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ABSTRACT 

The main objective in refining units is to keep the product 

quality within specifications in the faces of disturbances. Online 

measurements of product composition using composition 

analyser are neither easy nor economically viable. In an effort to 

overcome these difficulties various soft sensors are designed in 

the recent years. In this research work, the authors have 

proposed the design of neural network based soft sensor for two 

types of chemical processes i.e. reactive distillation process and 

multicomponent distillation process. The designed soft sensor is 

based on adaptive linear network, Adaline and is used to infer 

the product composition from the temperature profile of the 

respective processes. For a comparative study Levenberg 

Marquardt based artificial neural network soft sensor is also 

designed. It is observed from the results that the Adaline based 

soft sensor is more efficient in comparison to LM based ANN 

soft sensor in terms of accuracy, time taken for training and 

memory usage.   

General Terms 

Application of Adaptive Linear Network in distillation process.   

Keywords 

Adaline soft sensor, LM soft sensor, Reactive distillation 

process, Multicomponent distillation. 

1. INTRODUCTION 
For successful control of distillation process, the online 

measurement of product composition is quite important. The 

measurements using composition analysers are difficult because 

they are expensive, difficult to maintain, require frequent 

calibration and have undesirable time delays. Therefore to avoid 

such type of difficulties, the composition is predicted from 

secondary measurements such as temperature measurements, 

pressure, heat input, reflux flow etc. [1][2]. Sungyong Park and 

Chaonghun Han [3] proposed a design methodology to design a 

soft sensor for chemical processes that can handle the 

correlations among many process variables and nonlinearities 

based on smoothness concepts. Yao Wu and Xionglin Luo [4] 

introduced multirate data fusion technology based on Kalman 

filter into soft sensor maintenance, to integrate the soft sensor 

model estimation with process measurement. The results 

demonstrated that the multirate Kalman filter approach provides 

improved accuracy and reliability of soft estimation when 

essentially dynamics is included in the Kalman filtering model 

and the filter parameters are properly tuned. Pierantonio Facco 

et al. [5] developed a moving average partial least square soft 

sensor for online product quality estimation in an industrial 

batch polymerization process. Almila Bahar and Canan Ozgen 

[6] designed an ANN based estimator system and used it in the 

feedback inferential control algorithm. Inputs to the controller 

are estimated compositions from ANN and the reflux ratio 

information. In the control law scheduling policy is used and 

predefined set points are the optimal reflux ratio profile. A. 

Rogina et al. [7] conducted multiple linear regression analysis 

and used neural networks based models to develop soft sensors. 

The best results were obtained with multilayer perceptron and 

radial basis function neural networks on considering statistical 

and sensitivity analysis. Ming-Da Ma et al. [8] developed an 

adaptive soft sensor based on statistical identification of key 

variables. The inferential model built by the selected key 

variables predicted accurately and matched the real plant 

situation which made it useful for industrial applications. S.R. 

Vijaya Raghavan et al. [9] presented the design and 

implementation of a recurrent neural network (RNN) based 

inferential state estimation scheme for an ideal reactive 

distillation column. The performance of RNN shows better state 

estimation capability as compared to other state estimation 

schemes in terms of qualitative and quantitative performance 

indices. L. Fortuna et al. [10] designed neural based soft sensors 

to improve product quality monitoring and control in a refinery 

by estimating the stabilized gasoline concentration in the top 

flow and the butane concentration in the bottom flow of a 

debutanizer column, on the basis of a set of available 

measurements. Fatima Barcelo-Rico et al. [11] presented a 

methodology for the design of a fuzzy controller applicable to 

continuous process based on local fuzzy models and velocity 

linearization.   

The present work deals with the design of two types of artificial 

neural network based soft sensors. The adaptive linear network 

is used to estimate the product composition of two distillation 

processes from the respective temperature profiles. The LM soft 

sensor based on Levenberg-Marquardt trained artificial neural 

network is also designed for comparison purpose [2]. The 

proposed sensors are discussed in the next section. 

 

2. PROPOSED SOFT SENSORS 

2.1 Adaptive Linear Network (Adaline) Soft 

Sensor  
Adaptive Linear Network (Adaline) developed by Widrow and 

Hoff is found to use bipolar activation functions for both the 

input signals and target output (1960) [12]. The architecture of 

an Adaline is shown in Fig. 1. The Adaline has only one output 

unit which receives input from several units and also from bias 

whose action is always +1. The Adaline resembles a single layer 
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network. In Fig. 1 an input layer with x1,...,xn and bias and an 

output layer with only one output neuron is present. The input 

and output neurons possess weighted interconnections.    

