
International Journal of Computer Applications (0975 – 8887)

Volume 35– No.9, December 2011

32

Design and Implementation of Database Intrusion

Detection System for Security in Database

Udai Pratap Rao
Dept. of Computer Engineering, NIT Surat,

Gujarat, INDIA-395007

Dhiren R. Patel
Dept. of Computer Engineering, NIT Surat,

Gujarat, INDIA-395007

ABSTRACT
In this paper, we propose database intrusion detection

mechanism to enhance the security of DBMS. In a typical

database environment, it is possible to define the profile of

transactions that each user is allowed to execute. In our

approach, we use the transactions profile and overall system

architecture is divided into two parts, learning phase and

intrusion detection phase. The learning phase generates

authorized transactions profile automatically and is used at

detection phase to check the behaviour of executable

transactions. We also implement the detection phase with the

help of Counting Bloom Filter (CBF) and comparing both the

approaches.

Keywords
Database Security, Database Auditing, Transaction Profile,

Counting Bloom Filter (CBF).

1. INTRODUCTION
Database security research [1] is mainly concerned about the

protection of database from unauthorized access. The

unauthorized access may be in form of execution of malicious

transactions that may breach the security of database and lead to

break the integrity over the database. These malicious

transactions (database intrusions) are to be taken care of.

Researchers have taken interest to develop the database IDS

(intrusion detection system) [2] to protect the database from

malicious transactions. Security in database [3] is integrated to

design and implementation of mechanism for protection of

database. The objective of database security approaches is to

provide the protection of data stored in the database from

malicious action. Usually database security attacks can be

classified as external attack and insider attack. In external attack

unauthorized attempts are taken place to access or destroy

private data and in insider attack the malicious actions are

executed by authorized users. The protection of database

by the use of encryption techniques, where the database may be

encrypted but this kind of system may lead to degradation of

query performance. However, in connection with detection of

database intrusions few appropriate mechanisms have been

proposed in [4, 5]. This paper proposes an innovative

mechanism for the detection of database intrusions in DBMS.

The proposed approach is also extended to incorporate the CBF.

This approach is considered as transaction level approach and is

used to detect the malicious transactions in the database.

Rest of this paper is organized as follows. In section 2, we

discuss related background. In section 3, system architecture of

our proposed database IDS is defined. In section 4, the

implementation and results are given. In section 5, the

performance evaluation and analysis of the proposed system is

given. In section 6, the approach in an addition to the database

intrusion detection as Counting Bloom Filter is given with

conclusion and references at the end.

2. RELATED WORK
Research work in the field of database intrusion detection has

been going on for more than two decades. The approaches used

in detecting database intrusions mainly include data mining and

traditional security measures. Chung et al. [6] presents a misuse

detection system called DEMIDS which is personalized to

relational database systems. This approach uses audit logs to

derive profiles that describe typical behaviour of the users

working with the DBS. The profiles computed can be used to

detect misuse behaviour in particular insides abuse. The main

drawback of this approach is that it has only been described

theoretically, and no empirical evidence has been presented. Lee

et al. [7] have proposed a real-time database intrusion detection

using time signatures. Real-time database systems have a deal

with data that changes its value with time. This intrusion

detection model observes the database behavior at the level of

sensor transaction. If a transaction attempts to update a temporal

data which has already been updated in that period, an alarm is

raised. Wenhui et al. [8] proposed a two-layer mechanism to

detect intrusions against a web-based database services.

