source code of the

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.1, December 2011

48

component and therefore cannot be used by the application

developers, who do not have the source code of these

components. So, there is strong demand and need for designing

of complexity metrics for black-box components, which may

be used by the application developers to choose the best

components and then finally produce better quality CBS. For

black-box components, major complexity parameters are

interface, integration and semantics. Interface complexity

measures are the estimates of the complexity of interfaces.

Interface defines provided services of a component and acts as

a basis for its use and implementation. It acts as one of the

major definitive source for component understanding and may

be the only available source. An interface consists of a set of

operations, which act as access points for interaction with the

outside computing environment. Integration metrics are the

measures of efforts required in the integration process of

components and semantic measures estimate the complexity of

relationship of components to application.

3. SOFTWARE COMPONENT

DEFINITION, ITS DEPENDENCY AND

INTERACTION ISSUES
A software component is a self-contained piece of software

that provides clear functionality, has open interfaces and offers

plug-and-play services. It can be regarded as a reusable

software element such as a function, file, module, class or

subsystem. A component-based software system can be

obtained as a result of the composition of some components

with defined interfaces [21,22]. A component’s functionality is

implemented in its methods and is provided for other

components through its well-defined interfaces/interactions.

The dependency among components can be described as the

reliance of a component on other component(s) to support a

specific functionality or configuration. In highly structured

environments, like component-oriented systems, unit of

computation (e.g. component) communicate and share

information in order to provide system functionalities.

Components are composed on regular basis for the purpose of

offering more abstract services in a system. This composition

creates interaction that promotes dependencies among

components. System functionalities are not dependent solely

on one component. Therefore, modifying a component may

affect that composite functionality, which is reflected in

different components. Similarly, replacing a new version of a

specific component might involve replacing the component(s)

on which it depends, in order to preserve a specific system’s

functionality. The key point to analyze such aspects is the

knowledge about possible relations, interfaces and

dependencies among them.

4. PROPOSED COMPLEXITY MEASURE
Software complexity can not be computed by a single

parameter of a component/program/software because it is

multidimensional attribute of software. The prominent factors

which contribute to complexity of a component-based software

system are :

Size of each component: Size is also considered one of the

parameter of program/class/component complexity. A class

with more methods is harder to understand than a class with

less number of methods and hence contributes more

complexity [[11,,1177]].. Large programs/components incur problem

just by virtue of volume of information that must be absorbed

to understand the program and more resources have to be used

in their maintenance [[11,,1177,,2200]]. So, size is a factor which adds

complexity to a component.

Interfaces of each component: In CBSD, a component is linked

with other components and hence has interfaces with them.

Two or more components are said to be interfaced if there is a

link between them, where a link means that a component

submits an event and other components receive it. The

direction of the link indicates that which component requests

the services or dependent on the other. Interface between two

components can be through incoming and outgoing

interactions. These both types of interactions add complexity

to a component-based software system.

By taking only interface complexity into account, an interface

complexity measure for a component-based system is

suggested as :

Average Incoming Interactions Complexity (AIIC) =

m

II
m

i

i
1

Average Outgoing Interactions Complexity (AOIC)

=
m

OI
m

i

i
1

Average Interface Complexity of a Component Based System

(AIC (CBS)) =
m

OI

m

II
m

i

i

m

i

i 
  11

 where

m Number of components in the Component Based

System (CBS)

II Incoming Interactions

OI Outing Interactions

 Summation symbol,

i Index variable

5. THEORETICAL EVALUATION OF

PROPOSED METRIC USING

WEYUKER’S PROPERTIES
Weyuker [33] proposed an axiomatic framework in the form

of several properties for evaluating complexity aspects of

software systems. The proposed interface complexity metric

reported here is evaluated against these properties for

compatibility. The properties are:

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.1, December 2011

49

Property 1: There are programs/components P and Q for

which M(P) M(Q).

Property 2: If C is non-negative number, then there are

finitely many programs/components P for which M(P)= C.

Property 3; There are distinct components/programs P and Q

for which M(P)= M(Q).

Property 4: There are functionally equivalent

components/programs P and Q for which M(P) M(Q).

Property 5: For any program/component bodies P and Q, we

have M(P)<=M(P;Q) and M(Q)<=M(P;Q).

Property6: There exist program/component bodies P, Q and R

such that M(P)=M(Q) and M(P;R)  M(Q;R).

Property 7: There are program/component bodies P and Q

such Q is formed by permuting the order of statements of P

and M(P)  M(Q).