 
Fig. 1 Architecture of an Adaline 

 

The output y of the Adaline is given as, 

� = ∑ ���� + �	�
�                                            (1) 

The weights are trained using least mean square algorithm based 

on the use of [13] instantaneous values of cost function namely, 

   �(�) = �
� ��(�)                                          (2) 

where e(n) is the error signal measured at time n. 

Differentiating E(w) with respect to the weight vector w yield 

             
	��(�)
�� = �(�) ��(	)

��                                                   (3) 

The algorithm operates with a linear neuron so the error 

signal is expressed as 

             �(�) = �(�) − ��(�)�(�)                    (4) 

hence 

         
��(	)
��(	) = −�(�)                    (5) 

and 

            
��(�)
	��(	) = −�(�)�(�)                                   (6) 

using the later result as an estimate of gradient vector 

             ��(�) = −�(�)�(�)                    (7) 

Finally using the eqn. (7) for the gradient vector in equation of 

weight upgradation for the method of steepest descent, the least 

mean square algorithm is formulated as 

  ��(� + 1) = ��(�) + ��(�)�(�)                                (8) 

where, � is the learning rate parameter.  

In this paper single layer Adaline network is used to predict the 

composition of distillate product from temperature profile of the 

column.   
 

2.2 Levenberg-Marquardt Soft Sensor 
The Levenberg-Marquardt soft sensor is an LM trained artificial 

neural network. The algorithm minimizes the functions that are 

sums of squares of other nonlinear functions [14]. The neural 

network training uses mean square error as the performance 

index which can be minimized using LM algorithm.  

In present work the Levenberg-Marquardt algorithm is applied 

to estimate the composition of multicomponent distillation 

process and reactive distillation process [7]. If each target occurs 

with equal probability, the mean squared error is proportional to 

the sum of squared error over the Q targets in the training set. 

 �(�) = ∑  !" − #"$�(!" − #")%"
�  

 

   = ∑ �"��" = ∑ ∑ (�&,")� = ∑ ((�)�)�
�*+&
�%"
�%"
�                  (9) 

 

where �&,"  is the jth element of the error for the ,-. input /target 

pair. 

The key step in the Levenberg-Marquardt algorithm is the 

computation of the Jacobian matrix. To perform this 

computation, a variation of back propagation algorithm is used. 

To create the Jacobian matrix, the computation of derivatives of 

the errors is needed, instead of the derivatives of the squared 

errors. Note that the error vector is  

/� = 0(�	(�, … , ()2 = 0���	���, … , �*3+,�. ���, … , �*3+,%2        (10) 

The parameter vector is  5� = 0��	��, … , �)2 =0���� ���� , … , �*36,7, ���, … , �*6	� , ���� , … ,	 �*3+8 2                           (11) 

The standard back propagation method calculates terms like    

 
�9
	�:; =

��<	=�<
�:;                                                                               (12) 

For the elements of the Jacobian matrix that are needed for the 

Levenberg-Marquardt algorithm need to calculate terms like 

0>2.,? = �@A
�:; =

��B,<
�:;                                                                   (13) 

Now the elements of Jacobian matrix can be computed as 

0>2.,? = �@A
�:; =

��B,<
�CD,EF

= ��B,<
�	D,<F

× �	D,<F
�CD,EF

= H̃�,.J × �	D,<F
�CD,EF

= H̃�,.J × #&,"JK�    

                                                                                                (14) 

or if lx is a bias 

L��J = ∑ ��,&J*FM6&
� #&JK� + ��J , Nℎ�P�QRP�			 �	DF�CD,EF
= #&JK�				S  

 and     		L�	DF�TDF
= 1S

 
 

0>2.,? = U(.U�? = U�V,"
U��J = U�V,"

U��,"J
× U��,"J

U��J = H̃�,.J × U��,"J
U��J = H̃�,.J

                                                                                                  (15) 

The Marquardt sensitivities can be computed through the same 

recurrence relations as the standard sensitivities (eq. 16), with 

one modification at the final layer. For the Marquardt 

sensitivities at the final layer we have  

H̃�,.8 = U(.
U��,"8

= U�V,"
U��,"8

= U !V," − #V,"8 $
U��,"8

= −U#V,"8
U�V,"8  
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                   = W−Q38 ��,"8 $	QRP	X = Y
				0														QRP	X ≠ Y \  

                

                   (16) 

Therefore when the input ]" are applied to the network and the 

corresponding network output #"8 are calculated, the Levenberg-

Marquardt back propagation is initialized with  

                H̃"8 = −�38 �"8$                                                      (17) 

where     �38 �"8$  is defined in equation (17). Each column of 

the matrix H̃"8 must be back propagated through the network 

using equation (16) to produce one row of the Jacobian matrix. 

