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ABSTRACT 

This paper presents an application of Multi-layer Perceptrons 

(MLP) neural networks to model the demographic 

characteristics of antenatal clinic attendees in South Africa.  The 

method of cross-validation is used to examine the between-

sample variation of neural networks for HIV prediction.  MLP 

neural networks for classifying both the HIV negative and 

positive clinic attendees are developed and evaluated using 

validity and reliability of the test.  Neural networks are robust to 

sampling variations in overall classification performance. 
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1. INTRODUCTION 

HIV/AIDS is causing extra-ordinary problems to human health 

throughout Africa and the world in general (UNAIDS, 2009).  

To introduce control strategy and to plan political and economic 

policies, it is crucial to estimate and predict the magnitude of the 

spread of the epidemic in the society.  There are different 

methods to accomplish this task.  A population-based survey can 

give a clear picture on the status of the epidemic but such a 

survey is extremely hard and expensive (WHO). 

The spread of the epidemic can be predicted from HIV incidence 

data however this requires a long follow-up period.  The 

epidemic can also be predicted based on AIDS notification or 

AIDS mortality.  This again can be unreliable as in most cases 

there might be report delays and flaws in the registration system. 

It is well known fact that HIV spreads within a society through 

different biological, social and environmental factors and hence 

modeling these factors has the advantage to understand the 

spread of the HIV epidemic over a specific population.  The 

model formulation process is very important, as the results are a 

reflection of the model.  The model needs to extract as much 

information as possible so that it is a good representation of the 

population.  The parameters and assumptions involved in 

building the model should be clearly stated and understood.  The 

assumptions have a role in the process of assessing the 

correctness of the model and also the accuracy and efficiency of 

the parameters involved in formulating the model. 

Artificial Neural Networks (ANNs) have been applied to an 

increasing number of real world problems of varying 

complexities (Patel J.L., Goyal R.K., 2007).  Their greatest 

advantage is in solving problems that are too complex for 

conventional technologies, such as problems that do not have an 

algorithmic solution or for which an algorithmic solution is too 

complex to be found.  In general, because of their derivation 

from the biological brain, ANNs are well suited to problems that 

people are good at solving, but for which computers are not.  

These problems include pattern recognition and forecasting.  

The later techniques require the recognition of the trends in data.  

Other advantages of neural networks include; adaptive learning 

(i.e. an ability to learn to do tasks based on the data given for 

training or initial experience) and self-organization (i.e. an ANN 

can create its own organization or representation of the 

information it receives during learning time and real-time 

operation). 

In using neural networks, the entire available data set is usually 

randomly divided into a training (in-sample) set and a test (out-

of-sample) set.  The training set is used for neural network 

model building and the test set is used to evaluate the predictive 

capability of the model.  While this practice is adopted in many 

studies, the random division of a sample into training and test 

sets may introduce bias in model selection and evaluation in that 

the characteristics of the test may be very different from those of 

the training.  Cross-validation will be used to accurately describe 

the predictive performance of the neural networks.  Cross-

validation is a re-sampling technique which uses multiple 

random training and test sub-samples.  The advantage of cross-

validation is that all observations or patterns in the available 

sample are used for training the model.  The cross-validation 

analysis will yield valuable insights on the reliability of the 

neural networks with respect to sampling variation. 

Section 3 contains the variable description, the data used and the 

design of this study.  Section 4 details the cross-validation 

results obtained in the study, while the concluding remarks are 

provided in section 5. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Patel%20JL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Goyal%20RK%22%5BAuthor%5D
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2. NEURAL NETWORKS FOR PATTERN 

CLASSIFICATION 

2.1. Neural Networks 

Neural networks are flexible, nonparametric modeling tools 

(Trentin and Freno, 2009).  They can perform any complex 

function mapping with desired accuracy.  An ANN is typically 

composed of several layers of many computing elements called 

nodes.  Each node receives an input signal from other nodes or 

external inputs and after processing the signals locally through a 

transfer function, it outputs a transformed signal to other nodes 

or final result.  In MLP, all nodes and layers are arranged in a 

feed-forward manner.  The first layer is called the input layer 

where external information is received.  The last layer is called 

the output layer where the network produces the model solution.  