Property 8: If p is renaming of Q, then M(P)=M(Q).

Property 9: There exist program/component bodies P and Q

such that M(P)+M(Q)< M(P;Q).

These properties are evaluated for the proposed interface

metric as described below:

i. There may be two different components with different

complexities, thus satisfying the property 1.

ii. As each component will have at least one method with

some functionality, therefore its complexity will

always have some positive value. It validates the

second property.

iii. For two different components with different

functionality, the proposed complexity metric value

may be same, as these methods may have same

interface structure but with different functionality. It

satisfies Property 3.

iv. Even if the functionality of the two components is

same, both may have different complexities as these

components may be designed by using different

concepts of programming and technologies. It validates

property number 4.

v. If a component is assembled with other component to

get an integrated component for enhanced

functionality, the complexity of these two individual

components will be lesser than the complexity of the

integrated component, which satisfies the 5th property.

vi. Two components with the same complexity means

both will have same no. of interfaces. However, they

may be developed by using different programming

methodologies and therefore when integrating in the

system, both may have different integration code and

implementation thus resulting in different complexities

of the system in both the cases. It confirms property

number 6.

vii. If the ordering of interfaces in a component is

changed, then it will not change the complexity of the

new modified component. So, this property is not

satisfied by our proposed interface metric.

viii. It is obvious that renaming an interface/method or a

component will not affect the complexity of that

interface or the component, thus satisfying the

property no 8.

ix. When any two components are assembled, then we

may have to write some more methods related with the

integration in addition to the existing methods. This

will increase the complexity of the assembled

component. It validates the last property.

In this way, eight Weyuker properties are satisfied by the

proposed interface metric.

6. CASE STUDY AND EXPERIMENTAL

RESULTS
In order to compute the complexity of component-based

systems through proposed measure, firstly directed graphs of

design of components are developed and then proposed metric

is applied. Five cases have been selected for the experimental

study. In case 1, we have a component-based software system

(CBSS) having four components as Figure 1. Here some

components (A,B,D) having both directions interactions and

component C has single direction interaction. In case 2, the

directed graph consists of four components and four

interactions, case 3 involves four components and six

interactions, case 4 having six components and nine

interactions and case 5 consists of six components and five

interactions. It is clear that in case 2 and case 3, number of

components are same (four components) but case 3 having

more interactions than case 2. Similarly, case 4 and case 5

having same number of components (six components) but

there are lesser number of interactions in case 5 than case 4.

Case 1 : A CBSS having four components with both

directions and single direction interactions

A

D

B
C

Figure 1

 A B C D Total

II 1 2 2 2 7

OI 3 2 0 1 6

AIIC =
m

II
m

i

i
1

= 7/4 = 1.75

AOIC =
m

OI
m

i

i
1

 = 6/4 = 1.50

AIC(CBS) = 1.75 + 1.50 = 3.25

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.1, December 2011

50

We suggest that AIC of a CBS should be less than equal to 5.

It means that average number of interactions (interfaces) per

component in a component based system (CBS) should not be

greater than five, otherwise design complexity of that CBS

would be highly complex and will be very complex to

maintain, debug that system. As a result of this, that CBS

system will be more prone to errors and hence unreliable. In

figure 1, component B is more complex having total four

interactions and so it is difficult to manage it than other

components. However, this rule requires further empirical

support.

Case 2 : Four components with four interactions

 (Case having less interactions between components)

The directed graph of this case example is depicted in Figure

2.

C1 C2

C4C3

Figure 2

II(C1)=0, OI(C1)=2,

II(C2)=2, OI(C2)=0,

II(C3)=1, OI(C3)=1,

II(C4)=1, OI(C4)=1,

AIIC = 4/4=1, AOIC = 4/4=1

AIC = AIIC + AOIC = 1+1=2

Case 3 : Four components with six interactions (Case

having same number of components and more interactions

between components than case 1)

C1 C2

C4C3

Figure 3

The directed graph for this case is depicted in Figure 3.

II(C1)=1, OI(C1)=2

II(C2)=2, OI(C2)=1

II(C3)=2, OI(C3)=1

II(C4)=1, OI(C4)=2

AIIC = 6/4=1.5, AOIC = 6/4=1.5

AIC = AIIC + AOIC = 1.5+1.5=3

For Case 2 For Case 3

AIC(CBS)=2 AIC(CBS) = 3

From these results, we infer that case 3 is more complex than

case 2, though both cases having the same number of

components. Results agree with reality as depicted by flow

graphs of case 2 and case 3 and has brought quantitative

affirmative of the same.

