
International Journal of Computer Applications (0975 – 8887)

Volume 35– No.3, December 2011

13

Solving Combinatorial Optimization Problems using
Distributed Approach

Sunita Choudhary
Department of Computer Science

Banasthali University
Jaipur, India

 G.N. Purohit
Department of Computer and Mathematical

Science
Banasthali University

Jaipur, India

ABSTRACT

Combinatorial optimization is a way of finding an optimum

solution from a finite set of objects. For combinatorial

optimization problems, the number of possible solutions grows

exponentially with the number of objects. These problems

belong to the class of NP hard problems for which probably

efficient algorithm does not exist. Using the distributed

approach with parallelization these problems can be solved with

a good bound. We show that how the concept of distributed

algorithm can help in solving graph colouring problem i.e. one

of the NP complete problem.

General Terms

Graph Coloring, Algorithm, Distributed Algorithm

Keywords

Combinatorial Optimization, NP Complete, Graph Coloring,

Distributed Computing

1. INTRODUCTION
 In our day to day life, we often encounter problems that require

an optimal arrangement of objects. Examples are the list of

items to be purchased within limited budget, efficient utilization

of available resources that could not be used simultaneously

among a group of processors, a salesman has to visit his

customers in shortest time or number of jobs has to be processed

by a machine. In each case, costs and duration have to be

minimized under certain constraints. In these problems, the

number of possible solutions grows exponentially as the number

of objects increases. Such types of problems are known as

combinatorial optimization problems and finding solutions for

this class of instances is expensive in most cases.

 Combinatorial optimization is basically searching for

the best solution from the set of discrete items and in many such

problems exhaustive search is not feasible. Therefore, in

principle any sort of search algorithms or metaheuristic can be

used to solve them. However, generic search algorithms are not

guaranteed to find optimal solutions, nor are they guaranteed to

run quickly i.e. in polynomial time. These problems belong to

the category of NP complete[9]. Some famous combinatorial

optimization problems related to computer science are traveling

salesman problem, knapsack problem, minimum spanning tree

etc.

 Finding efficient solutions for such hard problems is a

challenging task. In next section we are going to discuss some

approaches which can help in solving these problems.

2. SOLUTIONS FOR COMBINATORIAL

OPTIMIZATION PROBLEM
 Solving combinatorial optimization problems is considered a

difficult task. At present, all known algorithms require time i.e.

superpolynomial in the input size. To cope with such NP

complete problems, generally one of the following approaches is

used:

 Approximation Algorithm: Solve the problem

approximately instead of exactly. It finds a solution

that is close to optimal and also runs in polynomial

time.

 Randomized Algorithm: They are based on the use

of some random factor. Due to randomization such

algorithms show good average runtime behavior for a

given specific distribution of the problem instances.

They give good time bound, but no guarantee of

success in every case.

 Exact Algorithm: By using techniques cutting plane,

branch & bound or branch & cut[5], It guarantee to

find an optimal solution for an optimization problem.

While traversing the search tree, we can avoid

exponential time complexity, by cutting subtrees that

cannot contain an optimal solution specially in Branch

& Bound.

 Heuristic Algorithm: Such algorithm is based on

some heuristic that works reasonably well on many

cases, but for which there is no proof that it is both

always fast and always produces a good result.

Depending on whether the heuristic is construction

heuristic or improve heuristic, it utilizes problem

instance specific structure (like neighborhood

structures) to construct or to improve. Simple heuristic

are based on local search and problem specific,

whereas metaheuristic are unspecific and solve

different problems depending on the embedded

heuristic. Some of the metaheuristics are simulated

annealing, tabu search, Ant Colony Optimization

(ACO), genetic and evolutionary algorithms.

3. DISTRIBUTED ALGORITHM
Distributed algorithms can be defined as concurrent algorithms,

each running simultaneously on independent processor with

limited amount of information.

In many combinatorial optimization graph problems,

the subproblems associated with each node are completely

independent, so parallel execution of solution in search space

can improve the time bound for large instances of problem. Such

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.3, December 2011

14

NP complete problems can easily be solved with the help of

distributed computing and parallelism. Both approaches break

the problem into individuals and fetch the result in acceptable

time domain. But while solving NP-Complete Graph Problems

using distributed algorithm one has to face some constraints:

 A single node in a distributed environment may have

limited knowledge about the overall graph structure.

 There are real theoretical limitations to how well local

information can be used to solve these problems [7].

 For these problems the solution space is exponential,

so in even dense graphs, there may be an extremely

large number of local solutions and no clear way to

choose between them [4].

But for the large instances of combinatorial optimization graph

problems these limitations do not affect, because on the one

hand, the number of solutions is large, so even with perfect

knowledge of the entire graph, a single node might not be able

to solve the problem quickly. Collecting all information on a

single node is itself non-trivial. In distributed algorithm, we

perform the parallel execution of same version of distributed

algorithm on different clusters, which reduces the overall

communication cost. Different clusters perform the local

computation and find local optimal solutions, further they

communicate with neighboring clusters and share their own

local solution with them. In every round number of clusters is

reduced and local optimal solutions are merged. In this way one

can proceed towards the global optimal solution.

