
International Journal of Computer Applications (0975 – 8887) 

Volume 35– No.8, December 2011 

21 

Precision in Rapid Application Development and 

Reusability of Software Components for Greater 

Performance using Ranking Mechanism 

 

P.K. Suri 
Dean, Research and 

Development; Chairman, 
CSE/IT/MCA, HCTM 

Technical Campus, Kaithal, 
Haryana, India. 

Sandeep Kumar 

Assistant Professor and 
Head, Faculty of Computer 

Appl., Galaxy Global Group of 
Institutions, Ambala, Haryana, 

India 

 

Gurdev Singh 
Lead Engineer, 

 Samsung Electronics, 

Noida, UP, India 

 

 

ABSTRACT 

Software component is a cohesive software module that contains 

the semantically related functionality. The term ―use component 

anywhere‖ is not that true as it seems to be. The important thing 

is that for using the components, there should be a well-defined 

framework where they will be used. The convention is exactly 

the same as that of IC (integrated chip) socket on a circuit board 

and IC development. During IC development, its socket-board 

environment is always considered. In a component based 

environment, the component pool contains the software 

components that are operational in different types of frameworks 

or environments. There is a need for a mechanism, which can 

rank the appropriateness of a Component in terms of its 

properties and its capability to operate in different environments. 

This paper proposes one such system model, which helps in 

selecting best appropriate component for an environment. As the 

component‘s usability increases, it is profiled by the proposed 

model. This profiling provides the indicators about its best 

suitability for different frameworks and operating environments.    

General Terms 

Component Based Software Engineering, Simulation, 

Component Search 

Keywords 

Software Component, RAD, Component Ranking, Component 

Attribute System (CAS). 

1. INTRODUCTION 
The component-based software engineering is an interesting and 

important field of software engineering, which helps in 

achieving the rapid application development. Semantically 

related functional modules together make one software 

component. These components are operational under compatible 

environments and increase the productivity of the system. 

Development environments are available using which 

components can be developed and maintained for future reuse. 

COM/DCOM, .Net, Enterprise Java Beans and CORBA are 

some of such development environments.   

The notations and algorithms of Component storage and access 

are always limited to their native environment. Cross platform 

accessibility and functionality is very difficult to achieve. It is 

like using a 16 pin IC in a socket designed for 14 pin IC. The pin 

level detail and internal architecture details are required even for 

a tryout.  

The development of software components is carried out in the 

predefined native environment and its usability is recommended 

in the compatible environment. The developed component 

resides in the distributed environment where the properties of 

components are used to distinguish it for a desirable 

environment. The component storage and accessibility 

mechanism do not have the intelligence or learning system, 

which may priorities the individual component as a best suitable 

candidate for the reusability request.  

This paper discusses a method, which is capable of identifying 

the software components as the best suitable candidates against 

the requirement criteria. The component storage pool will 

become more efficient in terms of the request processing time 

and quality delivery of software component when there are more 

than one candidate components found for given requirement. 

The system will work on the ranking algorithms, which will 

update the property tables of the components. Depending upon 

the usability feedback from the system where the component 

will be used, the system will increment or decrement the 

numeric values of the properties of components depending upon 

its usability experience with that component. The proposed 

system categories the components for their suitability to 

frameworks, arrange components which can be used in different 

environments, components which can be used with defined cross 

interface notations of multiple frameworks.  

The proposed system makes the component reusability system 

more robust, precise and efficient. Well-defined notations for the 

ranking of components make the system capable of learning 

after the component reusability. The proposed system makes it 

possible to provide the best possible component for the raised 

requirement. The source of request is used to identify the target 

framework and deliver the best possible component for that 

environment. System checks if the component is available for 

the same framework, as required, if yes, then it again searches 

for the best available components on the basis of previous 

usability experience (Usability ranks). 



International Journal of Computer Applications (0975 – 8887) 

Volume 35– No.8, December 2011 

22 

This paper explains about the experimental details and its results 

carried out on a simulated environment in order to achieve the 

precision in application development after reusing the 

components. The best selection criteria and ranking makes it 

possible for selecting the best component for raised 

requirements.  

