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ABSTRACT 
The steady magnetohydrodynamic free convection in an 

asymmetrically heated vertical slot in the presence of a uniform 

transverse magnetic field has been studied. An exact solution of 

the governing equation has been obtained. The numerical results 

for the velocity field and the temperature distribution are 

presented graphically for various values of the Hartmann number  

and Grashof number. It is found that the magnitude of the velocity 

field decreases with increase in Hartmann number. It is also 

observed that the temperature decreases with increase in either 

Hartmann number or Grashof number. 

 

Keywords: Magnetohydrodynamics, free convection, 

Hartmann number, Grashof number and asymmetric.  

 

1. INTRODUCTION 
Many analyses of laminar fully developed free convection flow in 

a vertical parallel-plate channel with prescribed temperatures at 

the boundary walls are available in the literature. The study of 

free convective magnetohydrodynamic flow through vertical 

channels have received considerable attention because of its wide 

range of applications in the design of MHD generators, cross-field 

accelerators, shock tubes, pumps, flow meters, cooling of 

electronic devices and solar energy collectors etc.. In many cases 

the flow in these devices will be accompanied by heat either that 

dissipated internally through viscous or Joule heating or that 

produced by electric currents in the walls. Recently, Aung and 

Worku [1], Cheng et al. [2] and Hamadah and Wirtz [3] have 

studied the mixed convection in a vertical channel with symmetric 

and asymmetric heating of the walls. These authors pointed out 

that the buoyancy force can cause flow reversal for both upward 

flow and downward flow. Poots [4] made an exhaustive analysis 

of the electrically conducting fluid flow between two heated 

plates including the Joule heating, viscous dissipation and internal 

heat sources in the energy equation. Alireza and Sahai [5] studied 

the effect of temperatures-dependent transport properties on the 

developing magnetohydrodynamic flow and heat transfer in a 

parallel plate channel whose walls are held at constant and equal 

temperatures. The study of Aung and Worku [6] on mixed 

convection flow through the vertical channel with asymmetric 

heating of the wall is a great interest of subject based on similarity 

solutions. Bühler[7] has been discussed free convection flow in a 

vertical gap. Weidman [8] studied the convective regime flow in a 

vertical slot and continuum of solutions from capped to open 

ends. 

      The aim of the present paper is to study the laminar fully 

developed free convective flow in a vertical slot with asymmetric 

heating of the walls in the presence of a uniform transverse 

magnetic field. We discussed the velocity field and temperature 

distribution for magnetic field intensity. It is found that the 

velocity decreases while the temperature increases with increase 

in Hartmann number M . It is also found that both the velocity 

and the temperature decrease with increase in wall temperature 

parameter 0(0) . It is found that the critical wall temperature 

 0 crit.
  at the cold wall  = 1/ 2   decreases with increase in 

either Hartman number M  or Grashof number Gr . 

 

2.  FORMULATION OF THE PROBLEM 

AND ITS SOLUTIONS 
 

We consider a two-dimensional free convective hydromagnetic 

fully developed flow of a viscous incompressible electrically 

conducting fluid confined to a vertical channel. The distance 

between the walls is d . A uniform magnetic field of strength 0B  

is imposed perpendicular to the walls of the vertical channel. 

Choose a Cartesian coordinate system with x -axis vertically 

upwards along the direction of flow and y -axis perpendicular to 

it. The origin of the axes is such that the channel walls are at 

positions / 2y d   and / 2y d  [see Figure 1]. The velocity 

components are ( , )u v  relative to the Cartesian frame of 

reference. We do not model the pressure drop across the end caps 

and only consider the fully-developed flow far from the end caps.  

 

   
  

 Figure 1: Geometry of the problem   

 

     The Boussinesq approximation is assumed to hold and for the 

evaluation of the gravitational body force, the density is assumed 

to be dependent on the temperature according to the equation of 

state  

 0 0= [1 ( )],T T                                  (1) 

where 0, , ,T T   and 0  are respectively, the fluid temperature, 

the fluid density, thermal expansion coefficient, the temperature 

and the density in the reference state. 