However, they have not used different level of granularity or

intra-transactional and inter-transactional features in their

model. Hu et al. [9] determine the dependency among data items

where data dependency refers to the access correlations among

data items. These data dependency are generated in the form of

association rules. Transactions that do not follow any of the

mined data dependency rules are marked as malicious

transactions. In this paper equal important are given to the each

attributes and there is no concept of attribute sensitivity. The

attributes sensitivity problem addresses by Srivastava et al. [10],

where some of the attributes are considered more sensitive to

malicious modification compared to others. They suggest a

weighted data mining algorithm for finding dependencies among

sensitive attributes. Any transaction that does not follow these

dependency rules is identified as malicious. So in this approach

more numbers of rules are generated as compare to the approach

presented in [9]. The main problem with this concept is the

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.9, December 2011

33

identification of proper support and confidence values. Zhong et

al. [11] uses query templates to mine user profiles. They

developed an elementary transaction level user profile. A

constrained query template is a four tuple < op, f, t, c > where

op is type of the SQL query, f is the set of attributes, t is the set

of tables, and c is the constrained condition set. It uses an

algorithm that mines user profile based on the pattern of

submitted queries. An algorithm of mining database user query

profiles of transaction level is presented. This algorithm changes

the computing method of the support and confidence in

association rules mining by adding query structure and attribute

relations to the computation. Kamra et al. [12] have proposed a

role based approach for detecting malicious behaviour in RBAC

(role based access control) administered databases.

Classification technique is used to work out role profiles of

normal user behaviour. An alarm is raised if roles estimated by

classifier for given user is different than the actual role of a user.

The approach is well suited for databases which employ role

based access control mechanism. It also addresses insider threats

scenario directly. It does not detect transaction level

dependency; hence some of the database attacks may be

undetected. The approach presented by Rao et al. [13] is at

transaction level and eliminates the problem of [12]. A

technique by Lee et al. [14] detects illegitimate database

accesses by matching SQL statements against a known set of

legitimate database transaction fingerprints. This technique fails

again unknown database attacks. In [15], the authors addressed

the detection of malicious DBMS transactions with the

assumption with transactions profile, and these transactions

profile were generated manually. Hence this approach is not

effective because manual generating transaction profiles

mechanism is more time consuming process.

Here we propose the database IDS which incorporates

to generate authorised transactions profile automatically instated

of manually and detection phase is also automated to ensure the

performance of the system.

3. SYSTEM ARCHITECTURE OF OUR

PROPOSED IDS
The proposed system architecture as given in figure 1, wherein

database application users pass raw queries through the database

IDS Database IDS checks that the incoming online transaction is

authorized for that user or not. If the transaction is authorized

then database IDS allows the transaction to commit into the

DBMS. We have implemented three algorithms: automatic

profile generating algorithm works as profile creator, SQL query

parsing algorithm works as feature selector and automatic

malicious transaction detection algorithm works as detection

engine in our proposed system.

Figure.1: Architecture of Proposed Database IDS

Feature

Selector
Detection

Engine

DBMS

Profile

Creator

Alarm

Requested

Features

Invalid

Transaction

Audit

log
Profiles

Online

Audit trail

Valid

Transaction

Commit

Transaction

Consult

User Raw

Query

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.9, December 2011

34

In our proposed system offline audit log contains the data of

authorised transactions and these information are extracted from

the log file by the help of the DBMS auditing mechanism. The

basic history about the log file is that it consists the information

about the committed transactions those are executed in the

secure environment by the authorised users. Profile creator takes

these offline audit log data as input and generates the

transactions profile and these transactions profile are considered

as authorised profiles and stored at the system, after that these

authorised transactions profile are used at the detection phase.

Therefore any database application user wants to execute any

transaction in DBMS then he/she will submit the raw queries to

feature selector. Feature selector extracts the required features

like command type, target object from online raw queries

submitted by the users and store it in the online audit trail table.

Now detection engine first generate the transaction profile for

the data stored in online audit trail and this profile is compared

with authorised transactions profile. If online transaction profile

matches with authorised transaction profile then the detection

engine allows the particular executable transaction to commit

into the DBMS. If online transaction profile does not match with

authorised transactions profile then the detection engine will

never allow the particular transaction to commit into the DBMS

and marked as a malicious and system raised the alarm.

4. IMPLEMENTATION AND RESULTS
We implemented our proposed approach from learning to the

detection phase. The extracted information from the log file are

stored in the offline audit table as shown in the table 1 which

consists the information like username, transaction number and

sequence of commands executed on particular object .The input

to the learning phase is given in table 1. The algorithm as given

below is used to generate the transactions profile and these

profiles are considered as authorised transactions profile. The

produced output as authorised transactions profile of learning

phase is shown in figure 2.