In between, there are one or more hidden layers which are 

critical to ANNs to identify the complex patterns in the data.  An 

example of an MLP with one hidden layer and one output node 

is shown in Fig. 1.  This three-layer MLP is a commonly used 

ANN structure for two-group classification problems like HIV 

status prediction. 

As in any statistical model, the parameters (weights) of neural 

network model need to be estimated before the network can be 

used for prediction purposes.  The process of determining these 

weights is called training.  The training process aims at changing 

the weights so as to minimize the error between the observed 

and the predicted outcomes, traditionally given by the sum of 

their squared differences across all observations (patterns) 

scrutinized in one iteration (epoch) of training.  During training, 

the calculated error is backpropagated to the network and the 

weights are accordingly adjusted so as to improve the network 

prediction.  The backpropagation algorithm is an iterative 

method based on gradient descent on the error surface reaching 

the minimal error possible (Zimmermann, Minin, and 

Kusherbaeva, 2011).  The weights are continually modified as a 

function of the change in the error, and the amount of weight 

change is determined by a learning parameter. 

The training phase is a critical part in the use of neural networks 

for classification problems.  The network training is a supervised 

one in that the desired or target response of the network for each 

input pattern is always known a-priori. 

2.2 The Multilayer Perceptron Neural 

Network Model  

 

Figure 1: A Multilayer Perceptron (MLP) Neural Network 

Model  

As stated in section 2.1, Fig. 1 illustrates a perceptron network 

with three layers.  This network has an input layer (on the left) 

with three neurons, one hidden layer (in the middle) with three 

neurons and an output layer (on the right) with three neurons.  

There is one neuron in the input layer for each predictor 

variable. 

Input Layer - A vector of predictor variable values is presented 

to the input layer.  At the input layer, the values are distributed 

to each of the neurons in the hidden layer.  In addition to the 

predictor variables, there is a constant input called the bias that 

is fed to each of the hidden layers.  The bias is multiplied by a 

weight and added to the sum going into the neuron.  

Hidden Layer - At the hidden layer, the value from each input 

neuron is multiplied by a weight, and the resulting weighted 

values are added together producing a combined value. The 

weighted sum is fed into a transfer function.  The outputs from 

the hidden layer are distributed to the output layer.  

Output Layer - On arrival at the output layer, the value from 

each hidden layer neuron is multiplied by a weight, and the 

resulting weighted values are added together producing a 

combined value.  Thereafter, the weighted sum is fed into a 

transfer function, which outputs its own value.    

2.3. Training Multilayer Perceptron 

Networks  

The goal of the training process is to find the set of weight 

values that will cause the output from the neural network to 

match the actual target values as closely as possible.  There are 

several issues involved in designing and training an MLP 

perceptron network such as:  

 Selecting the number of hidden layers to use in the 

network.  

 Deciding how many neurons to use in each hidden 

layer.  

 Finding a globally optimal solution that avoids local 

minima.  

 Converging to an optimal solution in a reasonable 

period of time.  

 Validating the neural network to test for overfitting.  

2.3.1 Selecting the Number of Hidden Layers  

For nearly all problems, one hidden layer is sufficient. Using 

two hidden layers rarely improves the model, and it may 

introduce a greater risk of converging to a local minima.  There 

is no theoretical reason for using more than two hidden layers. 

Three layer models with one hidden layer are recommended.  

2.3.2 Deciding how many neurons to use in the 

hidden layers  

             One of the most important characteristics of a 

perceptron network is the number of neurons in the hidden 

layer(s).  If an inadequate number of neurons are used, the 

network will be unable to model complex data, and the resulting 

fit will be poor.  
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If too many neurons are used, the training time may become 

excessively long, and, worse, the network may over-fit the data.  