 

     Flow away from the top and bottom ends of the cavity is 

rectilinear so that = ( ), = 0u u y v . In this case the equation of 
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continuity is satisfied identically. The y -component momentum 

equation can be written as 
1

= 0
p

y




 which implies that 

= ( )p p x . Let us assume that the induced magnetic field 

produced by the motion of the conducting fluid is negligible so 

that 0= (0, ,0)B B


. This assumption is valid for a small magnetic 

Reynolds number. The solenoidal equation . = 0B


 gives 

0= constant =yB B  everywhere in the flow. On using Boussinesq 

approximation (1), the momentum and energy equations are 

simplified to the following form  

              
2

0 0 0 02
( ) = 0,z

p d u
g g T T B j

x dy
   


     


        (2) 

              
2

2
= ,

T d T
u k

x dy




                                                             (3) 

 where   is the coefficient of viscosity and k  the thermal 

diffusivity. 

         Since the induced magnetic field is neglected and flow is 

steady, the Maxwell's equation =
B

E
t


 






 yields = 0E


 

which gives = 0xE

y




 and = 0zE

y




. This implies that xE   

constant and zE   constant everywhere in the flow. We choose 

these constants equal to zero as there is no external electric field. 

Then, the Ohm's law  

 = ( )J E q B  
  

                                     (4) 

 gives  

 0= 0 and = .x zj j B u                           (5) 

 

      The temperature field in the cavity may be written as  

 0 2 1= ( ) ,T T N x T T                            (6) 

 where N  is the temperature gradient. 

 

     On the use of (5) and (6), equation (2) becomes  

22
0

0 2
0

= ( ) ,
Bd p d u

g T T u
d x dy


 





                          (7) 

 where  

2

0

1
.

2

p
p g x g N x



                                          (8) 

     The velocity and temperature boundary conditions are  

0 at ,
2

d
u y    

1 at
2

d
T T N x y     

2 at
2

d
T T N x y                                             (9) 

     Introducing the non-dimensional variables  

 1, ,
y u d

u
d




                                    (10) 

 equations (3) and (7) become  

 
2

21
12

,
d u

M u Gr
d

 


                         (11) 

 
2

12
,

d
Ec u

d




                                            (12) 

 where  
1

20 0/M B d     is the Hartmann number, 

3
2 1

2

( )g T T d
Gr






  the Grashof number and 

2 1( )

N d
Ec

k T T





 

the Eckert number and 
3

2

d p

x




 
  

  

 the non-dimensional 

pressure gradient. 

 

       The velocity and the temperature boundary conditions (9) 

become  

1

1
0 at ,

2
u     

0 0

1 1
at and =1 at ,

2 2
               (13) 

 where the parameter 0  measures the continuous cross-channel 

variation of the reference temperature 0T . Assuming no external 

pressure gradient ( 0  ), the solutions of (11) and (12) subject to 

the boundary conditions (13) are   

      2 1
1 02 2

2 11 2

cosh cosh 1
( )

2
cosh cosh

2 2

Gr m m
u

m mm m

 
 

 
  

    
    

 

 

2 1

2 1

1 sinh sinh
,

2
sinh sinh

2 2

m m

m m

 
 
 

   
  
 

                                     (14) 

     
2 2
1 2 2 1

02 2
2 11 2

1 cosh cosh 1
( ) =

2
cosh cosh

2 2

m m m m

m mm m

 
  

 
  

   
    

 

  (15) 

2 2
1 2 2 1

2 1

1 sinh sinh
,

2
sinh sinh

2 2

m m m m

m m

 
 
 

   
  
 

 

 where  

      1 2, ,m i m i        

      

 

 

1
1 2

2 4 2

2

1
1 2

2 4 2

1
= 4

2
for > 4

1
= 4

2

M M EcGr

M Ec Gr

M M EcGr






  
   
  
  




  
   
    

  (16) 

      

1
2 2

2

1
2 2

1
= 4

2
for < 4 .

1
= 4

2

EcGr M

M EcGr

EcGr M






  
  




    

                  (17) 

 

      Equation (14) shows that the velocity distribution is a 

combination of symmetric and antisymmetric solutions. It is 
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observed from the above equations (14) and (15) that both the 

velocity field and the temperature distribution depend on the 

Grashof number Gr . The solutions of the equations (11) and (12) 

given by (14) and (15) are valid for either 2 > 4M EcGr  or 

2 < 4M EcGr . 