Transaction Profile Generating Algorithm

Read records from audit table;

Sort audit table by session ID and sequence no;

For each session ID of audit table do

 {

 while (current session ID contain operations) do

 {

 print sequence no, command type and target

object of operation;

 increment the value of sequence no by one;

 }

 increment the value of session ID by one;

 }

Table 1. Offline Audit-log Table (Input to Learning Phase)

User

name

Session

id

Transaction

id

Sequence

no

Command

type

Target

object

Sales 9 1 1 Select Order

Sales 9 1 2 Select Product

Sales 10 2 13 Select Order

Sales 12 12 33 Select Order

Sales 10 2 14 Delete Order-

line

Sales 9 1 4 Insert Order-

line

Ware 11 3 25 Select Ware

Sales 12 12 34 Insert Order

Sales 10 2 15 Delete Order

Sales 9 1 5 Update Stock

Sales 12 12 35 Insert Order-

line

Sales 10 2 16 Update Customer

Ware 11 3 26 Select Product

Sales 9 1 3 Insert Order

Ware 11 3 27 Select Stock

Ware 13 5 21 Select Ware

Ware 13 5 22 Select Stock

Sales 14 7 17 select Order

Sales 14 7 18 select product

Sales 14 7 19 insert order

Ware 13 5 23 Update Stock

Sales 14 7 20 insert order-

line

Sales 12 12 36 Update Stock

Sales 14 7 21 update stock

Sales 14 7 22 insert order-

line

Sales 14 7 23 update stock

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.9, December 2011

35

Figure 2.Authorized Transactions Profile (Output of

Learning Phase)

All the above generated transactions profile in the figure 2 are

considered as authorized transactions profile and these are used

at database intrusion detection phase. Now in detection phase

user enters the online SQL statement to execute the online

transaction. The parsing algorithm parse the online query

entered by the user to fetch the required feature like command

type and target object and store it in online audit trail table.

Based on data of online audit trail table the transaction profile is

generated for the executable queries and then it is compared

with authorized transactions profile (output of learning phase).

If any match found then IDS allows executable transaction to

commit into the DBMS. If match is not found the action phase

comes into the picture. The SQL query parsing algorithm,

detection algorithm and input-output of detection algorithm are

as follow.

Transaction # 7[sales]

17 select[order]

18 select[product]

19 insert[order]

20 insert [order-line]

21 update[stock]

22 insert[order-line]

23 update[stock]

Transaction # 5[ware]

21 select[ware]

22 select[stock]

23 update[stock]

Transaction # 12[sales]

33 select[order]

34 insert[order]

35 insert[order-line]

36 update[stock]

Transaction # 3[ware]

25 select[ware]

26 select[product]

27 select[stock]

Transaction # 2[sales]

 13 select[order]

14 delete[order-line]

15 delete[order]

16 update[customer]

Transaction # 1[sales]

1 select[order]

2 select[product]

3 insert[order]

4 insert[order-line]

5 update[stock]

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.9, December 2011

36

SQL query Parsing Algorithm

Fetch the SQL query as string;

/* declare two variable as string*/

cmd_type = NULL;

tar_obj = NULL;

scan the SQL query word by word separated by space;

if first word is SELECT then

cmd_type = SELECT;

go for to find a word FROM;

/*store the word that is after the word FROM in variable

tar_obj*/

tar_obj = word after FROM word;

else if first word is INSERT then

cmd_type = INSERT;

go for to find a word INTO;

/* store the word that is after the word INTO in variable tar_obj

*/

tar_obj = word after INTO word;

else if first word is DELETE then

cmd_type = DELETE;

go for to find a word FROM;

/*store the word that is after the word FROM in variable

tar_obj*/

tar_obj = word after FROM word;

else if first word is UPDATE then

cmd_type = UPDATE;

/*store the word that is after the word UPDATE in variable

tar_obj*/

tar_obj = word after UPDATE word;

end if

store the value of cmd_type and tar_obj variable in ONLINE

AUDIT Table;

Malicious Transaction Detection Algorithm

Read the records from ONLINE_AUDIT table;

online_cnt = 0;

while(ONLINE_AUDIT table contain records)

 {

 onlile_cnt = online_cnt + 1;

 }

read the records from OFFLINE_AUDIT table order by

session_ID;

offline_cnt = 0;

for each session_ID of ONLINE_AUDIT table do

 {

 /* calculate no of operation in current session_ID*/

 while(current session_ID contain contain operations)