The column can also be back propagated together using  

             H̃"J = −�3J �"J$(�J^�)�H̃"J^�                               (18) 

The total Marquardt sensitivity matrices for each layer are then 

created by augmenting the matrices computed for each input: 

            _̀8 = 0H̃�J, H̃�J , … , H̃"J2                                          (19) 

It is to be noted that for each input presented to the network the 

sensitivity vectors _̀8will be back propagated. This is because 

the derivative of each individual error is computed, rather than 

the derivative of the sum of squares of the errors. For every 

input applied to the network there will be _̀8errors (one for each 

element of the network output).  

The Levenberg-Marquardt technique derived in above section is 

summarized in the following steps. 

Step1: Compute the error using target and actual output 

calculated by network. Compute the sum of squared 

errors for over all outputs using equation (9). 

Step2: The Jacobian matrix is calculated using error with  

           respective inputs.  
Step3: The sensitivities are calculated with the recurrence 

relations in equation (17) initializing with the equation 

(16). 

Step4: The individual matrices are augmented into the 

Marquardt sensitivities using equation (19) and compute 

the elements of the Jacobian matrix using equations (14) 

and (15).  

Step5: Solve the following equation to get the value of 			∆�V . 
             ∆�V = −0>�(�V)>(�V) + μVc2K�>�(�V)d(�V)          (20) 

Step6: Recompute the sum of squared errors using the new value        �V + ∆�V .	If the new sum of squares of errors is smaller 

than the error computed in step 1 then divide μ by e and 

let �V^� = �V + ∆�V 		and go back to step 1. If the sum of 

squares is not reduced then multiply μ by e, and go back 

to step 3.  

The LM algorithm discussed above is used to update the weights 

of the artificial neural network and the network is then used for 

estimating the distillate composition. 
 

3. CASE STUDIES 
Two cases of applications to distillation column are analysed; 

reactive distillation process and Multi component distillation 

process. The proposed soft sensors are used to estimate the 

product composition for the two processes.  

 

3.1 Reactive Distillation Process 
Reactive distillation is a process of chemical reaction and 

separation of the products in the common chamber. It is a highly 

nonlinear and complex process. The chemical industry prefers 

reactive distillation due to its high gain and compact nature. 

Reactive Distillation Column (RDC) is an ideal two-reactant-

two-product column proposed by Al-Arfaj and Luyben [15] and 

later developed into state space model. It consists of a reactive 

section in the middle and non-reactive rectifying and stripping 

sections at the top and bottom respectively.  

The column consists of Reactive Trays (NRX=9) in the middle, 

Rectifying Trays (NR=5) in the top and Stripping Trays (NS=5) 

in the bottom. The trays of the column are numbered from 

reboiler to condenser. The reaction that takes place in the 

reactive zone is exothermic liquid-vapour in nature and is given 

by 

                               f + g ↔ i + j                                    (21) 

During the distillation process, the reactant B which is one of the 

input feeds is recovered in the rectifying section from the output 

product C whereas the second feed i.e. reactant A, is recovered 

from output product D in the stripping section. The reactive 

section comprises the middle section of the reactive distillation 

column where the reactants A and B react to produce C and D. 

The reaction generates the heat which is then used for the 

distillation of the products. The products are separated to 

prevent any undesired reaction between reactants A and B and 

products C and D. The volatilities of the products and reactants 

are such that 

                                kl > kn > kT > ko                                (22) 

where k&  is the volatility of the p-. component, p = #, �, q, �. 

The mathematical model of reactive distillation column is 

simulated in MATLAB. The training and testing data for soft 

sensors is generated by simulating the model for variable feed 

flow rates. The corresponding changes in the temperature profile 

and distillate composition are then considered for training as 

well as testing purposes. The inputs used are the temperatures of 

19 trays and target outputs are the compositions of the four 

components in the distillate. The Adaline and LM soft sensors 

are designed and trained to estimate the distillate composition of 

reactive distillation process. The trained sensors are then tested 

by using test inputs different from those used in training. The 

estimated distillate composition by the two sensors for reactive 

process is shown in Fig. 2(a)-(d). It is observed from estimated 

results that the estimation made by Adaline is almost coinciding 

with the simulated results. The estimated results using LM 

technique are slightly deviating from the original simulated 

results. The deviation of estimated results is due to the reason 

that LM technique suits more for the highly complex and 

nonlinear relations. In this case the complexity is slightly 

reduced because the number of outputs is less. It is also 

observed that the Adaline estimator takes extremely less time as 

compared to the LM estimator. The performance parameters for 

both the estimators are shown in Table 1.      
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                                                        (a) 

 
               (b) 

 
                                                        (c) 

 
               (d)  

Fig. 2 Estimated composition of distillate product (a) 