 

3  RESULTS AND DISCUSSION 
In order to study the effects of magnetic field, Grashof number 

and temperature on the velocity field 1u  and temperature 

distribution  , we have presented the non-dimensional velocity 

1u  and the temperature   against   for various values of 

Hartmann number M , Grashof number Gr  and the temperature 

parameter 0  in Figures 2 -7 for =1Ec . It is observed from 

Fig.2, that the velocity 1u  decreases with increase in Hartmann 

number M . This is excepted, as the magnetic field exerts a 

retarding influence on the flow field. Figure 3 shows that the 

velocity field at any point increases with increase in Grashof 

number Gr . It is seen from Figure 4 that the velocity decreases 

with increase in 0 . It observed from Figures 5 and 6 that at any 

point the temperature increases with increase in 2M  while 

decreases with increase in 0 . Figure 7 shows that temperature 

decreases with increase in Gr . Figures 2-4 show that there are no 

flow reversal near the cold wall, as it is seen in the case of without 

magnetic field [see Weideman [8]], this due to the fact that we 

have taken the values of 0  less than the critical values of 0  at 

the cold wall (critical values of 0  are given in Table 2). The 

incipient flow reversal will occur only for those values of 0  

which are greater than the critical values of 0  at the cold plate. 

 

 
 Figure 2: Variation of 1u  for 0 = 0.2  and = 10Gr   

  

 

 

 Figure 3: Variation of 1u  for 
2

= 5M  and  0 = 0.2   

 

 Figure 4: Variation of 1u  for  the case 4
> and < 4M Gr Ec .  

  

  
  Figure 5: Variation of   for 0 = 0.2  and = 10Gr .  
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Figure 6: Variation of   for the case  
4

> and < 4M Gr Ec .  

 

  

 Figure 7: Variation of   for 
2

= 5M  and 0 = 0.2 .  

 

The non-dimensional shear stress at the cold wall   1/ 2    

and hot wall  1/ 2   are given by 1

1 1

2

x

du

d







 
  
 

 and 

1

2 1

2

x

du

d







 
  
 

, where  

1 1 2
1 2 02 21

1 2
2

1
tanh tanh

2 2 2

du Gr m m
m m

d m m






    
      

    
 

1 2
1 2

1
coth coth ,

2 2 2

m m
m m

 
  

 
                             (18) 

 and  

1 2 1
2 1 02 21

1 2
2

1
tanh tanh

2 2 2

du Gr m m
m m

d m m






    
      

    
 

2 1
2 1

1
coth coth .

2 2 2

m m
m m

 
  

 
                             (19) 

      Numerical values of shear stresses at the cold wall 

 1/ 2    and hot wall  1/ 2   are presented in Table 1 for 

various values of 0  and 2M  taking =1Ec  and =10Gr . Table 

1 shows that the shear stress at the cold wall  1/ 2    

decreases with increase in either 2M  or 0 . On the other hand, 

the magnitude of the shear stress at the hot wall  1/ 2   

decreases with increase in either 2M  or 0 . 

 

              Table 1: Shear stress at  the walls due to the  flow  for = 1, = 10Ec Gr   

  

 
1

x  
2

x  

2
0\M   0.0 0.2 0.4 0.0 0.2 0.4 

5 

10 

15 

20 

1.59383 

1.22406 

1.07334 

0.95792 

0.90656 

0.66260 

0.59067 

0.52967 

0.21929 

0.10115 

0.10799 

0.10143 

1.84251 

1.58321 

1.34003 

1.18330 

1.15525 

1.02176 

0.85736 

0.75506 

0.46798 

0.46031 

0.37468 

0.32681 

  

  

       As 0  decreases from the maximum value 0

1
=

2
 , we arrive 

to the value  0 0 crit.
=   for which there is an incipient flow 

reversal near the cold wall. The condition for incipient flow 

reversal can be obtained by letting 1

1

2

0
du

d





 
 

 
 which in term 

gives the equation for the critical value of  0  as  

             

2 1
2 1

0 crit.
2 1

2 1

coth coth
1 2 2 .
2

2 tanh tanh
2 2

m m
m m

m m
m m




 
 

 
 

              (20) 

 

         The values of  0 crit.
  are entered in the Table 2 for 

different values of  2M  and Gr . It is observed that the critical 
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 0 crit.
  decreases with increase in either 2M  or Gr . 