 {

 offline_cnt = offline_cnt + 1;

 }

 if(online_cnt == offline_cnt)

 {

 while(ONLINE_AUDIT table contain

records)

 {

compare command type and target object of

ONLINE_AUDIT table with OFFLINE_AUDIT table for

current session_ID;

 }

 if command type and target object of both

the table are match for current session_ID then

 {

 flag = 1;

 goto endtran;

 }

 else

 flag = 0;

 }

/* increment value of session id*/

 session_ID = session_ID + 1;

 }

endtran:

if (flag = 1) then

 Transaction is valid;

Else

 Malicious transaction;

Transactions 1, 2,7and 12 as shown in figure 2 are valid for user

sales and transaction 3 and 5 are valid for user ware. Now

suppose user sales want to execute any transaction then he will

establish a connection with database and he will perform the

operations. Suppose he is entering the data as given in the table

2.

Table 2. Online Audit Log Table

User

name

Session

id

Transaction

id

Sequence

no

Command

type

Target

object

Sales 14 7 17 select Order

Sales 14 7 18 select product

Sales 14 7 19 insert order

Sales 14 7 20 insert order-

line

Sales 14 7 21 update product

Sales 14 7 22 insert order-

line

Sales 14 7 23 update product

Transaction profile for the above data as in the table 2 is

generated and generated profile for the executable SQL

statement is given in the Figure 3.

Detection algorithm compares the transaction profile as shown

in figure 3 with authorised profiles as shown in figure 2. There

are two update operations for transaction no. 7 in figure 2, and

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.9, December 2011

37

both are on stock object, but in case of executable transaction

update operations on product object and there is deviation

between the authorised transaction profile and the executable

transaction profile then this current executable transaction is

considered as a malicious transaction by detection algorithm.

Figure 3. Transaction Profile for Executable Transaction

5. PERFORMANCE EVALUATION AND

ANALYSIS
We have evaluated our approach based on the several factors

and it gives a better result than earlier proposal [15] of database

security mechanism. Experimental results for different criteria

are discussed here.

5.1 Performance of Automatic Transaction

Profile Generation Algorithm
In [14, 15] authors fetch the required data in audit trail using the

auditing mechanism of DBMS. Then they manually analyze this

audit trail and manually generate the transactions profile from

the data stored in audit trail, the process itself takes more time as

compare to automatic transaction profile generating mechanism.

We have implemented the Automatic transaction profile

generating algorithm that takes the offline audit trail data as

input and generates the transactions profile for it within

milliseconds automatically.

We implemented the automatic transactions profile generating

algorithm at different number of transactions in audit trail and

proposed algorithm generates the transactions profile for those

data within millisecond and we observed that the time taken to

generate the transactions profile by our approach is slightly

varied with respect to the number of transactions once these are

increased. We also observed that the same can be achieved by

manual transactions profile mechanism and these may be also

useful for the database IDS system, but we believe that this

procedure takes the time more as compare to our proposed

algorithm. The result graph for no. of transactions profile vs.

time taken in millisecond to generate those transactions profile

is shown in the figure 4. The time to generate the number of

profiles is varied from application to application of database as

well as size of the transactions where the size of the transaction

is equal to the number of operations in the particular transaction.

Figure 4. Time for Transactions Profile Generation

We have also measured the performance of the database system/

server with and without the database intrusion detection

mechanism. The overall evaluated result is shown in the figure

5. We supplied the large number of transactions to the system

/server to monitor the performance of the system. The result

itself shows that without inclusion of database intrusion

detection mechanism the system/ server performance is quite

improved this is expected only because there is no database IDS

is installed over the system/server. But for proper monitoring as

well as protection of database, the database IDS is required and

it is useful for the system when the application lever security

mechanism is being compromised, so any transaction must

routed with the database IDS and therefore it takes some more

time as compare to the other where database IDS is not

considered .

