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ABSTRACT 

Combinatorial optimization is a way of finding an optimum 

solution from a finite set of objects. For combinatorial 

optimization problems, the number of possible solutions grows 

exponentially with the number of objects. These problems 

belong to the class of NP hard problems for which probably 

efficient algorithm does not exist. Using the distributed 

approach with parallelization these problems can be solved with 

a good bound. We show that how the concept of distributed 

algorithm can help in solving graph colouring problem i.e. one 

of the NP complete problem.   
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1. INTRODUCTION 
 In our day to day life, we often encounter problems that require 

an optimal arrangement of objects. Examples are the list of 

items to be purchased within limited budget, efficient utilization 

of available resources that could not be used simultaneously 

among a group of processors, a salesman has to visit his 

customers in shortest time or number of jobs has to be processed 

by a machine. In each case, costs and duration have to be 

minimized under certain constraints. In these problems, the 

number of possible solutions grows exponentially as the number 

of objects increases. Such types of problems are known as 

combinatorial optimization problems and finding solutions for 

this class of instances is expensive in most cases. 

  Combinatorial optimization is basically searching for 

the best solution from the set of discrete items and in many such 

problems exhaustive search is not feasible. Therefore, in 

principle any sort of search algorithms or metaheuristic can be 

used to solve them. However, generic search algorithms are not 

guaranteed to find optimal solutions, nor are they guaranteed to 

run quickly i.e. in polynomial time. These problems belong to 

the category of NP complete[9]. Some famous combinatorial 

optimization problems related to computer science are traveling 

salesman problem, knapsack problem, minimum spanning tree 

etc. 

  Finding efficient solutions for such hard problems is a 

challenging task. In next section we are going to discuss some 

approaches which can help in solving these problems. 

 

 

2. SOLUTIONS FOR COMBINATORIAL 

OPTIMIZATION PROBLEM 
 Solving combinatorial optimization problems is considered a 

difficult task. At present, all known algorithms require time i.e. 

superpolynomial in the input size. To cope with such NP 

complete problems, generally one of the following approaches is 

used: 

 Approximation Algorithm: Solve the problem 

approximately instead of exactly.  It finds a solution 

that is close to optimal and also runs in polynomial 

time.  

 Randomized Algorithm:  They are based on the use 

of some random factor. Due to randomization such 

algorithms show good average runtime behavior for a 

given specific distribution of the problem instances. 

They give good time bound, but no guarantee of 

success in every case. 

 Exact Algorithm: By using techniques cutting plane, 

branch & bound or branch & cut[5], It guarantee to 

find an optimal solution for an optimization problem. 

While traversing the search tree, we can avoid 

exponential time complexity, by cutting subtrees that 

cannot contain an optimal solution specially in Branch 

& Bound. 

 Heuristic Algorithm: Such algorithm is based on 

some heuristic that works reasonably well on many 

cases, but for which there is no proof that it is both 

always fast and always produces a good result. 

Depending on whether the heuristic is construction 

heuristic or improve heuristic, it utilizes problem 

instance specific structure (like neighborhood 

structures) to construct or to improve. Simple heuristic 

are based on local search and problem specific, 

whereas metaheuristic are unspecific and solve 

different problems depending on the embedded 

heuristic. Some of the metaheuristics are simulated 

annealing, tabu search, Ant Colony Optimization 

(ACO), genetic and evolutionary algorithms. 

 

3. DISTRIBUTED ALGORITHM 
Distributed algorithms can be defined as concurrent algorithms, 

each running simultaneously on independent processor with 

limited amount of information. 

In many combinatorial optimization graph problems, 

the subproblems associated with each node are completely 

independent, so parallel execution of solution in search space 

can improve the time bound for large instances of problem. Such 
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NP complete problems can easily be solved with the help of 

distributed computing and parallelism. Both approaches break 

the problem into individuals and fetch the result in acceptable 

time domain. But while solving NP-Complete Graph Problems 

using distributed algorithm one has to face some constraints: 

 A single node in a distributed environment may have 

limited knowledge about the overall graph structure. 

 There are real theoretical limitations to how well local 

information can be used to solve these problems [7]. 

 For these problems the solution space is exponential, 

so in even dense graphs, there may be an extremely 

large number of local solutions and no clear way to 

choose between them [4]. 