 This approach of distributed computing can be used to solve NP

complete problems as well can improve the bound also. Even in

some cases the complexity can reduce the exponential

complexity to the logarithm complexity. This is illustrated

taking a problem from graph theory viz graph coloring.

4. GRAPH COLORING
Coloring of a graph G= (V,E) means an assignment of colors

from a set C to the set of vertices, edges and faces of plane

graph or any combination of above sets simultaneously.

Formally, a vertex coloring is a mapping c : V(G) →C.

Normally the elements of C are assumed to be positive integers

instead of colors. A proper vertex coloring is a coloring such

that adjacent vertices are assigned different colors. Similarly, an

edge coloring is an assignment of colors to the edges of a graph

such that no two edges incident to a common vertex have same

colors. A graph G is k-colorable if there exists a proper coloring

c of G such that |{c(v) : v V(G)}| = k. The chromatic number

of a graph, denoted by (G), is the minimum integer k such that

G is k-colorable. In other words, it is the least number of colors

needed to properly color the graph. The problem of graph

coloring is known to be NP complete. There exist many

approaches for this graph coloring and some of them are:

1. Greedy Algorithm : In this approach, we arrange the

vertices in a specific order v1,v2…,vn and then assigns

the smallest available color to vi that is not used by vi’s

neighbors among v1,…,vi-1. In case of out of color state,

we can add fresh color. There exists an ordering that

leads to a greedy coloring with the optimal number of χ

(G) colors. If every subgraph of a graph G contains a

vertex of degree at most ∆, then the greedy coloring for

this ordering will use at most ∆+ 1 colors[11, 6, 10].

2. Heuristic Algorithm: Many Graph heuristics are based

on greedy coloring and they are mainly based on

specific static or dynamic strategy of ordering the

vertices. If the vertices are ordered according to their

degrees, the resulting coloring uses at most maxi

min{d(vi)+1,i} colors[11]. While another heuristic is

based on dynamic ordering which chooses next the

vertex adjacent to the largest number of different

colors[1].

3. Approximation Algorithm, the algorithm first outputs a

number C ≤ i (G) + 2 colors. Then, for any given lists

L with each vertex having at least c colors, the

algorithm gives an L-coloring. Blum [2] gave a

combinatorial algorithm for coloring 3-colorable graphs

using O (n3/8) colors.

4. Exact Algorithm: Brute force search is exact algorithm

that is based on kn assignments of k colors to n vertices

and checks whether it is proper k coloring or not. Using

dynamic programming and a bound on the number of

maximal independent sets, k-colorability can be

decided in O(2.445n)[8], while other k-colorability

algorithms uses inclusion –exclusion principle [3].

5. DISTRIBUTED APPROACH FOR

GRAPH COLORING
In distributed algorithm, graph colouring is closely related to the

problem of symmetry breaking.

In a distributed network, view of the system from various

processors may be symmetric because all processors may be a

priori alike, and in most of cases they may execute the same

local protocol and start the computation from the same initial

state. In such a situation, this symmetry breaking becomes a

difficult task. For such symmetric graph, a deterministic

distributed algorithm can’t find a proper vertex colouring. To

break this symmetry, we need some method. Randomization

offers a powerful tool for symmetry breaking, in addition it

leads to faster solutions. The technique of randomization is used

frequently in distributed algorithms specially when no

deterministic solution exist. Two distributed approaches to solve

graph colouring problem are presented. First approach is based

on the randomization, which is used for breaking symmetry,

while another approach deals with optimization of graph

colouring. Former is having logarithm time complexity, whereas

later one uses much less colours. Both the approaches are

explained with the help of examples.

The input of the algorithm is a Graph G=(V,E) whose maximum

degree is denoted by . To each vertex, we associate a palette of

+1 possible colours. Each vertex has same colour palette.

Fig 1 shows a graph, where V={1,2,3,4,5,6,7,8} and E={(1,2),

(1,3), (1,4), (1,8) (2,3), (2,4), (2,5), (3,4), (3,6), (3,7), (4,5),

(4,6), (4,7), (4,8), (5,8), (5,6), (6,7), (7,8)}.

 The maximum degree of graph is 7. According to algorithm

number of available colours i.e. Palette size is 8.

.

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.3, December 2011

15

Fig. 1 Initial Graph

5.1 Randomized Algorithm
The computation proceeds in rounds. In every round every

vertex does the following:

 Each uncolored vertex, in parallel, first picks up a

tentative color at random from its palette.

 Tentative colors of the vertex are checked against the

colors of neighboring vertices for possible color

collision. If a no collision occurs, the color becomes

final and the algorithm stops for that vertex.

 Otherwise, the vertex’s palette is updated in the

obvious way- the colors successfully used by the

neighbors are removed- and a new attempt is

performed in the next round.