When overfitting occurs, the network will begin to model 

random noise in the data.  The result is that the model fits the 

training data extremely well, but it generalizes poorly to new, 

unseen data.  Validation must be used to test for this.  

2.3.3 Finding a globally optimal solution  

A typical neural network might have a couple of hundred 

weights whose values must produce an optimal solution.  The 

output of a neural network as a function of the inputs is often 

highly nonlinear, making the optimization process complex.  

The plot of error as a function of the weights for neural networks 

will most likely appear as a rough surface with many local 

minima such as shown in fig. 2.  

 

 

 

 

 

 

 

 

 

 

Figure 2: Plot of error as a function of the weights 

Optimization methods such as steepest descent and conjugate 

gradient are highly susceptible to finding local minima if they 

begin the search in a valley near a local minimum.  They have 

no ability to see the big picture and find the global minimum.  

Several methods have been tried to avoid local minima.  The 

simplest is just to try a number of random starting points and use 

the one with the best value.  A more sophisticated technique 

called simulated annealing improves on this by trying widely 

separated random values and then gradually reducing the 

random jumps in the hope that the location is getting closer to 

the global minimum.  Conjugate gradient usually finds the 

optimum weights quickly, but there is no guarantee that the 

weight values it finds are globally optimal.   

2.3.4 Converging to the Optimal Solution using 

Conjugate Gradient  

For this research, given a set of randomly-selected starting 

weight values, we selected conjugate gradient algorithm to 

optimize the weight values.  

The process to refine the weight values includes, running a set of 

predictor variable values through the network using a tentative 

set of weights, computing the difference between the predicted 

target value and the actual target value for this case, averaging 

the error information over the entire set of training cases, 

propagating the error backward through the network and 

computing the gradient of the change in error with respect to 

changes in weight values and making adjustments to the weights 

to reduce the error.  Each cycle is called an epoch.  

Because the error information is propagated backward through 

the network, this type of training method is called backward 

propagation.  The backpropagation training algorithm was first 

described by Rumelhart and McClelland in 1986.  

Backpropagation using gradient descent often converges very 

slowly or not at all.  While backpropagation with gradient 

descent is still used in many neural network programs, it is no 

longer considered to be the best or fastest algorithm.  

Neurosolutions software uses the conjugate gradient algorithm 

to adjust weight values using the gradient during the backward 

propagation of errors through the network.  Compared to 

gradient descent, the conjugate gradient algorithm takes a more 

direct path to the optimal set of weight values.  Usually, 

conjugate gradient is significantly faster and more robust than 

gradient descent.  Conjugate gradient also does not require the 

user to specify learning rate and momentum parameters. 

3. DESIGN OF STUDY 

Since ANNs are used to study the relationship between the 

likelihood of being HIV positive or negative, two important 

questions need to be addressed: 

i. What is the appropriate neural network architecture 

for this particular data set? 

ii. How robust is the neural network performance in 

predicting the HIV status in terms of sampling 

variability? 

For the first question, there are no definite rules to follow since 

the choice of the architecture also depends on the classification 

objective.  For example, if the objective is to classify a given set 

of objects as well as possible, then a larger network may be 

desirable.  However, if the network is to be used to predict the 

classification of unseen objects, then a larger network is not 

necessarily better.  For the second question, a cross-validation 

approach was used to investigate the robustness of the neural 

networks in HIV status prediction. 

3.1. Measures and Sample 
This study utilizes a total of six quantitative demographic 

characteristics as variables, namely parity, gravidity, mother’s 

age, father’s age, educational level and syphilis.  The qualitative 

characteristics such as race and province were not included in 

this study.  Out of a total of 31 808 individuals, 4 000 HIV 

positive and 4 000 HIV negative individuals were randomly 

selected from the 2007 South African annual antenatal clinics 

(ANC) seroprevalence data.  The 8 000 subjects selected from 

the 2007 antenatal data were extensively randomized to reduce 

bias using NeurosolutionR randomization function. 