XD1 (b) XD2 (c) XD3 (d) XD4 

3.2 Multicomponent Distillation Process 
The multicomponent distillation column under consideration is 

having 15 trays, a reboiler to vaporise the mixture and a 

condenser to cool the overhead vapour. Tray 5 is used as feed 

tray. In distillation, a liquid mixture is fed on the feed tray and 

the mixture is stored in reboiler. The heat is introduced in the 

reboiler to produce vapour. The vapour starts flowing from the 

reboiler to top tray and then to condenser through stripping and 

rectifying section. During initial start-up period, the column 

operates under total reflux condition in which vapour from the 

top of the column is condensed and returned to the column 

through reflux drum. During the column operation under total 

reflux condition, the concentration of the lightest component 

builds-up on the upper trays of the column and the 

concentrations of the intermediate component and heaviest 

component decreases in the top of the column but increases in 

the still pot. When the concentration of the lightest component 

in the distillate reaches its specified purity level, then the 

distillate product withdrawal begins.  

 
                                         (a) 

 
                                                   (b)      
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 (c) 

 
               (d)  

 
                                                         (e)  

Fig. 3 Estimated Composition of Liquid composition in 

Distillate (a) XD1,(b) XD2, (c) XD3 (d) XD4, (e) XD5 

The quality of distillate must be maintained within the specified 

limits which require the composition measurement. The 

measurements made by the composition analysers are difficult 

due to time delay and maintenance reasons. Therefore the 

product composition is measured with the help of soft sensors. 

In the present work two soft sensors are designed for estimation 

of product composition. The data used for training the soft 

sensors is acquired by simulating the mathematical model of 

multicomponent distillation process for variable heat input. In 

this case temperature profile (temperature of 15 trays, reboiler 

and condenser), heat input, reboiler pressure and reflux flow rate 

are used as inputs and liquid and vapour compositions of five 

components in distillate are the target outputs for the soft 

sensors. The data set so generated is used for training and testing 

of the designed soft sensors. The test results obtained are shown 

in Fig.3 and Fig.4.       
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(e) 

Fig. 4 Estimated vapour composition in Distillate (a) YD1,(b) 

YD2, (c) YD3 (d) YD4, (e) YD5 

It is observed from the estimated results that the Adaline soft 

sensor estimates the product composition quite accurately as 

compared to the LM soft sensor. In the case where the 

composition is very less the LM soft sensor is not able to predict 

the composition correctly, whereas Adaline soft sensor provides 

a very good estimation. It is also observed that Adaline being a 

single layer takes negligibly less time for training than the LM 

network. The memory space used, is also very less in case of 

Adaline network as the number of elements in the network is 

less. The comparison of performance parameters of the two soft 

sensors is shown in Table 1.   

Table 1. Performance indices of estimators  

Process Estim-

ator 

Architecture MSE(test) Execution 

time (sec) 

Multi-

component 

Distillation 

Adaline 20-10 2.9092e-11 0.078 

LM 20-15-15-10 1.4212e-12 88.79 

Reactive 

Distillation 

Adaline 19-4 1.9409e-8 0.016 

LM  19-12-12-4 3.9629e-07 9.117 
 

4. CONCLUSION 
In the present work, an adaptive linear network is used to design 

a soft sensor for estimating the product composition from 

temperature profile of the process. The Adaline network is 

similar to the perceptron but the transfer function is linear rather 

than hard limiting. The proposed estimator is a single layer 

Adaline and it uses the supervised learning algorithm known as 

least mean square algorithm or delta learning rule. A LM based 

ANN estimator is also designed for comparative study. It is 

observed from the results that in case of reactive distillation 

process the Adaline soft sensor gives more accurate results as 

compared to the LM soft sensor. In case of multicomponent 

distillation process the performance of the LM soft sensor is not 

up to the mark for the case where composition is very less, 

whereas the estimated results obtained by Adaline soft sensor 

coincide with the simulated composition. The Adaline soft 

sensor being a single layer network requires extremely less time 

and memory space during training. Therefore, it is concluded 

from the observations that the Adaline soft sensor proves to be 

more efficient than LM estimator in terms of accuracy, training 

time and memory space required for training.  

 

Nomenclature: �=Learning parameter for neural network rV= Eigenvalue of approximate Hessian matrix #"= Desired qth output of the function 

�V," = qth Error between target and input of kth element  

 s =Hessian Matrix >(�)
 
= Jacobian matrix ��J =Sum of multiplication of input and weight of ith layer  

         H̃�,.J  =Marquardt sensitivity for a general layer 

H̃�,.8 =Marquardt sensitivity at final layer 

H̃8 =Total Marquardt sensitivity matrix   

  !" =    qth target value of the function 

∆�V =Change in the old guess values of �V 
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