Case 4 : Six components with nine interactions (Case

having more components and more interactions among

components than case 1 and case 2)

The directed graph for this case is depicted in Figure 4.

C1 C2

C4C3

C6C5

Figure 4

II(C1)=1, OI(C1)=1

II(C2)=1, OI(C2)=2

II(C3)=3, OI(C3)=2

II(C4)=2, OI(C4)=1

II(C5)=1, OI(C5)=1

II(C6)=1, OI(C6)=2

AIIC = 9/6=1.5, AOIC = 9/6=1.5

AIC = AIIC + AOIC = 1.5+1.5=3

Case 5 : Six components with five interactions (Case

having same components and less interactions among

components than case 4)

The directed graph for this case is depicted in Figure 5.

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.1, December 2011

51

C1 C2

C4C3

C6C5

Figure 5

II(C1)=1, OI(C1)=1

II(C2)=1, OI(C2)=1

II(C3)=1, OI(C3)=1

II(C4)=1, OI(C4)=1

II(C5)=0, OI(C5)=1

II(C6)=1, OI(C6)=0

AIIC = 5/6=0.84, AOIC = 5/6=0.84

AIC = AIIC + AOIC = 0.84+0.84=1.68

On comparison of results of case 4 and case 5, we find that :

For Case 4 For Case 5

AIC(CBS)=3.0 AIC(CBS)=1.68

It is clear from the above results of case 4 and case 5 that case

4 is more complex than case 5 though both cases having the

same number of components. The results agree with the

complexities of flow-graphs of these cases 4 and 5 and has

brought quantitative affirmative of the same.

7. CONCLUSIONS AND FUTURE WORK

DIRECTIONS
In this paper, an interface complexity measure has been

proposed which takes into account – interaction complexity, an

important aspect of complexity of a component-based system.

The results show that the effect of this parameter on

complexity of a component-based system is quite significant.

The results agree with the intuition that higher interaction

between components increases the complexity because of more

coupling among components. The same has also been

theoretically evaluated against Weyuker’s properties. Making

early decisions about complexity of a component-based system

may help a lot to software developers in reducing design,

testing and maintenance efforts. The proposed measure

appears to be logical and fits the intuitive understanding but is

not the only criteria for deciding the overall complexity of a

component-based system. As a thumb rule, we propose that

average number of interactions (interfaces) per component in a

component based system (CBS) should not be greater than

five, otherwise that CBS would be highly complex and will be

more prone to errors and hence unreliable. However,

application of conclusions to real life situations needs further

study and empirical support using data from industrial projects

to validate these findings and to derive more useful and

generalized results. Using data from industry implemented

projects will provide a basis to examine the relationship

between proposed metric values and several quality attributes

of component-based systems.

8. REFERENCES
[1] Chidamber, S. R., Kemerer, C.F. (1994): A Metrics Suite

for Object Oriented Design, IEEE Transactions on

Software Engineering, pp. 476-492.

[2] Mark, L, Jeff, K.(1994): Object Oriented Software

Metrics, Prentice Hall Publishing.

[3] Basili, V.R., Biand, L., Melo, W.L. (1995): A validation

of object-oriented design metrics as quality indicators,

Technical report, Uni. of Maryland, Deptt. of computer

science, MD, USA.

[4] Basili, V. (1980): Qualitative Software Complexity

Models: A Summary, In Tutorial on Models and Methods

for Software Management and Engineering, IEEE

Computer Society Press, Los Alamitos, CA.

[5] Singh, R., Grover, P.S. (1997): A New Program Weighted

Complexity Metric, Proc. International conference on

Software Engg. (CONSEG’97), Chennai, India, pp. 33-

39.

[6] Brooks, I. (1993): Object Oriented Metrics Collection and

Evaluation with Software Process, presented at

OOPSLA’93 Workshop on Processes and Metrics for

Object Oriented software development, Washington, DC.

[7] Harrison, W. (1982). Magel, K, Kluezny, R., dekock, A.:

Applying Software Complexity Metrics to Program

Maintenance, IEEE Computer, 15, pp. 65-79.

[8] Fothi, A. Gaizler, J., Porkol, Z. (2003): The Structured

Complexity of Object-Oriented Programs, Mathematical

and Computer Modeling, 38, pp. 815-827.

[9] Da-wei, E. (2007): The Software complexity model and

metrics for object-oriented, IEEE International Workshop

on Anti-counterfeiting, Security, Identification, pp. 464-

469.

[10] Brooks, F.P. (1995): The Mythical Man Month: Essays on

Software Engineering, Addison-Wesley.