2. RELATED WORK 
Councill and Heinemann [20] state that a software component is 

a software element that conforms to a component model and can 

be independently deployed and composed without modification 

according to a composition standard. This shows the nature of 

components, and their dependency. 

Crnkovic, Ivica [9] discussed about the development with 

components and focus on the identification of reusable entities 

and relations between them, starting from the system 

requirements. The early design process includes two essential 

steps: Firstly, specification of system architecture in terms of 

functional components and their interaction, thus giving a 

logical view of the systems and secondly, specification of 

system architecture consists of physical components [9]. This 

indicates a precise definition for the reusable environment. 

With regard to system-wide co-ordination, components 

communicate with each other via interfaces. When a component 

offers services to the rest of the system, it adopts a provided 

interface, which specifies the services that other components can 

utilize, and how they can do so. This interface can be seen as a 

signature of the component - the client does not need to know 

about the inner workings of the component (implementation) in 

order to make use of it. This principle results in components 

being referred to as encapsulated.  

Too many people are trying to make "universal" components 

without realizing that those components still work within some 

framework that allows them to be put together and communicate 

with each other. The problem is that other people doing the same 

thing have defined other "generic" frameworks that are none the 

less incompatible. In other words, random components don't 

tend to fit together or work together. Even physical components 

are like this. The prototypical component, the IC chip, always 

was designed within a family of chips that were meant to work 

together. They all needed the same voltage levels for zeroes and 

ones and tri-states, the same amperage levels, the same clock 

rates, etc, etc. Other families used other voltage levels [10]. 

Software components (routines), to be widely applicable to 

different machines and users, should be available in families 

arranged according to precision, robustness, generality and time-

space performance. Existing sources of components - 

manufacturers, software houses, users‘ groups and algorithm 

collections - lack the breadth of interest or coherence of purpose 

to assemble more than one or two members of such families, yet 

software production in the large would be enormously helped by 

the availability of spectra of high quality routines, quite as 

mechanical design is abetted by the existence of families of 

structural shapes, screws or resistors.  The talk will examine the 

kinds of variability necessary in software components, ways of 

producing useful inventories, types of components that are ripe 

for such standardization, and methods of instituting pilot 

production [11]. 

Stepstone Corporation‘s experience amounts to an experimental 

study of the software components market strategy in action. The 

good news is that, with substantial libraries now in the field and 

others on the way, the chip-level software components market 

concept has been tried and proven sound for diverse applications 

in banking, insurance, factory automation, battlefield 

management, CAD/CAM, CASE, and many others. The 

component libraries have proven to be flexible enough, and easy 

enough to learn and use, that they have been used to build highly 

graphical applications in all of these domains, and sufficiently 

portable that it has been possible to support them on most 

hardware and software platforms during this era of rapid 

platform evolution. 

The bad news is that this experiment has shown that it is 

exceedingly difficult, even with state-of-the-art technologies, to 

design and build components that are both useful and genuinely 

reusable, to document them so that customers can understand 

them, to port them to an unceasing torrent of new hardware 

platforms, to ensure that recent enhancements or ports haven't 

violated some existing interface, and to market them to a culture 

whose value system, encourages building everything from first 

principles. A particularly discouraging example of this value 

system is that, in spite of the time and money we've invested in 

libraries and environmental tools like browsers, Objective-C is 

still thought of as yet another programming language to be 

compared with Ada and C++, rather than as the tiniest part of a 

much larger environment of ready-to-use software components 

and tools [12]. 

All system processes are placed into separate components so 

that all of the data and functions inside each component are 

semantically related (just as with the contents of classes). 

Because of this principle, it is often said that components are 

modular and cohesive. Brad Cox [13] largely defined the 

modern concept of a software component. He called them 

Software ICs and set out to create an infrastructure and market 

for these components by inventing the Objective-C 

programming language.  

