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ABSTRACT 

In this paper, we made an attempt to study the algebraic 

nature of                   anti- fuzzy subsemiring of a semiring and 

we introduce the some theorems in anti-fuzzy subsemiring of 

a semiring.  
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1. INTRODUCTION 

There are many concepts of universal algebras generalizing an 

associative ring (R ; + ; . ). Some of them in particular, 

nearrings and several kinds of semirings have been proven 

very useful. An algebra (R ; +, .) is said to be a semiring if (R 

; +) and (R ; .) are semigroups satisfying a. ( b+c ) = a. b+a. c 

and (b+c) . a =  b. a+c. a for all a, b and c in R. A semiring R 

is said to be additively commutative if a+b = b+a for all a, 

b in R. A semiring R may have an identity 1, defined by 1. a = 

a = a. 1 and a zero 0, defined by 0+a = a = a+0 and a.0 = 0 

= 0.a for all a in R. After the introduction of fuzzy sets by 

L.A.Zadeh[9], several researchers explored on the 

generalization of the concept of fuzzy sets. The notion of 

fuzzy subnearrings and ideals was introduced by S.Abou Zaid 

[1]. In this paper, we introduce the some theorems in anti-

fuzzy subsemiring of a semiring.  

2. PRELIMINARIES 

2.1 Definition 
 Let X be a non–empty set. A fuzzy subset A of X is a 

function A : X → [0, 1].  

2.2 Definition: 
Let R be a semiring. A fuzzy subset A of R is said to be a 

fuzzy subsemiring (FSSR) of R if it satisfies the following 

conditions: 

(i) A(x + y)  min{A(x), A(y)}, 

(ii) A(xy)  min{ A(x), A(y) }, for all x and y in R. 

2.3 Definition 

Let R be a semiring. A fuzzy subset A of R is said to be an 

anti-fuzzy subsemiring (AFSSR) of R if it satisfies the 

following conditions: 

(i)   A(x + y) ≤ max{ A(x), A(y) }, 

(ii)   A(xy) ≤ max{ A(x), A(y) }, for all x and y in R. 

 

 

2.4 Definition  
Let R be a semiring. An     anti-fuzzy subsemiring A of R is 

said to be an   anti-fuzzy normal subsemiring (AFNSSR) of 

R if it satisfies the following conditions: 

(i) A(x+y) = A(y+x), 

(ii) A(xy) = A(yx), for all x and y in R. 

2.5 Definition 
Let A and B be fuzzy subsets of sets G and H, respectively. 

The    anti-product of A and B, denoted by AxB, is defined as              

AxB ={(x, y), AxB(x,y)/for all x in G and y in H}, where 

AxB(x, y) = max{ A(x), B(y) }. 

2.6 Definition:  
Let A be a fuzzy subset in a set S, the anti-strongest fuzzy 

relation on S, that is a fuzzy relation on A is V given by                        

V(x, y) = max { A(x), A(y) }, for all x and y in S. 

2.7 Definition:  
Let (R, +, ∙) and (R׀, +, ∙ )  be any two semirings. Let f : R → 

R׀  be any function and A be an anti-fuzzy subsemiring in R, 

V be an anti-fuzzy subsemiring in f(R) = R׀, defined by V(y) 

= inf
)(1 yfx 

A(x), for all x in R and y in R׀. Then A is called a 

preimage of V under f and is denoted by f -1(V). 

2.8 Definition:  
Let (R, +,  .) and  (R׀,  +,  .) be any two semirings. Then the 

function f : R → R׀ is called a semiring homomorphism if                

f(x+y) = f(x) + f(y), f(xy) = f(x) f(y), for all x and y in R. 

2.9 Definition:  
Let (R, +,  . ) and (R׀, +,  . ) be any two semirings. Then the 

function f : R → R׀ is called a semiring anti-homomorphism 

if             f(x + y) = f(y) + f(x), f(xy)   = f(y) f(x), for all x and 

y in R. 

2.10 Definition:  
Let (R, +,  .) and  (R׀,  +,  .) be any two semirings. Then the 

function f : R → R׀ be a semiring homomorphism. If f is one-

to-one and onto, then f is called a semiring isomorphism. 

2.11 Definition:  
Let (R, +,  .) and  (R׀,  +,  .) be any two semirings. Then the 

function f : R → R׀ be a semiring anti-homomorphism. If f is 

one-to-one and onto, then f is called a semiring                   

anti-isomorphism. 