 

                    Table 2: Critical values of 0  at the cold wall  1/ 2    for 0= 1, = 0.2Ec    

  

2 \M Gr  2 4 6 8 10 

3 

6 

9 

12 

15 

0.30101 

0.27662 

0.25630 

0.23914 

0.22447 

0.29879 

0.27471 

0.25463 

0.23767 

0.22317 

0.29659 

0.27281 

0.25298 

0.23621 

0.22187 

0.29441 

0.27093 

0.25134 

0.23476 

0.22059 

0.29225 

0.26907 

0.24971 

0.23333 

0.21931 

  

 

      The rate of volume flux is given by  

           

2 1

02 2
2 11 2

tanh tanh
1 2 2= ,
2

m m
Gr

Q
m mm m



  
   

    
     
   

           (21) 

where 1m  and 2m  are given by equation (16). The above 

equation comes only from the symmetric portion of the velocity 

distribution. The numerical values of the rate of flow Q  are given 

in the Table 3 for different values of the Hartmann number M , 

the Grashof number Gr  and the temperature parameter 0 . Table 

3 shows that the rate of volume flux decreases with increase in 

either 2M  or 0 . On the other hand, the rate of volume flux 

increases with increase in Grashof number Gr  as expected since 

the velocity increases with increase in Gr . 

 

                      Table 3 : The  rate of volume  flux  
1

10 Q


 for = 1Ec   

  

 Gr  and 0 = 0.2  0  and =10Gr  

2M  2 6 10 0.0 0.2 0.4 

3 

6 

9 

12 

0.1895 

0.1547 

0.1308 

0.1134 

0.5518 

0.4530 

0.3845 

0.3342 

0.8933 

0.7372 

0.6281 

0.5475 

1.4889 

1.2287 

1.0468 

0.9125 

0.8933 

0.7372 

0.6281 

0.5475 

0.2978 

0.2457 

0.2094 

0.1825 

  

 

      Equation (27) shows that if 0

1
=

2
  then the rate of volume 

flux = 0Q , which means that the cavity is closed. On the other 

hand, the maximum rate of volume flux occurs at 0 = 0  and is 

given by  

2 1

2 2
2 11 2

tanh tanh
2 2 .

2( )

m m
Gr

Q
m mm m

 
 

  
   

 

                   (22) 

 

       We shall now discuss the case when the applied magnetic 

field is weak, i.e. for 12 M . In this case the velocity field, 

temperature distribution and the flow rate become  

2 2
1 0

1 1 1 1 1
( ) =

2 2 4 6 4
u Gr    

     
         

     
 

           
2

2 4
0

1
5 24 16

384 2

M
  

 
    

 
 

           
2

3 57 40 48 ,
5760

M
  


   



                                          (23) 

 2 4
0 0

1 1 1
( ) = 5 24 16

2 384 2
EcGr      

   
        
   

           

        3 51
7 40 48

5760
      

        
2

6 4 2
0

1
64 240 300 61

46080 2

M
   

 
     

 
       

        
2

7 5 3192 336 196 31 ,
967680

M
   


    



                    (24) 

 
2

0

1 1
= .

2 12 120

M
Q Gr 

  
      

                                                (25) 

 

      Taking the limit  0M  ,  the equations (23) - (25) become  

      2
1 0

1 1
( ) = 3 ,

6 4 2

Gr
u    

    
      

    
                              (26) 

       2 4
0 0

1 1 1
( ) = 5 24 16

2 384 2
EcGr      

   
        
   

 

 3 51
7 40 48 ,

5760
  


   


                                   (27) 

       0

1
= .

12 2

Gr
Q 

 
 

 
                                                             (28) 

 

      Equations (26) - (28) identical with the equations (21) - (23) 

of Weidman [8]. Further, if = 0Ec , the temperature distribution 

given by equation (27),  becomes  
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0

1
( ) = .

2
   

 
  
 

                                                 (29) 

 

      Again, the equation (29) identical with the equation (22) of 

Weidman [8]. The equations (23) - (25) give the conduction 

regime solution as reported by Bühler [7]. 

 

4  CONCLUSION 
The fully developed free convective steady MHD channel flow of 

an incompressible, electrically conducting, viscous fluid has been 

analyzed in the presence of an external transverse magnetic field. 

The flow has been assumed to be parallel and each of the two 

boundary walls of the vertical slot have been considered as 

asymmetric heating. Numerical results are presented to account 

the effect of the magnetic field on the leading flow behavior. It is 

found that the fluid velocity field and temperature distribution are 

strongly affected by the magnetic field intensity. A limiting 

consideration of the flow has been verified. 
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