Fig 2: After round 1

Fig 3: After round 2

Fig 4: After round 3

5.2 Optimized Vertex Coloring
Algorithm executes the following steps, until all vertices are

colored.

 Each uncolored vertex chooses a tentative color

in a specific order from its palette.

 Tentative color of the vertex is checked against

the colors of neighboring vertices for possible

color collision. If a collision occurs, the tentative

color is rejected by the vertex.

 Vertices that have chosen valid color are marked

and their colors are removed from palettes.

Fig 5: After round 1

Fig 6: After round 2

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.3, December 2011

16

Fig 7: After round 3

Fig 8: After round 4

6. RESULT AND COMPLEXITY

MEASURES
Number of colors used in random version of algorithm is 6 and

communication rounds are 3, whereas in optimized version

number of colors used are 4 and communication rounds are 4.

We have performed the experimental analysis of the algorithms.

The test graphs are generated randomly by choosing the number

of nodes and for particular maximum degree of graph. The

algorithm is tested for the graphs of degree 10, 20, 30,….., 100.

In different graphs number of nodes is varying from 200 to

7000.

In Fig 9 we have compared number of colors used by random

and fixed (optimized) color version, while Fig 10 compares the

number of communication rounds in both algorithms. It is

concluded that number of colors in optimized version is much

less than the randomized version, whereas for communication

point of view random version is much better.

Random Number Color Algorithm is based on the selection of

random color independently by each node. It gives O()

coloring, with O(log* n) time complexity. The algorithm is

independent of the number of nodes. Graphs having same

maximum degree and different n, algorithm produces almost

similar results. Optimized Algorithm is based on the selection of

next possible unselected color. The algorithm is independent of

number of the nodes. It uses less than or equal to colors, with

O(/ log) time complexity. It gives the optimized vertex

coloring, for example for any graph with =100, it uses only 25

colors.

FixedColor Vs RandomColor

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90 100

Maximum Degrees of Graphs

N
u

m
b

e
r

o
f

C
o

lo
rs

 u
s
e
d

 b
y
 a

lg
o

ri
th

m

Fixed Color

Random Color

Fig 9 Comparison of Fixed and Random Color Algorithm on

Color Basis

FixedColor vs Random Color

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70 80 90 100

Maximum Degrees of Graphs

N
u

m
b

e
r

o
f

R
o

u
n

d
s

 R
e

q
u

ir
e

d

FixedColor

RandomColor

Fig 10 Comparison of FixedColor and RandomColor

Algorithm on Round Basis

7. CONCLUSION
In the past decade, our ability to solve large, important

combinatorial optimization problems has improved dramatically.

They belong to the class of NP hard problems for which

probably efficient algorithm does not exist. To solve these large

problems parallelization in the quest for solution is required, but

using the distributed approach we can easily solve these

problems with a good bound. Using distributed graph coloring

concept we have shown that how the concept of distributed

algorithm can help in solving such NP complete problems.

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.3, December 2011

17

8. REFERENCES
[1] Brelaz, D. "New Methods to Color the Vertices of a Graph."

Comm. ACM 22, 251-256, 1979.

[2] Blum A. “New approximation algorithms for graph

coloring”. Journal of the ACM, 31(3):470–516,1994.

[3] Björklund A., Husfeldt T., and Koivisto M, "Set

Partitioning via Inclusion-Exclusion", presented at SIAM

J. Comput., 2009, pp.546-563.

[4] Dhawan and S.K. Prasad, "Taming the exponential state

space of the maximum lifetime sensor cover problem", in

Proc. HiPC, 2009, pp.170-178

[5] Applegate, D.; Bixby, R.; Chvatal, V.; and Cook, W.

"Finding Cuts in the TSP (a Preliminary Report)."

Technical Report 95-05, DIMACS. Piscataway NJ: Rutgers

University, 1995

[6] Johnson, D. S. (1979), "Worst case behavior of graph

coloring algorithms", Proc. 5th Southeastern Conf.

Combinatorics, Graph Theory and Computation, Winnipeg:

Utilitas Mathematica, pp. 513–527

[7] Kuhn, F., Moscibroda, T., Wattenhofer, R.: “What cannot be

computed locally!” In: Proc. of the 23rd ACM Symp. on

Principles of Distributed Computing (PODC), pp.300-309

[8] Lawler E.L., “A note on the complexity of the chromatic

number problem”, Information Processing Lett., 5 (1976),

pp. 66-67.

[9] Michael R. Garey and David S. Johnson, “Computer and

Intractability: A Guide to the theory of NP- Completeness”,

W.H. Freeman & Co., New York, NY, USA, 1979

[10] Maffray, Frédéric (2003), "On the coloration of perfect

graphs", in Reed, Bruce A.; Sales, Cláudia L., Recent

Advances in Algorithms and Combinatorics, CMS Books

in Mathematics,11, Springer-Verlag, pp. 65–84

[11] Welsh, D. J. A.; Powell, M. B. (1967), "An upper bound for

the chromatic number of a graph and its application to

timetabling problems", The Computer Journal 10 (1): 85–

86,