Gravidity is defined as the number of pregnancies, complete or 

incomplete, experienced by a female, while parity denotes the 

number of times the individual has given birth.  The HIV status 

is binary coded; a 1 represents positive status, while a 0 

represents a negative status.  The complete specifications of the 

demographic characteristics are illustrated in Table 1. 
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Table 1:  Summary of Input and Output Variables 

Demographic 

Characteristics 

Specifications 

Mother’s age 13 – 45 years  

 

 

Inputs 

Father’s age 15 – 55 years 

Educational level 0 – 13 

Syphilis (RPR) 0 (negative) 

&  

1 (positive) 

Gravidity 0 – 10 

Parity 0 – 8 

HIV status 0 (negative) 

&  

1 (positive) 

Output 

Prior to training the neural networks, the data columns were 

portioned into either input or desired output.  The data rows 

were segmented into one of the following three groups; training, 

cross validation and testing as shown in Table 2. 

Table 2: Data Tagging 

Group Description 

Training Data used by the neural 

network to learn from 

Cross validation Data used to evaluate 

performance during learning  

Testing Data used to evaluate 

performance after training 

 

3.2. Design of Neural Network Model 

ANNs are characterized by their architectures.  As stated in 

Section 2, neural network architecture refers to the number of 

layers, nodes in each layer and the number of arcs.  Networks 

with one hidden layer are generally sufficient for most problems 

including classification.  All networks used in this study will 

have one hidden layer.  For this classification problem, the 

number of input nodes is the number of predictor variables.  For 

example, for the prediction of the HIV status, the networks will 

have six input nodes in the first layer corresponding to six 

predictor variables.  Node biases will be used in the output 

nodes and logistic activation function will be specified in the 

networks. 

For this study data preprocessing is conducted, though some 

studies suggest that (Shanker et al, 1996) data preprocessing is 

not beneficial for a classification exercise.  Neural network 

training is a nonlinear nonconvex minimization problem and 

hence global solutions cannot be guaranteed.  To reduce the 

likelihood of being trapped in a bad local minima, the ANNs 

were each trained 50 times by using 50 sets of randomly 

selected initial weights and the best solution of weights among 

the 50 runs is retained for a particular network architecture. 

3.3. Cross-validation 

The cross-validation method is employed to examine the neural 

network performance in HIV status prediction in terms of 

sampling variation.  Cross-validation is a useful statistical 

technique to determine the robustness of a model.  One simple 

use of the cross-validation idea is consisted of randomly 

splitting a sample into two sub-samples of training and test sets.  

The training sample is used for model fitting and/or parameter 

estimation and the predictive effectiveness of the fitted model is 

evaluated using the test sample.  Since the best model is 

designed to fit one sub-sample, it often estimates the true error 

rate overly optimistically (Efron and Gong, 1983).  The solution 

to this problem is to use the five-fold cross-validation by 

carrying out the simple cross-validation five times.  In this 

study, a fivefold cross-validation is used as proposed by Zhang 

et al., 1997.  The total sample is divided into five equal and 

mutually exclusive portions.  Training will be conducted on any 

four of the five portions.  Testing will be performed on the 

remaining part.  As a result, five overlapping training samples 

are constructed and testing is also performed five times.  The 

average test classification rate over all five partitions is a good 

indicator for the out-of-sample performance of a classifier. 

3.4. Sensitivity Analyses 

Sensitivity analysis assesses the effect that each of the network 

inputs has on the network output, thus providing a feedback as 

to which input channels are the most significant.  Sensitivity 

analysis provides an opportunity to prune the input space by 

removing the insignificant channels, reducing the size and 

complexity of the network.  Sensitivity analysis is therefore a 

method for extracting the cause and effect relationship between 

the inputs and outputs of the network.  