Reuse has been a popular topic of debate and discussion for over 

30 years in the software community. Many developers have 

successfully applied reuse opportunistically, e.g., by cutting and 

pasting code snippets from existing programs into new 

programs. Opportunistic reuse works fine in a limited way for 

individual programmers or small groups. However, it doesn't 

scale up across business units or enterprises to provide 

systematic software reuse. Systematic software reuse is a 

promising means to reduce development cycle time and cost, 

improve software quality, and leverage existing effort by 

constructing and applying multi-use assets like architectures, 

patterns, components, and frameworks. 

Like many other promising techniques in the history of software, 

however, systematic reuse of software has not universally 

delivered significant improvements in quality and productivity. 

There have certainly been successes, e.g., sophisticated 

frameworks of reusable components are now available in OO 

languages running on many OS platforms. In general, however, 

these frameworks have focused on a relatively small number of 

domains, such as graphical user-interfaces or C++ container 

libraries like STL. Moreover, component reuse is often limited 

in practice to third-party libraries and tools, rather than being an 

integral part of an organization's software development 

processes [14]. 



International Journal of Computer Applications (0975 – 8887) 

Volume 35– No.8, December 2011 

23 

Reusability is an important characteristic of a high-quality 

software component. Programmers should design and 

implement software components in such a way that many 

different programs can reuse them. Furthermore, component-

based usability testing should be considered when software 

components directly interact with users. It takes significant 

efforst and awareness to write a software component that is 

effectively reusable. The component needs to be: fully 

documented, thoroughly tested, robust - with comprehensive, 

input-validity checking, able to pass back appropriate error 

messages or return codes, designed with an awareness that it 

will be put to unforeseen uses. 

Software development is becoming less and less associated with 

the development, from the beginning, of a single software 

system and more and more an evolutionary process in which a 

system is incrementally developed over a series of releases. 

There is also an increase in the use of component-based 

approaches, in which the next release in the evolutionary process 

is defined in terms of a set of additional components that 

augment the existing system to meet a set of constraints. These 

components may be pre-existing or planned. Systems often 

contain an integrated mixture of preexisting components and 

newly built components. Much has been written about the 

challenges of component-based software engineering, but the 

focus of this work has been on the problems of integration of 

components, testing, defining, delineating and assuring the 

interfaces between components and the verification of their 

intended behavior and interactions [15]. 

Sommerville [17] explains about the component development 

for reuse. Components for reuse may be specially constructed by 

generalizing existing components. Component reusability should 

reflect stable domain abstractions; should hide state 

representation; should be as independent as possible; should 

publish exceptions through the component interface. There were 

few interesting findings about Changes for reusability - remove 

application-specific methods, change names to make them 

general, add methods to broaden coverage, make exception 

handling consistent, add a configuration interface for component 

adaptation and integrate required components to reduce 

dependencies . 

Many techniques ranging from keyword-based to full-fledged 

specification-based heuristics have been proposed in the 

literature to provide effective retrieval of qualified components 

during the discovery process. The keyword-based approach is 

simple and flexible as users simply specify the query as a set of 

keywords representing the component requirements in which 

they are interested. This approach while simple is also prone to 

low accuracy resulting in either too many or too few hits, or in 

some cases even completely unrelated hits. The faceted 

approach classifies components based on predefined 

taxonomies. While this approach provides a better description of 

components than a pure keyword-based approach, users must be 

familiar with the classification scheme to effectively retrieve a 

needed component. Moreover, it is often hard to manage 

classification schemes when domain knowledge evolves and as a 

result the component falls into two or more categories. Signature 

matching approaches decide the match between two given 

components, the query and library components, based on the 

signatures of the methods in these two . While signature 

matching uses intrinsic built-in information about the 

component, that is its type information, it often still returns 

irrelevant hits. For example, consider the methods strcpy and 

strcat in the standard C library. These methods have the same 

signature but encode different behaviors. The specification 

matching approach, introduced to overcome the problem of 

signature matching, uses the method‘s pre- and post-conditions 

that capture the functionality of the method. While specification 

matching provides more accurate hits, it is too time-consuming 

to be practical as its implementation, often based on theorem 

proving techniques, is expensive. Another drawback of the 

specification approach is the practical lack of pre- and post-

conditions in component code [18]. 