2.12 Definition:  
Let A be an anti-fuzzy subsemiring of a semiring (R,  +, ∙ ) 

and a in R. Then the pseudo anti-fuzzy coset (aA)p is defined 

by ( (aA)p)(x) = p(a)A(x), for every x in R and for some p in 

P. 
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3. PROPERTIES OF ANTI-FUZZY 

SUBSEMIRING OF A SEMIRING 

3.1. Theorem:  
Union of any two anti-fuzzy subsemiring of a semiring R is an        

anti-fuzzy subsemiring of R. 

Proof: Let A and B be any two anti-fuzzy subsemirings of a 

semiring R and x and y in R.Let A={( x, A(x) )/xR}and 

B={( x,B(x) ) / xR}and also let C = A  B = { ( x, C(x)) / 

xR}, where max{ A(x), B(x)} = C(x). Now,                        

C(x+y) = max{A(x + y),B(x+ y)}                          ≤ max{ 

max { A(x), A(y) }, max{B(x), B(y)}}  = max{max{ 

A(x), B(x) }, max{ A(y), B(y) } } = max{ C(x), C(y) }. 

Therefore, C(x + y)            ≤max{C(x),C(y)},for all x and y 

in R. And, C(xy) = max {A(xy), B(xy)}≤max{max{A(x), 

A(y)}, max{B(x), B(y) } }=max{max{A(x),B(x) }, 

max{A(y),B(y)}}= max{ C(x), C(y)}.Therefore,  C(xy) ≤ 

max{ C(x), C(y) }, for all x and y in R. Therefore C is an 

anti-fuzzy subsemiring of a semiring R. Hence the union of 

any two anti-fuzzy subsemirings of a semiring R is an anti-

fuzzy subsemiring of R. 

3.2. Theorem:  
The union of a family of       anti-fuzzy subsemirings of 

semiring R is an        anti-fuzzy subsemiring of R. 

Proof:  Let {Vi : iI} be a family of anti-fuzzy subsemirings 

of a semiring R and let A = i
Ii
V


 . Let x and y in R. Then, 

A(x + y) =
Ii

sup Vi(x + y) ≤ 
Ii

sup max{ Vi(x), Vi(y)} = 

max{
Ii

supVi(x), 
Ii

supVi(y) }= max{ A(x), A(y) 

}.Therefore, A(x+y)  ≤ max{ A(x), A(y) }, for all x and y in 

R. 

And,A(xy)=
Ii

supVi(xy)≤
Ii

sup max{Vi(x),Vi(y)}=max{

Ii

supVi(x),
Ii

sup Vi(y)}=max{A(x),A(y)}. Therefore, 

A(xy) ≤ max{ A(x), A(y) }, for all x and y in R. That is, A 

is an anti-fuzzy subsemiring of a semiring R. Hence, the union 

of a family of anti-fuzzy subsemirings of R is an anti-fuzzy 

subsemiring of R. 

3.3. Theorem:  
If A and B are any two         anti-fuzzy subsemirings of the 

semirings R1 and R2 respectively, then anti-product AxB is an 

anti-fuzzy subsemiring of R1xR2.  

Proof: Let A and B be two anti-fuzzy subsemirings of the 

semirings R1 and R2 respectively. Let x1 and x2 be in R1, y1 

and y2 be in R2. Then ( x1, y1 ) and      (x2, y2 ) are in 

R1xR2.Now, AxB [(x1, y1)+(x2, y2)]   

=AxB(x1+x2,y1+y2)=max{A(x1+x2),B(y1+y2)} 

≤max{max{A(x1),A(x2)},max{B(y1),B(y2)}} 

=max{max{A(x1),B(y1)},max{A(x2),B(y2)}}     = 

max{AxB (x1, y1), AxB (x2, y2)}. Therefore,    AxB [ (x1, y1) + 

(x2, y2) ] ≤  max{ AxB (x1, y1),   AxB (x2, y2) }. Also, AxB 

[(x1, y1)(x2, y2)]               = AxB ( x1x2, y1y2) =max{A(x1x2), 

B(y1y2) }        ≤ max{max{A(x1),A(x2 ) },max{ B(y1), 

B(y2) }} = max{max{A(x1), B(y1)}, max{A(x2), B(y2)}  

= max{AxB (x1, y1), AxB (x2, y2) }. Therefore, AxB [(x1, 

y1)(x2, y2)]  ≤ max{ AxB (x1, y1), AxB (x2, y2)}.  Hence AxB 

is an anti-fuzzy subsemiring of semiring of R1xR2. 