Performance Analysis

0

20

40

60

80

100

100 200 300 400

Number of transactions

P
e

rf
o

rm
an

ce
 (

%
)

with IDS

without IDS

 Figure 5. Performance of the System

In case of intrusion detection algorithm the transaction profile of

online operations are usually compared with authorized

transactions profile manually [14], so it takes more time. Here

we have implemented the malicious transaction detection

algorithm that compares online transaction profile with stored

Transaction # 7[sales]

17 select[order]

18 select[product]

19 insert[order]

20 insert [order-line]

21 update[product]

22 insert[order-line]

23 update[product]

Transaction Profile Generation

0
50

100
150

200

250

No. of Transactions

Transactions

Time

(ms)

1 2 3 4 5 6 7 8 9

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.9, December 2011

38

authorized transactions profile automatically and it identifies the

user behaviours quickly.

5.2 Learning Time
The learning time depends upon the time taken to extract the

information from the log file using the DBMS auditing

mechanism and storing it into the offline audit table plus time

required to generate the authorised transaction profile. Overall

learning time depends on two points.

1. We assume that valid users have been allowed to commit

their transactions into the database and it was done in the

secure environment and this before the commencement of

the learning phase, and then only it can be ensured that the

offline audit table is having the genuine information and

supported by the particular application. If n number of

transactions are designed to support by the particular

application then in the secure environment the learning

phase may take the time to generate the profiles as t time

but in case where if we do not consider the execution of the

transaction into the secure environment the learning

algorithm may take time as t + t1 (where t1 is some

additional time) because learning phase may be revisited.

2. If design of the application is changed the learning phase is

revisited as we can say repetition of learning to learn new

transactions from the database. So in this case learning time

is fully depends upon the time required to learn the new

more transaction as authorised.

5.3 Accuracy
In [15] author defines the transactions profile as sequence of

commands executed for particular action. For example, the

transaction withdraw should have command sequence like

select-delete-update. Here object dependency is not checked so

anyone can update any important object. So it is not accurate. In

our proposal we define the transaction profile as sequence of

commands executed on particular object. For example, in our

approach transaction withdraw should have command sequence

like select(usr_balance)-delete(master)-update(usr_balance).

Now if any user executes the transaction withdraw then there

sequence of commands on particular object must be same as

authorized sequence. If users update the data only in those

objects to which they are authorized then only the online entered

transaction is considered as a valid transaction. In our proposed

approach we are also checking the object dependency.

5.4 Coverage
The coverage is calculated by considering the percentage of

malicious transactions are detected by the proposed database

IDS. To measure the coverage of our proposed mechanism we

have submitted random transactions to the system. One hundred

and ten random (malicious) transactions have been submitted,

corresponding to the execution of 730 SQL commands. From

the submitted malicious transactions our proposed approach has

detected all 110 transactions, resulting in coverage of 100%.

5.5 False Positive and False Negative
False positive and false negatives are important to evaluate the

system performance. False negatives are riskier than false

positives because say for example, if there wasn't an attack and

the IDS picked it (false positive), its not much of a harm for the

database but if there was an attack and the IDS doesn't detect it

(false negative), then it can be harmful for the database and

leads to break the consistency over the database.

In our proposed mechanism the existence of false positives

depends on how complete the definition of authorized

transactions are defined by the database developer and how

these transactions are generated by automatic transaction profile

mechanism. It also depends upon the dependency of the objects

for that actions are performed. If the DBA define the set of valid

transactions in a fully complete way by considering all possible

constraints then the number of false positives will be zero. We

have also evaluated the case of false negative and observed that

there is no chance of this. Our proposed approach checks the

transactions properly and if the transaction is not tally with the

stored authorised transaction then always it is blocked.

6. COUNTING BLOOM FILTER (CBF)

BASED APPROACH

6.1 Background
A Bloom filter [16] is used to define the bit array of m elements

of n bits size and initially all set to 0. The filter uses a group H

of k independent hash functions 1,........, kh h with range {1, . .

. , n} that independently map each element in the universe to a

random number uniformly over the range. The main problem

with the bloom filter is the false positives. It gives the wrong

answer with correct query, and this problem is resolved by the

use of counting bloom filter (CBF) where insertion and deletion

of set of elements are possible. Similar to the bloom filter, it

uses k (random hash) functions, each of which maps or hashes

some set element to one of the n bits array positions. To insert

an element into a set the element is passed into k hashing

functions and k index values are obtained. All counters in

counting bloom filter at corresponding index values are

incremented. To delete an element from the set reverse process

is followed and corresponding counters are decremented. Thus a

counting Bloom filter (CBF) generalizes a Bloom filter data

structure by allowing the membership queries and CBF can be

changed dynamically by insertions and deletions operations. It

resolves the problem of a standard bloom filter with false

positives.