[11] Zuse, H. (1991): Software Complexity Measures and

Methods, W.de Gruyter, New York.

[12] Sellers, B. H. (1996): Object-Oriented Metrics : Measures

of Complexity, Prentice Hall, New Jersey.

[13] Curtis, B. (1980): Measurement and Experimentation in

Software Engineering, Proc. IEEE conference, 68,9, pp.

1144-1157.

[14] Mishra, S. (2007): An Object Oriented Complexity Metric

Based on Cognitive Weights, Proc. 6th IEEE International

Conference on Cognitive Informatics (ICCI’07).

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.1, December 2011

52

[15] Usha Chhillar, Sucheta Bhasin (2011): A New Weighted

Composite Complexity Measure for Object-Oriented

Systems, International Journal of Information and

Communication Technology Research, 1 (3).

[16] Elish, M.O., Rine, D. (2005): Indicators of Structural

Stability of Object-Oriented Designs: A Case Study, Proc.

29th Annual IEEE/NASA Software Engineering

Workshop(SEW’05), 2005.

[17] Halstead, M.H. (1977): Elements of Software Science,

New York: Elsevier North Holland.

[18] McCabe, T.J. (1976): A Complexity Measure, IEEE

Trans. On Software Engg., SE-2, 4, pp. 308-320.

[19] Aggarwal, K.K. (2006): Empirical Study of Object-

Oriented Metrics, Journal of Object Technology, 5, pp.

149-173.

[20] Usha Kumari, Sucheta Bhasin (2011): Application of

Object-Oriented Metrics To C++ and Java : A

Comparative Study, ACM SIGSOFT Software

Engineering Notes, 36 (2), pp. 1-6.

 [21] Capretz, L.F (2005): Y : A New Component-Based

Software Life Cycle Model, Journal of Computer Science,

1 (1), pp. 76-82.

[22] Brown, Wallnau (1998): The Current State of CBSE,

IEEE Software, 15 (5).

[23] Gill, N.S, Balkishan (2008): Dependency and Interaction

Oriented Complexity Metrics of Component-Based

Systems, ACM SIGSOFT Software Engineering Notes,

33 (2), pp. 1-5.

[24] Ravichandran, T., Rothenberger, M. (2003): Software

Reuse Strategies and Component Markets,

Communications of the ACM, 18 (5), pp. 410-422.

[25] Dogru, A.H., Tanik, M. (2003): A process Model for

Component Oriented Software Engineering, IEEE

Software, pp. 34-41.

[26] Vitharana, P., Zahedi, F.M., Jain, H. (2003): Design

Retrieval and Assembly in Component-Based Software

Development, Communications of the ACM, 46 (11), pp.

97-102.

[27] Basili, V.R., Boehm, B. (2001): COTS-Based Systems

Top 10 List, IEEE Computer, 34 (5), pp.91-93.

[28] Noel SALMAN (2006): Complexity Metrics As

Predictors of Maintainability and Integrability of

Software Components, Journal of Arts and Sciences, 5,

pp. 39-50.

[29] Jianguo Chen et.al (2011): Complexity Metrics for

Component-based Software Systems, International

Journal of Digital Content Technology and its

Applications, 5 (3), pp. 235-244.

[30] Sengupta, S., Kanjilal, A. (2011): Measuring Complexity

of Component Based Architecture : A Graph Based

Approach, ACM SIGSOFT Software Engineering Notes,

36 (1), pp. 1-10.

[31] Sharma, A., Grover, P.S., Kumar, R. (2009): Dependency

Analysis for Component-Based Software Systems, ACM

SIGSOFT Software Engineering Notes, 34 (4), pp. 1-6.

[32] IEEE Standard Glossary of Software Engineering

Technology, 1990, IEEE Std. 610.12-1990, The Institute

of Electrical ad Electronics Engineers, Inc.

[33] Weyuker, E.J. (1988): Evaluating Software Complexity

Measures, IEEE Transactions on Software Engineering,

14 (9), pp.1357-1365.

[34] Usha Chhillar, Sucheta Bhasin (2011): A Journey of

Software Metrics : Traditional to Aspect-Oriented

Paradigm, 5th National Conference on Computing For

Nation Development, 10th -11th March, 2011, New Delhi,

pp. 289-293.

[35] Usha Chhillar, Sucheta Bhasin (2011): A Composite

Complexity Measure For Component-Based Systems,

ACM SIGSOFT Software Engineering Notes, 36 (6), pp.

1-5.