3.4. Theorem:  
Let A be a fuzzy subset of a semiring R and V be the strongest 

anti-fuzzy relation of R. Then A is an anti-fuzzy subsemiring 

of R if and only if V is an anti-fuzzy subsemiring of RxR. 

Proof: Suppose that A is an anti-fuzzy subsemiring of a 

semiring R.Then for any x = ( x1, x2 ) and         y = (y1, y2 ) are 

in RxR. We have, V (x+ y)             =V[(x1,x2)+(y1,y2)] 

=V(x1+y1,x2+y2)= 

max{A(x1+y1),A(x2+y2)}≤max{max{A(x1), 

A(y1)},max{A(x2),A(y2)}}=max 

{max{A(x1),A(x2)},max{A(y1),A(y2)}} 

=max{V(x1,x2),V(y1,y2)} = max{ V (x), V (y) }. Therefore, 

V ( x + y) ≤ max{ V (x), V (y) }, for all x and y in RxR. 

And,V(xy)=V [(x1, x2) (y1, y2)]    = V( x1y1 , x2y2 ) = max { 

A(x1y1),  A(x2y2)} ≤ max {max{ A(x1), A(y1 )}, 

max{A(x2), A(y2) }} = max{max {A(x1), A(x2)}, 

max{A(y1), A(y2) }} = max{V(x1, x2),V(y1, y2)}= max{ 

V (x), V (y) }. Therefore, V (xy) ≤ max {V (x), V (y)}, for 

all x and y in RxR. This proves that V is an anti-fuzzy 

subsemiring of RxR. Conversely assume that V is an anti-

fuzzy subsemiring of RxR, then for any       x = (x1, x2) and y 

= (y1, y2) are in RxR, we have     max{ A(x1+ y1), A(x2+ y2) 

} = V( x1+ y1 , x2+ y2 )  =V[(x1,x2)+(y1, y2)]=V (x+ y)≤ 

max{V(x),V (y)}                                         = max{ V (x1, 

x2), V (y1, y2) }= max{max{ A(x1), A(x2) }, max{A(y1), 

A(y2)} }. If A(x1+ y1) ≥A(x2+ y2), A(x1) ≥ A(x2), A(y1) ≥ 

A(y2),   we get, A(x1+ y1) ≤ max{ A(x1), A(y1)}, for all x1 

and y1 in R. And, max{A(x1y1), A(x2y2) }             = V( x1y1 

, x2y2 ) = V[(x1, x2) (y1, y2)] =  V (x y)  ≤max{V (x), V (y)} 

= max{V (x1, x2), V (y1, y2)} = max{max{A(x1), A(x2)}, 

max {A(y1), A(y2)}}. If A(x1y1)≥A(x2y2),A(x1)≥A(x2), 

A(y1) ≥ A(y2), we get A(x1y1)≤ max{ A(x1), A(y1) }, for 

all x1, y1 in R. Therefore A is an anti-fuzzy subsemiring of R. 

3.5. Theorem:  
A is an anti-fuzzy subsemiring of a semiring (R, +, ∙ ) if and 

only if A(x+y)           ≤  max{A(x), A(y)}, A(xy) ≤ 

max{A(x), A(y) }, for all x and y in R. 

Proof: It is trivial. 

3.6. Theorem:   
If A is an anti-fuzzy subsemiring of a semiring (R, +, ∙), then                    

H = { x / xR: A(x) =0} is either empty or is a subsemiring 

of R. 

Proof: If no element satisfies this condition, then H is empty. 

If x and y in H, then A(x+y)                     ≤ max {A(x), 

A(y)}= max {0, 0}=0. Therefore, A(x+y) = 0. And, A (xy) 

≤ max {A(x), A(y)}      = max{0,0} = 0. Therefore, A( 

xy)=0. We get x+y, xy in H. Therefore, H is a subsemiring of 

R. Hence H is either empty or is a subsemiring of R. 

3.7. Theorem:  
If A be an anti-fuzzy subsemiring of a semiring (R, +, ∙), then 

if               A(x+ y) = 1, then either A(x) =1 or A(y) = 1, for 

all x and y in R. 