6.2 Database Intrusions Detection with

Counting Bloom Filter (CBF)
The overall approach based on the CBF is divided into the three

phases.

6.2.1 Initial Phase

It is similar to the automatic transaction profile generation

algorithm to generate the authorised transactions as supported

by the database application. This process insures the correctness

of the genuine profiles as declared authorized profiles. This

algorithm works automatically instead of manually thus it

reduces the time required for manual transaction profile

generation.

http://en.wikipedia.org/wiki/Bit_array

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.9, December 2011

39

6.2.2 Construction of CBF
In counting bloom filter (CBF), random weights are assigned

automatically corresponding to commands of authorized

transactions profile those are generated by the automatic

transaction profile mechanism. Transaction is viewed into a

strict sequence of weights with respect to the sequence of

commands of particular transaction and considered as

authorized profile. The list of commands of the particular

transaction and their corresponding weights are stored over the

system. After assigning the weights to the commands of the

transaction the construction of the CBF is done by incorporating

the hash functions and the constructed CBF’s are stored so that

they can be loaded during the detection phase and detection is

done automatically once any executable transaction comes.

6.2.3 Detection Phase
At the detection phase the executable transactions are

considered and validated by the database IDS system to ensure

that the particular transaction is valid or not .It is done by using

the constructed counting bloom filter (CBF) as discussed in the

above phase. For a particular selected transaction by the user the

detection phase automatically load the corresponding CBF and

weights of commands of the transaction. The list contains

weights and corresponding commands allowed in the system. If

user’s commands over the transaction are valid the counter

values in CBF are decremented using weight of identified

command, if all the bits in the CBF are zero then the transaction

is declared as valid.

6.2.4 Comparison of both approaches
Both approaches presented in this paper are compared to know

the effectiveness of the system performance. Based on the

implementation of the both approaches with respect to the

number of transactions we got important results shown in the

Figure 6. This figure shows the result for system performance

considering three cases: 1) system performance without both

approachs 2) system performance with automatic transactions

profile approach and 3) system performance with CBF based

approach.

Comparision Analysis

0

20

40

60

80

100

100 200 300 400

Number of transactions

P
e

rf
o

rm
an

ce
 (

%
)

without IDS

with IDS

IDS with CBF

Figure 6. Comparison of Both Approaches

Results are based on the supplied large number of the

transactions and observed that the performance of the system in

case of without both approach is high but it does not guarantee

to secure the database completely. We observed that the

performance of the system is quit high in case of first approach

as compare to the CBF based approach. However CBF based

approach is better even the system performance is low because it

guarantees about the complete protection of the false positive

cases. The performance of the system in the CBF is low because

of the construction of CBF. At the time of detection constructed

CBF and weights of the operations of the particular transaction

is loaded and deletion of the bits are done over the constructed

CBF. So the insertion and deletion of the bits over the CBF may

take some time. Another important thing is to incorporate the

number of hash function, inclusion of hash function in the

numbers may ensure the security over the database but it may

lead to degrading of system performance.

7. CONCLUSION
We have proposed two approaches to detect the intrusions in

database. They provide an additional layer of security in DBMS.

It can be considered as generic approach for any database and

overcomes the limitation of the exiting database security

mechanisms. We are extending our work with the help of CBF

to ensure the security in database. Our comparisons show that it

performs better.

8. REFERENCES
[1] Fonseca, Vieira, M., Madeira, H, “Integrated intrusion

detection in database,” In Bondavalli, A., Brasileiro, F,

Rajsbaum S.(eds), LADC 2007. LNCS, vol 4746, pp 198-

211. Springer, Heidelberg , 2007.

[2] Jinfu Chen, Yasheng Lu, and Xiaodong Xie, “An Auto-

generating Approach of Transactions Profile Graph in

Detection of Malicious Transaction” , in Proceedings of

Third International Conference on International

Information Hiding and Multimedia Signal Processing, pp.

562-565, IEEE, 2007.