 

But for the large instances of combinatorial optimization graph 

problems these limitations do not affect, because on the one 

hand, the number of solutions is large, so even with perfect 

knowledge of the entire graph, a single node might not be able 

to solve the problem quickly.  Collecting all information on a 

single node is itself non-trivial. In distributed algorithm, we 

perform the parallel execution of same version of distributed 

algorithm on different clusters, which reduces the overall 

communication cost. Different clusters perform the local 

computation and find local optimal solutions, further they 

communicate with neighboring clusters and share their own 

local solution with them. In every round number of clusters is 

reduced and local optimal solutions are merged. In this way one 

can proceed towards the global optimal solution. 

 This approach of distributed computing can be used to solve NP 

complete problems as well can improve the bound also. Even in 

some cases the complexity can reduce the exponential 

complexity to the logarithm complexity. This is illustrated 

taking a problem from graph theory viz graph coloring. 

 

4. GRAPH COLORING 
Coloring of a graph G= (V,E) means  an assignment of colors 

from a set C to the set of vertices, edges and faces of plane 

graph or any combination of above sets simultaneously. 

Formally, a vertex coloring is a mapping c : V(G) →C. 

Normally the elements of C are  assumed to be positive integers 

instead of colors. A proper vertex coloring is a coloring such 

that adjacent vertices are assigned different colors. Similarly, an 

edge coloring is an assignment of colors to the edges of a graph 

such that no two edges incident to a common vertex have same 

colors. A graph G is k-colorable if there exists a proper coloring 

c of G such that |{c(v) : v V(G)}| = k. The chromatic number 

of a graph, denoted by (G), is the minimum integer k such that 

G is k-colorable. In other words, it is the least number of colors 

needed to properly color the graph. The problem of graph 

coloring is known to be NP complete. There exist many 

approaches for this graph coloring and some of them are: 

1. Greedy Algorithm : In this approach, we arrange the 

vertices in a specific order v1,v2…,vn and then assigns 

the smallest available color to vi that is not used by vi’s  

neighbors among v1,…,vi-1. In case of out of color state, 

we can add fresh color. There exists an ordering that 

leads to a greedy coloring with the optimal number of χ 

(G) colors.  If every subgraph of a graph G contains a 

vertex of degree at most ∆, then the greedy coloring for 

this ordering will use at most ∆+ 1 colors[11, 6, 10]. 

2. Heuristic Algorithm: Many Graph heuristics are based 

on greedy coloring and they are mainly based on 

specific static or dynamic strategy of ordering the 

vertices. If the vertices are ordered according to their 

degrees, the resulting coloring uses at most maxi 

min{d(vi)+1,i} colors[11]. While another heuristic is 

based on dynamic ordering which chooses next the 

vertex adjacent to the largest number of different 

colors[1]. 

3. Approximation Algorithm, the algorithm first outputs a 

number C ≤ i (G) + 2 colors. Then, for any given lists 

L with each vertex having at least c colors, the 

algorithm gives an L-coloring. Blum [2] gave a 

combinatorial algorithm for coloring 3-colorable graphs 

using O (n3/8) colors. 

4. Exact Algorithm:  Brute force search is exact algorithm 

that is based on kn assignments of k colors to n vertices 

and checks whether it is proper k coloring or not. Using 

dynamic programming and a bound on the number of 

maximal independent sets, k-colorability can be 

decided in O(2.445n)[8], while other k-colorability 

algorithms uses inclusion –exclusion principle [3]. 

 

5. DISTRIBUTED APPROACH FOR 

GRAPH COLORING 
In distributed algorithm, graph colouring is closely related to the 

problem of symmetry breaking.  

In a distributed network, view of the system from various 

processors may be symmetric because all processors may be a 

priori alike, and in most of cases they may execute the same 

local protocol and start the computation from the same initial 

state. In such a situation, this symmetry breaking becomes a 

difficult task. For such symmetric graph, a deterministic 

distributed algorithm can’t find a proper vertex colouring. To 

break this symmetry, we need some method. Randomization 

offers a powerful tool for symmetry breaking, in addition it 

leads to faster solutions. The technique of randomization is used 

frequently in distributed algorithms specially when no 

deterministic solution exist. Two distributed approaches to solve 

graph colouring problem are presented. First approach is based 

on the randomization, which is used for breaking symmetry, 

while another approach deals with optimization of graph 

colouring. Former is having logarithm time complexity, whereas 

later one uses much less colours. Both the approaches are 

explained with the help of examples. 