4. RESULTS 

4.1. Number of Neurons in the Hidden Layer 

The average prediction (test set) percentages for each 

configuration are represented in Fig. 3.  We can see that the 

performance increases with the number of neurons in the hidden 

layers, for HIV positive individuals; 66% prediction with one 

neuron, 69%, 71%, 72% and 74% prediction respectively for 

two, four, five and ten hidden layers.  The prediction 

performance decreased for HIV negative individuals as the 
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number of hidden layers increased.  Based on the different 

responses to increases in the number of hidden layers between 

HIV negative and positive individuals, this research resorted to 

using the only one hidden layer for prediction purposes. 

Mean Performance As a Function of Hidden Units
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Figure 3: Mean Performance as a function of the hidden unit 

4.2. Number of Iterations 

The MSE between observed values and values estimated by the 

network declined very rapidly from a high starting value to 

about 0.35 after 150 iterations in the training set (Fig.4).  In the 

validation set, a similar variation was observed, with minimum 

values close to 0.35.  Values of MSE stabilized after 150 

iterations. 
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Figure 4: MSE as a function of the training iteration number  

The percentages of correct classifications increased slowly for 

HIV positive individuals up to 1 000 iterations (Fig. 5.  In this 

study, training of the network was stopped at 150 iterations, to 

avoid further deterioration in the classification of HIV negative 

individuals.  

 

Performance as a function of the training iteration 
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Figure 5: Performance (percentage of correctly classified 

records) as a function of the training iteration number 

(epoch) 

Cross-validation results on the predictive performance of neural 

networks are given in Table 3.  Across the five small test sub-

samples, overall classification rate of neural networks ranges 

from 66% to 74% for HIV positive and 46% to 54% for HIV 

negative individuals from 1 to 10 hidden nodes.  For HIV 

positive prediction, neural networks give an average of 66% 

across the five sub-samples using only one hidden layer 

compared to 54% for HIV negative prediction.   

Table 3: Cross-validation results on the predictive 

performance for the five small subsamples 

H
id

d
en

  
N

o
d

es 

 

Sub-samples 

Mean +SD 

(HIV) 

 1 

 

2 3 4 5  

 - + - + - + - + - + - + 

1 53 64 54 69 57 65 52 67 53 64 54+ 

1.9 

66+ 

2 

2 49 70 55 68 52 72 50 70 52 69 52+ 

2.6 

69+ 

1.9 

3 50 67 51 73 54 68 48 72 51 69 51+ 

2.7 

69+ 

3.2 

4 48 70 53 72 52 71 47 73 50 71 50+ 71+ 
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1.6 1.9 

5 49 68 50 76 51 71 47 73 49 71 49+ 

1.6 

72+ 

2.6 

6 49 69 59 59 53 70 54 70 54 71 54+ 

0.2 

68+ 

0.2 

7 46 72 49 77 45 79 46 76 47 77 47+ 

0.4 

76+ 

02 

8 46 73 48 77 48 74 46 75 48 76 47+ 

0.2 

75+ 

0 

9 47 72 40 82 48 74 45 76 47 79 45 

 

77 

10 40 73 46 76 47 76 46 75 46 72 46+ 

0.5 

74+ 

1.8 

 

4.3. Sensitivity 

The sensitivity test showed that mother’s age and the father’s 

age had the greatest effect on the HIV status of the antenatal 

clinic attendees.  Gravidity and syphilis had the lowest effect as 

shown in Fig. 6. 

 

Figure 6: Sensitivity Test Results 

5. CONCLUSION 

The MLP has been shown to be a useful tool for prediction, 

function approximation and classification.  The practical 

benefits of a modeling system that can accurately reproduce any 

measurable relationship are huge.  The benefits of the MLP 

approach are particularly apparent in applications where a full 

theoretical model cannot be constructed, and especially when 

dealing with non-linear systems.  The numerous difficulties in 

implementing, training and interpreting the MLP must be 

balanced against the performance benefits when compared to 

more traditional, and often inappropriate, techniques.  It is 

indeed clear that the full benefits that neural networks offer can 

only be realized through a fundamental understanding of the 

basic theory. 
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