Proof: Let x and y in R. By the definition  A(x+ y ) ≤ max { 

A( x ),  A(y) }, which  implies that           1 ≤ max {A(x),  

A(y)}. Therefore, either A(x) = 1 or A(y) = 1.  
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In the following Theorem ◦ is the composition operation of  

functions : 

3.8. Theorem:  

Let A be an anti-fuzzy subsemiring of a semiring H and f is an 

isomorphism from a semiring R onto H. Then A◦f is an anti-

fuzzy subsemiring of R. 

Proof: Let x and y in R and A be an anti-fuzzy subsemiring of 

a semiring H. 

Then we have, (A◦f )(x+y)=A(f(x+y) )                  = A( 

f(x)+ f(y)) ≤ max {A(f(x)), A(f(y))} ≤max{(A◦f) (x), 

(A◦f)(y)}, which implies that(A◦f) (x+y) ≤ max {(A◦f) 

(x),(A◦f)(y)}. And (A◦f)(xy) =A(f(xy)) =A(f(x)f(y)) ≤ 

max{A(f(x)), A(f(y))}≤ max {(A◦f)(x), (A◦f)(y)},which 

implies that (A◦f)(xy)≤max{(A◦f)(x),(A◦f)(y) }.Therefore  

(A◦f ) is an anti-fuzzy subsemiring of a semiring R. 

3.9. Theorem:  
Let A be an anti-fuzzy subsemiring of a semiring H and f is an                          

anti-isomorphism from a semiring R onto H. Then A◦f is an 

anti-fuzzy subsemiring of R. 

Proof: Let x and y in R and A be an anti-fuzzy subsemiring of 

a semiring H. 

Then we have, ( A◦f )( x+y)= A( f(x+y) )              = A( 

f(y)+f(x) ) ≤ max{A(f(x)), A(f(y)) }             ≤ max{(A◦f) 

(x),(A◦f)(y)}, which implies that (A◦f)(x+y) ≤ max 

{(A◦f)(x),(A◦f)(y)}. And    (A◦f 

)(xy)=A(f(xy))=A(f(y)f(x))≤max{A( f(x) ), A( f(y))} ≤ 

max {(A◦f)(x),(A◦f)(y)}, which implies that (A◦f) (xy) ≤ 

max{(A◦f)(x),(A◦f)(y)}. Therefore A◦f is an anti-fuzzy 

subsemiring of a semiring R. 

3.10. Theorem:  
Let A be an anti-fuzzy subsemiring of a semiring (R, +, .), 

then the pseudo anti-fuzzy coset (aA)p is an anti-fuzzy 

subsemiring of a semiring R, for a in R. 

Proof: Let A be an anti-fuzzy subsemiring of a semiring R. 

For every x and y in R, we have, 

((aA)p)(x+y)=p(a)A(x+y)≤p(a)max{(A(x), A(y)} = 

max{p(a)A(x), p(a)A(y)} = max{( (aA)p ) (x), ((aA)p)(y)}. 

Therefore, ((aA)p)(x+y)                      ≤ max {((aA)p ) (x), ( 

(aA)p )(y) }. Now,                 ( (aA)p )( xy ) = p(a)A( xy ) ≤ 

p(a)max                   { A(x), A(y) }= max {p(a)A(x), 

p(a)A(y)}         = max {((aA)p)(x), ((aA)p) (y)}. Therefore, 

((aA)p) (xy) ≤ max { ( (aA)p )(x),  ((aA)p)(y)}. Hence (aA)p 

is an anti-fuzzy subsemiring of a semiring R. 

3.11. Theorem:  
Let (R, +, .) and (R׀, +, .) be any two semirings. The 

homomorphic image of an anti-fuzzy subsemiring of R is an 

anti-fuzzy subsemiring of R׀. 