The input of the algorithm is a Graph G=(V,E) whose maximum 

degree is denoted by . To each vertex, we associate a palette of 

+1  possible colours. Each vertex has same colour palette.  

Fig 1 shows a graph, where V={1,2,3,4,5,6,7,8} and E={(1,2), 

(1,3), (1,4), (1,8) (2,3), (2,4), (2,5), (3,4), (3,6), (3,7), (4,5), 

(4,6), (4,7), (4,8), (5,8), (5,6), (6,7), (7,8)}. 

 The maximum degree of graph is 7. According to algorithm 

number of available colours i.e. Palette size is 8.  

. 
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Fig. 1 Initial Graph 

5.1 Randomized Algorithm 
The computation proceeds in rounds. In every round every 

vertex does the following: 

 Each uncolored vertex, in parallel, first picks up a 

tentative color at random from its palette.  

 Tentative colors of the vertex are checked against the 

colors of neighboring vertices for possible color 

collision. If a no collision occurs, the color becomes 

final and the algorithm stops for that vertex.  

 Otherwise, the vertex’s palette is updated in the 

obvious way- the colors successfully used by the 

neighbors are removed- and a new attempt is 

performed in the next round. 

 

 

Fig 2: After round 1 

 

Fig 3: After round 2 

 

Fig 4: After round 3 

5.2 Optimized Vertex Coloring 
Algorithm executes the following steps, until all vertices are 

colored. 

 Each uncolored vertex chooses a tentative color 

in a specific order from its palette. 

 Tentative color of the vertex is checked against 

the colors of neighboring vertices for possible 

color collision. If a collision occurs, the tentative 

color is rejected by the vertex. 

 Vertices that have chosen valid color are marked 

and their colors are removed from palettes. 

 

Fig 5: After round 1 

 

 

 
Fig 6: After round 2 
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Fig 7: After round 3 

 
Fig 8: After round 4 

 

6. RESULT AND COMPLEXITY 

MEASURES 
Number of colors used in random version of algorithm is 6 and 

communication rounds are 3, whereas in optimized version 

number of colors used are 4 and communication rounds are 4.  

We have performed the experimental analysis of the algorithms.  

The test graphs are generated randomly by choosing the number 

of nodes and for particular maximum degree  of graph. The 

algorithm is tested for the graphs of degree 10, 20, 30,….., 100. 

In different graphs number of nodes  is varying from 200 to 

7000. 

In Fig 9 we have compared number of colors used by random 

and fixed (optimized) color version, while Fig 10 compares the 

number of communication rounds in both algorithms. It is 

concluded that number of colors in optimized version is much 

less than the randomized version, whereas for communication 

point of view random version is much better. 

Random Number Color Algorithm is based on the selection of 

random color independently by each node. It gives O() 

coloring, with O(log* n) time complexity. The algorithm is 

independent of the number of nodes. Graphs having same 

maximum degree and different n, algorithm produces almost 

similar results. Optimized Algorithm is based on the selection of 

next possible unselected color. The algorithm is independent of 

number of the nodes. It uses less than or equal to  colors, with   

O(/ log) time complexity. It gives the optimized vertex 

coloring, for example for any graph with  =100, it uses only 25 

colors. 

 

FixedColor Vs RandomColor
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Fig 9 Comparison of Fixed and Random Color Algorithm on 

Color Basis 

FixedColor vs Random Color
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Fig 10 Comparison of  FixedColor and RandomColor 

Algorithm on Round Basis 

7. CONCLUSION 
In the past decade, our ability to solve large, important 

combinatorial optimization problems has improved dramatically. 

They belong to the class of NP hard problems for which 

probably efficient algorithm does not exist. To solve these large 

problems parallelization in the quest for solution is required, but 

using the distributed approach we can easily solve these 

problems with a good bound. Using distributed graph coloring 

concept we have shown that how the concept of distributed 

algorithm can help in solving such NP complete problems. 
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