3. PROBLEM STATEMENT 
The performance of component based software development 

approach is dependent upon how well the component is 

delivered from the component repository when required. It has 

been observed that there is no standard way of placing the 

component in some repository after development. The 

component accessing mechanism is also not well defined. There 

are many methods available that can get us the list of 

components available in component libraries. But problem with 

these existing techniques is that they can only give us abstract 

view of the component features. For details we have to put in 

extra efforts and go through the detailed associated document. 

There is a need for the component storage and access 

mechanism, which can assist the software development process 

for good quality software product and at a faster rate.  

There is a need for a system which can add attribute to the 

components, information about where they can be well 

integrated and  perform well, information about the behavior 

details of component, information about the pre and post 

conditions and information about a component if that can be 

used in cross platform environment.  

Even the components that give the same behavior and same 

functionality also require the ordering in terms of best suitable 

component for the requirement. This parameter comes from the 

system that uses the components and then after using, also 

provides the rating for the used components. If some component 

is used in some project and performs well, then its associated 

attributes need to be updated so that it may become the best 

component for a given requirement. Likewise, using the 

component storage and access system during the project 

development, it is also possible that a component may not fulfill 

the functionality that it claims. In that case, its respective 

attribute values are decremented and system rates-down that 

component. In future, use of that component will be less 

recommended by the system. So in this way components can be 

ranked according to their ability to fulfill certain requirements.  

These are few of requirements which needs to be there in order 

to use and manage the component based software development 

4. EXPERIMENTAL METHODOLOGY 
The experiment conducted to study the precision in reusability 

of reusable components uses the attributes assigned to the 

components by the proposed Component Attribute System 

[CAS]. The experiment uses thirty-five components and those 

were used in the different requirements. The system also uses a 

system to store and access the components in the component 

repository [19]. During the experiment, the judgment was on the 



International Journal of Computer Applications (0975 – 8887) 

Volume 35– No.8, December 2011 

24 

bases of user experience. For the new project requirement, two 

approaches were followed: 1) Using the CAS based system for 

component accessing and reusability and other was 2) using 

traditional approach of using the components.  

The proposed system uses the component‘s property and stores 

it using the XML based attribute assignment with each 

component. The keywords are required to specify the details 

about the platform for which the component is being developed, 

the details about the core functionality of the module, the pre-

post condition, component handles in terms of the input 

parameters and the output value details. These exposed 

keywords with each component play important role while 

evaluating the exiting component by specifying a set of 

keywords. The search keywords give the details about the 

platform for which the component is required, the details about 

the core functionality of the desired module, the pre-post 

condition, component handles in terms of the input parameters 

and the output value type. 

The search process takes the keywords as input and matches 

them with the attributes of the available components. The 

keyword matching also takes care of the maturity of components 

for a set of requirement. The more often a component is used, 

and has more recommendation by the CAS system for fulfilling 

the requirement, the more mature the component becomes. The 

CAS recommendation system takes care about the feedback and 

depending upon the rating it makes component as a strong 

candidate for the reusability. When we assign some keywords 

for searching a component, it searches for requirement and then 

sorts the available components on the basis of reusability rank. 

The component with best rank can be used after identifying its 

interfaces. The system that reuses the component will be added 

with the functionality of feedback that responds for reusability 

status after some component has been reused. It also interacts 

with the user to collect the experience.  

There is system that updates the component ranks (as shown in 

Figure 3) to Component Attribute System. 

There may be two methods of doing this. One is that the system 

that is going to reuse the existing component may be requested 

to provide the feedback. Feedback may be provided by the 

system automatically or the programmers working on the new 

system may provide the feedback. Another method may be that 

a counter is associated with each component. As and when that 

component is chosen for reuse by some new system, the counter 

is incremented automatically. This will help the future searches 

in identifying the best suitable components for their type of 

applications. 

The other functionality of the proposed system is that the expert 

analysis is possible on the stored repository of the components. 

The experts/developers take the component and then checks for 

the components claims. If the component is not found good 

against its claims, the expert may rate it poor and can send their 

opinion to the system. The authorized rating are considered and 

the component ranks may increase or decrease depending upon 

the type of expert rating. 