[3] E. Bertino, S. Jajodia, and P. Samarati, “Database

security:Research and practice”, Information Systems

Journal, Volume 20, Number 7, 1995.

[4] Jose Fonseca, Marco Vieira, “Monitoring Database

Application Behaviour for Intrusion Detection”, PRDC ’06

, pp. 383- 386, IEEE 2006.

[5] Jose Fonseca, Marco Vieira, and Henrique Madeira,

“Detecting Malicious SQL” , C.lambrinoudakis, G.Pernul,

A M. Tjoa(Eds.): Trusbus 2007, LNCS 4657, pp. 259-268,

Springer Heidelberg, 2007.

[6] C. Y. chung, M. Gertz, K. Levitt, “DEMIDS: A Misuse

Detection System for Database systems”, IFIP TC-11 WG

11.5 Conference on integrity and internal control in

information system, PP. 159-178, 1999.

[7] V. C. S. Lee, J.A. Stankovic, S. H. Son, “intrusion detection

in real-time database system Via time signatures”, real time

technology and application symposium, PP. 124, 2000.

[8] Wenhui S., Tan T., “A novel intrusion detection system

model for securing web based database systems”, In

Proceedings of the 25th annual international computer

software and application conference (COMPSAC), pp.

249-254, 2001.

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.9, December 2011

40

[9] Y. Hu, B. Panda, “A data mining approach for database

intrusion detection”, In Proceedings of the ACM

Symposium on applied computing, pp. 711-716, 2004.

[10] Srivastava, A., Sural, S., Majumdar, A. K., “Weighted

intra-transactions rule mining for database intrusion

detection”, In Proceedings of the Pacific-Asia knowledge

discovery and data mining (PAKDD), lecture notes in

artificial intelligence, Springer. Pp. 611-620, 2006.

[11] Zhong Y., Qin X., “Database intrusion detection based on

user query frequent itemsets mining with constraints”, In

Proceeding of the 3rd international conference on

information security, pp. 224-225, 2004.

[12] Bertino E., Terzi E., Kamra A., Vakali A., “Intrusion

Detection in RBAC-Administered Database”, In

Proceeding of the 21st annual computer security

application conference (ACSAC), pp. 170-182, 2005.

[13] Udai Pratap Rao, G. J. Sahani, Dhiren R. Patel, “Detection

of Malicious Activity in Role Based Access Control

(RBAC) Enabled Databases”, International Journal of

Information Assurance and Security, pp. 611-617, Volume

5, Issue 6, USA, ISSN 1554-1010,2010.

[14] Lee S.Y., Low W.L, Teoh P., “DIDAFIT: Detecting

Intrusions in Database Through Fingerprinting

Transactions”, in proceedings of the 4th International

Conference on Enterprise Information system(ICEIS) 2002,

pp. 121-128.

[15] Marco Vieira, Henrique Madeira, “Detection of Malicious

Transactions in DBMS”, Dependable Computing, 2005.

Proceedings. 11th Pacific Rim International Symposium

on 12-14 Dec. 2005.

[16] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy,

Sushil Singh and George Varghese1, “An Improved

Construction for Counting Bloom Filters” , ESA 2006,

LNCS 4168, pp. 684–695, 2006.

9. AUTHORS PROFILE

Udai Pratap Rao received the B.E. degree in Computer Science

and Engineering in 2002 & M.Tech degree in Computer Science

and Engineering in 2006, and currently working as Assistant

Professor in the Department of Computer Engineering at S. V.

National Institute of Technology Surat (Gujarat)-INDIA. His

research interests include Data Mining, Database security,

Information Security, and distributed systems.

Dr. Dhiren R. Patel is currently a Professor of Computer

Engineering at NIT Surat, India. He carries 20 years of

experience in Academics, Research & Development and Secure

ICT Infrastructure Design. His research interests cover Security

and Encryption Systems, Web Services & Programming, SOA

and Cloud Computing, Digital Identity Management, e-Voting,

Advanced Computer Architecture etc. Besides numerous journal

and conference articles, Prof. Dhiren has authored a book

"Information Security: Theory & Practice" published by

Prentice Hall of India (PHI) in 2008. He is actively involved in

Indo-US security research collaborations.