Proof: Let (R, +, .) and (R׀, +, .) be any two semirings. Let f: 

R  R׀ be a homomorphism. Then, f(x+y) = f(x) + f(y) and 

f(xy) = f(x) f(y), for all x and y in R. Let V = f(A), where A is 

an        anti-fuzzy subsemiring of R. We have to prove that V 

is an anti-fuzzy subsemiring of R׀. Now, for f(x), f(y) in R׀, 

v( f(x) + f(y)) = v( f(x+y) )≤ A(x+ y)  ≤ max{A(x), A(y)} 

which implies that          v(f(x) +f(y))  ≤ max{v(f(x)), 

v(f(y))}. Again,   v(f(x)f(y))=v(f(xy))≤A(xy) ≤ max{ 

A(x), A(y)} which implies that v(f(x)f(y))≤ max{v(f(x)), 

v(f(y))}. Hence V is an anti-fuzzy subsemiring of R׀. 

3.12. Theorem:  
Let (R, +, .) and (R׀, +, .) be any two semirings. The 

homomorphic preimage of an anti-fuzzy subsemiring of R׀ is 

an anti-fuzzy subsemiring of R. 

Proof: Let (R, +, .) and (R׀, +, .) be any two semirings. Let f : 

R  R׀ be a homomorphism. Then, f(x+y) = f(x) + f(y) and 

f(xy) = f(x) f(y), for all x and y in R. Let V = f(A), where V is 

an       anti-fuzzy subsemiring of R׀. We have to prove that A 

is an anti- fuzzy subsemiring of R. Let x and y in R. Then, 

A(x+ y) = v(f(x + y)) = v(f(x)+f(y))      ≤ max{v(f(x)),v( 

f(y))}= max {A(x),  A(y)} which implies that A(x+ y) ≤ 

max {A(x),  A(y)}. Again, A(xy) = v(f(xy)) = v(f(x)f(y))                   

≤ max { v( f(x)), v(f(y))}= max{A(x), A(y)} which 

implies that A(xy) ≤ max{ A(x),  A(y) }. Hence A is an 

anti-fuzzy subsemiring of R. 

3.13. Theorem:  
Let (R, +, .) and (R׀, +, .) be any two semirings. The anti-

homomorphic image of an anti-fuzzy subsemiring of R is an 

anti-fuzzy subsemiring of R׀. 

Proof: Let (R, +, .) and (R׀, +, .) be any two semirings. Let f: 

R  R׀ be an anti-homomorphism. Then, f(x+y) = f(y) + f(x) 

and f(xy) = f(y) f(x), for all x, y  R. Let V = f(A), where A is 

an anti-fuzzy subsemiring of R. We have to prove that V is an 

anti-fuzzy subsemiring of R׀. Now, for f(x), f(y) in R׀, v( f(x) 

+ f(y)) = v( f(y + x) )≤ A(y + x )          ≤ max{ A(y), 

A(x)}= max{ A(x), A(y) }      which implies that 

v(f(x)+f(y))≤max{v(f(x)),      v (f(y))}. Again, v( f(x)f(y)) 

=  v(f(yx) )≤ A(yx) ≤ max{ A(y),  A(x)}= max{A(x), 

A(y)}, which implies that  v(f(x)f(y)) ≤  max{v( f(x)), 

v(f(y))}. Hence V is an anti-fuzzy subsemiring of R׀. 

3.14. Theorem:  
Let (R, +,  . ) and (R׀, +, .) be any two semirings. The anti-

homomorphic preimage of an anti-fuzzy subsemiring of R׀ is 

an anti-fuzzy subsemiring of R. 

Proof: Let (R, +, .) and (R׀, +, .) be any two semirings. Let f: 

R  R׀ be an anti-homomorphism. Then, f(x+y) = f(y) + f(x) 

and f(xy) = f(y) f(x), for all x and y in R. Let V = f(A), where 

V is an       anti-fuzzy subsemiring of R׀. We have to prove 

that A is an anti-fuzzy subsemiring of R. Let x and y in R. 

Then A(x+ y)  =  v( f(x + y)) = v (f(y) + f(x)) ≤ 

max{v(f(y)), v( f(x))}= max{v(f(x)),  v( f(y))}                  

= max{A(x),  A(y)}, which implies that A(x + y)  ≤ max 

{A(x),  A(y)}. Again, A(xy) = v(f(xy))    

=v(f(y)f(x))≤max{v(f(y)),v(f(x))}=max{v(f(x)), 

v(f(y))}= max{A(x), A(y)} which implies that A(xy) ≤ 

max{A(x),  A(y) }. Hence A is an     anti-fuzzy subsemiring 

of R. 
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