Reusable Components of one such system arranged after CAS 

search are shown in Fig 1. It can be seen in the figure that each 

component may have two types of interfaces, one is ‗provide‘ 

interface through which it provide services to other components 

of the system and the second is ‗Gets‘ interface through which it 

takes services from other components in the system. For 

example ‗HotelRes‘ Component has two ‗Gets‘ interfaces 

through which it take service from ‗LoyaltyProgram‘ and 

‗CreditCardBilling‘ components respectively  and one ‗Provide‘ 

interface through which it provide services to ‗Holiday 

Reservation Session‘ component.     

 

Loyalty Program 

Holiday Reservation 
Session 

HotelRes CreditCardBilling 

CarRes AirRes 

  

 

 

 

ILoyaltyProgram 

 IHotelRes 

 

IAirRes 

 

IHoliRes 

 

ICarRes 

 

IAirRes 

 

Fig 1: Reusable components arranged after CAS search 



International Journal of Computer Applications (0975 – 8887) 

Volume 35– No.8, December 2011 

25 

 

Fig 2: Components lookup and delivery using CAS 

 

 

Fig 3: Components rank update after system feedback or 

expert review 

5. RESULTS AND ANALYSIS 

The results obtained after experimenting with the Software 

components by attaching the attributes to Components and 

defining the interface structure are very useful. It was observed 

that the proposed system can be used with a system where we 

have small component repository so as of 1000 components to a 

system where the number of components exceed to very large . 

The experiments shows the two different types of observations 

as 1) improvements in user experience which make the proposed 

system very useful by reducing the time consumed to search a 

reusable component.  

A comparative analysis of results is shown in table 1 and 2. 

Table 1 compares the time taken by a search process that uses 

CAS and a process that does not use the CAS. It was observed 

that time taken by CAS based search is much less. These results 

are also depicted in Fig 4. 

 

Component Repository 

Component Expert System Feedback Review 

System with Reused Components 

Update 

Component 

Ranks 

 

 

 

 

Component Search Process 

 

Component Request 

Component Reused 

System Feedback after Component Reusability 

Software Component 
Repository 

CAS      
Component 
Interface Mgmt. 

Component 

Keyword Pool 
Component 

Interface Pool 



International Journal of Computer Applications (0975 – 8887) 

Volume 35– No.8, December 2011 

26 

Table 1. Comparison of time taken by search process using 

CAS and without using CAS  

S
im

u
la

ti
o

n
  

E
x

p
er

im
en

t 
 

R
eu

sa
b

le
 

co
m

p
o

n
en

t 

ty
p

e 

U
se

r 

ex
p

er
ie

n
ce

 

w
it

h
 C

A
S

 

(T
im

e 
in

 m
in

) 

U
se

r 

ex
p

er
ie

n
ce

 

w
it

h
o

u
t 

C
A

S
 

(T
im

e 
in

 m
in

) 

1 Airlines reservation  11 30 

2 Credit card billing 17 123 

3 Bar code reader 14 78 

4 Report viewer 6 67 

5 Bar code generator 12 34 

6 Phone book  16 88 

7 Scheduler 12 56 

8 Book search  7 27 

9 Logger (To Excel) 5 78 

10 Word file reader 13 102 

11 Alarm 16 133 

 

 

   

Fig 4: Improvement for reusing Components by Rank and 

CAS 

Table 2. Comparison of the level of precision achieved using 

CAS and without using CAS 

 

S
im

u
la

ti
o

n
  

E
x

p
er

im
en

t 
 

R
eu

sa
b

le
 

co
m

p
o

n
en

t 

T
y

p
e 

L
ev

el
 o

f 

a
p

p
ro

p
ri

a
te

n
e

ss
 w

it
h

 C
A

S
 

L
ev

el
 o

f 

a
p

p
ro

p
ri

a
te

n
e

ss
 w

it
h

o
u

t 

C
A

S
 

1 Airlines reservation  48 10 

2 Credit card billing 78 16 

3 Bar code reader 62 13 

4 Report viewer 66 8 

5 Bar code generator 89 13 

6 Phone book  43 17 

7 Scheduler 58 19 

8 Book search  49 7 

9 Logger (To Excel) 23 9 

10 Word file reader 82 11 

11 Alarm 53 13 

 

 

 

 
 

Fig 5: Improvement in precision for reusing Components by 

Rank and CAS 

 

0

20

40

60

80

100

120

140

A
ir

le
in

e 
R

es
er

va
ti

o
n

C
re

d
it

 C
ar

d
 B

ill
in

g

B
ar

 C
o

d
e 

R
ea

d
er

R
ep

o
rt

 V
ie

w
er

B
ar

 C
o

d
e 

G
en

er
at

o
r

P
h

o
n

e 
B

o
o

k

Sc
h

ed
u

le
r

B
o

o
k 

Se
ar

ch

Lo
gg

er
 (

To
 E

xc
el

l)

W
o

rd
 F

ile
 R

ea
d

er

A
la

rm

Ti
m

e
 in

 M
in

s

User Experience: Improvements 
for reusing Components by Rank 

and CAS
User experience with CAS (in mins)

User experience without CAS (in 
mins)

0

10

20

30

40

50

60

70

80

90

100

A
ir

le
in

e 
R

es
er

va
ti

o
n

C
re

d
it

 C
ar

d
 B

ill
in

g

B
ar

 C
o

d
e 

R
ea

d
er

R
ep

o
rt

 V
ie

w
er

B
ar

 C
o

d
e 

G
en

er
at

o
r

P
h

o
n

e 
B

o
o

k

Sc
h

ed
u

le
r

B
o

o
k 

Se
ar

ch

Lo
gg

er
 (

To
 E

xc
el

l)

W
o

rd
 F

ile
 R

ea
d

er

A
la

rm

P
e

rc
is

io
n

 (
%

)

Improvements in precision for 
reusing by Rank and CAS

Level of Appropriateness with CAS

Level of Appropriateness without 
CAS



International Journal of Computer Applications (0975 – 8887) 

Volume 35– No.8, December 2011 

27 

The reduction in time makes the system more productive and 

useable. But time saving for building the reusable system is not 

the only objective. The experiment with the proposed system 

shows the level of precision achieved by using the proposed 

approach. These observations are compared in table 2. It lists the 

―Level of appropriateness‖ using CAS and without using CAS. 

The level of appropriateness can be measured in terms of ratio 

of the total features found in the searched component to the 

number of features a search process was looking for in the 

component. 

The percentage is shown as the level of appropriateness. Results 

show that level of appropriateness is greater while using the 

CAS based search. Results are depicted with the help of Fig 5 

also. The system ensures that the reusable component is made 

available to user in less time with more appropriateness towards 

the requirements. Therefore, the propose system is capable to 

improve the overall performance of component based system by 

adding the suitable attributes and interfaces. 

6. CONCLUSION 
Overall it is concluded that although there are many techniques 

available that can be used to search for the reusable components 

from component libraries, but they lack in many aspects like 

time taken in searching the component and finding the 

appropriate component to be reused. The proposed model named 

as CAS (Component Access System) ensures that the reusable 

component is made available to the users in less time with more 

appropriateness towards the requirements. Therefore the 

proposed system is capable of improving the overall 

performance of Component Based system by adding the suitable 

attributes and interfaces. 

7. REFERENCES 
[1] Boehm, B. W. 1984. Software engineering economics. 

IEEE Transactions on Software Engineering. 10(1):4-21. 

[2] Burgess, C. J. and M. Lefley. 2001. Can genetic 

programming improve software effort estimation? A 

comparative evaluation. Information & Software 

Technology .43(14): 863-873.  

[3] Wong, W. E., Horgan, J. R., London S., and Bellcore, H.E. 

1997. A study of effective regression testing in practice. In 

ISSRE ‘97: Proceedings of the Eighth International 

Symposium on Software Reliability Engineering. IEEE 

Computer Society. Page 264. 

[4] Srivastava, A. and Thiagarajan, J. 2002. Effectively 

prioritizing tests in development environment.  Proceedings 

of the ACM SIGSOFT 2002 International Symposium on 

Software Testing and Analysis (ISSTA-02). Volume 27, 4 

of Software Engineer Notes. 97–106. ACM Press. New 

York. 

[5] Antoniol, G., Penta, M.D. and Harman, M. 2005. Search 

Based techniques Applied to Optimization of Project 

Planning for a Massive Maintenance Project. In 21st IEEE 

International Conference on Software Maintenance, Los 

Alamitos, California, USA. 240–249. IEEE Computer 

Society Press. 

[6] Clark, J.,  Dolado, J.J., Harman, M., Hierons, R.M., Jones, 

B., Lumkin, M., Mitchell, B. Mancoridis, S. Rees, K., 

Roper, M. and Shepperd, M. 2003. Reformulating Software 

Engineering as a Search Problem. IEE Proceedings — 

Software, 150(3):161–175. 

[7] Kirsopp, C., Shepperd, M and Hart, J. Search Heuristics, 

Case-Based Reasoning and Software Project Effort 

Prediction. 2002. In GECCO 2002: Proceedings of the 

Genetic and Evolutionary Computation Conference. 1367–

1374, San Francisco, CA 94104, USA. Morgan Kaufmann 

Publishers. 

[8] Sitaraman M. and Weide B. W. 1994. Special Feature: 

Component-Based Software Using RESOLVE.  ACM 

SIGSOFT Software Engineering Notes 19, No. 4.  21-67. 

[9] Crnkovic, I. Component-based Software Engineering – 

New Challenges in Software Development, Mälardalen 

University, Department of Computer Engineering, 

Västerås, Sweden. 

[10] Wallace, B. 2000. There is no such thing as a Component. 

PolyGlot publication, San Francisco, Ca, United States.  

[11] Naur, P. and Randell, B. 1969. Software Engineering, 

Report on a conference sponsored by the NATO Science 

Committee, Garmisch, Germany. Scientific Affairs 

Division, NATO, Brussels. 138-155. 

[12] Cox, B.J. 1990. Planning the Software Industrial 

Revolution. Software Technologies of the 1990's, IEEE 

Software magazine. 

[13] Cox's feasibility demonstration of a usage-based 

mechanism for incentivizing component producers, 

http://virtualschool.edu/mybank. 

[14] Schmidt, D. C. 1999. Why Software Reuse has failed and 

How to Make It Work for You. C++ Report magazine. 

Department of Electrical and Computer Engineering, 

University of California, Irvine. 

[15] Baker, P., Harman, M., Steinh¨ofel, K. and Skaliotis, A. 

2006. Search Based Approaches to Component Selection 

and Prioritization for the Next Release Problem. Motorola 

Labs., Viables Estate, Basingstoke, Software Maintenance. 

ICSM '06. 22nd IEEE International Conference on 24-27 

Sept.176-185. Philadelphia, PA, USA.    

[16] Rothermel, G., Elbaum, S., Malishevsky, A.G., Kallakuri, 

P. and Qiu, X.2004. On test suite composition and cost-

effective regression testing. ACM Trans. Software 

Engineering Methodologies. 277–331. 

[17] Sommerville, I. Component-based software engineering, 

Software Engineering, 7th edition. Chapter 19. 

[18] Naiyana, T. and Kajal, C. 2005. Finding a needle in the 

haystack: A technique for ranking matches between 

components. Lecture notes in computer science    ISSN 

0302-9743, Congress CBSE 2005: component-based 

software engineering, International symposium No 8, St. 

Louis, MO. Vol. 3489. 171-186. ISBN 3-540-25877-9.  

[19] Suri P. K. and Singh G., 2010. Framework to represent the 

software design elements in markup text – Design Markup 

Language (DGML). IJCSNS International Journal of 

Computer Science and Network Security, South Korea, 

VOL.10 No.1, January. 164-170.    

[20] Heinemann G.T. and Councill W.T. Component Based 

Software Engineering- Putting the Pieces Together. 

Addison Wesley Publisher. 


