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ABSTRACT 
In this paper Cyclic Redundancy Check codes are implemented  

to detect the effectiveness of various types of errors that might 

occur during the transmission of datastream carrying message 

signal through the internet. MATLAB simulation software is 

used to propose a standard polynomial to justify such errors. The 

justification has been done in such a way that bit position, 

number of bits of dataword and codeword of the generator 

polynomial are considered random. For getting accuracy, 

simulation at every step of error detection was done many a 

times in numerous ways. This helped to procure satisfactory 

result with the proposed polynomial.  
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1. INTRODUCTION 
When a message signal is sent from one network to another 

various distortion or change within the shape of that signal 

occurs. This is due to attenuation, presence of noise, high 

latency all these factors. Broadcast links and transmission links 

are the two main types of data transmission technology[1]. 

Many error-detecting and error-correcting codes are known, but 

both ends of the connection must agree on which one is being 

used. In addition, the receiver must have some way of telling the 

sender which messages have been correctly received and which 

has not. There are various error detection methods. Method of 

coding can be mainly classified as block coding and convolution 

coding. There are also other ways like evaluation of minimum 

hamming distance, internet checksum, cyclic coding. Among 

these, cyclic codes provide better performance in detecting 

different types of errors. These can easily be implemented in 

hardware and software . Also they are especially fast in action. 

Cyclic codes are special linear block codes with one extra 

property. In a cyclic code, if a codeword is cyclically shifted 

(rotated), the result is another codeword. Cyclic Redundancy 

Check (CRCs) codes are so called because the check (data 

verification) code is a redundancy (it adds zero information) and 

the algorithm is based on cyclic codes[2]. The central concept in 

detecting or correcting errors is redundancy. To be able to detect 

or correct errors, extra bits are needed to be sent with the data. 

These redundant bits are added by the sender and removed by 

the receiver. Their presence allows the receiver to detect or 

correct the corrupted bits. 

2. BASIC  TYPES OF ERRORS AND A 

PROPOSED POLYNOMIAL 
Whenever bits flow from one point to another, they are subject 

to unpredictable changes because of interference. This 

interference can change the shape of the signal. In a single-bit 

error, a 0 is changed to a 1 or a 1 to a 0. In a burst error, multiple 

bits are changed. A burst error is more likely to occur than a 

single-bit error. The duration of noise is normally longer than 

the duration of 1 bit, which means that when noise affects data, 

it affects a set of bits. The number of bits affected depends on 

the data rate and duration of noise. Now a better way to 

understand cyclic codes and how they can be analyzed is to 

represent them as polynomials. A pattern of 0s and 1s can be 

represented as a polynomial with coefficients of 0 and 1. The 

power of each term shows the position of the bit; the coefficient 

shows the value of the bit. Here ( x4 + x3 + x + 1) this 4th order 

polynomial is chosen as a standard one ,whose binary pattern is 

represented as 11011.  

3. ALGORITHM  FOR CRC ERROR 

DETECTION 
CRC_ENCODER (data_word, divisor) 

k  length of the data_word 

n  length of the code_word 

c  n – k 

Augment c 0’s to the right hand side of the data_word to create 

the augmented_data_word 

remainder = MOD_2_DIV (augmented_data_word, divisor) 

Append the remainder to the original data_word to create the 

code_word 

CRC_DECODER (code_word, divisor) 

remainder = MOD_2_DIV (code_word, divisor) 

If the remainder  contains all 0’s then 

  the data_word is accepted 

                 Else 

                                the data_word is discarded 

MOD_2_DIV (augmented_data_word, divisor) 
Call the uppermost c bits of the message the remainder 

Beginning with the most significant bit in the original message 

and for each bit position that follows, look at the c bit 

remainder: 

  If the most significant bit of the remainder is a one 

then 
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   Set the appropriate bit in the quotient to a          

  one, and 

   XOR the remainder with the divisor and  

  store the result back into the remainder 

  Else  

   Set the appropriate bit in the quotient to a  

  zero, and 

   XOR the remainder with zero (no effect) 

  Left-shift the remainder, shifting in the next bit of the  

 message.  

Return the remainder 

4. DESIGN OF CRC ENCODER-

DECODER 
A code is called cyclic if [xnx0x1...xn-1] is a codeword whenever 

[x0x1...xn-1xn] is also a codeword. CRCs  are also classified as 

block coding. In block coding, the original message is divided 

into blocks, each of k bits, called datawords,  r redundant bits 

are added to each block to make the length n = k + r. The 

resulting n-bit blocks are called codewords. Now the extra r bits 

are  chosen or calculated. CRC is used in networks as LANs or 

WANs. Figure (1) depicts the principle of operation of CRC 

Encoder and Decoder.  

 

                             Fig 1: CRC encoder and decoder 

In the encoder, the dataword has k bits (8 here); the codeword 

has n bits (12 here). The size of the dataword is augmented by 

adding n - k (4 here) 0’s to the right-hand side of the word. The 

n-bit result is fed into the generator. The generator uses a divisor 

of size n - k + 1 (5 here), predefined and agreed upon. The 

generator divides the augmented dataword by the divisor 

(modulo-2 division). The quotient of the division is discarded; 

the remainder (r3r2 r1r0) is appended to the dataword to create the 

codeword. The decoder receives the possibly corrupted 

codeword. A copy of all n bits is fed to the checker which is a 

replica of the generator. The remainder produced by the checker 

is a syndrome of n - k (4 here) bits, which is fed to the decision 

logic analyzer. The analyzer has a simple function. If the 

syndrome bits are all as, the 8 leftmost bits of the codeword are 

accepted as the dataword (interpreted as no error); otherwise, the 

8 bits are discarded (error). 

5. CYCLIC CODE ANALYSIS 
A cyclic code can be analyzed to find its capabilities by using 

polynomials. The following is defined where f(x) is a 

polynomial with binary coefficients. 

Dataword: d(x)           Codeword: c(x)        Generator: g(x) 

Syndrome: s(x)           Error: e(x) 

If s(x) is not zero, then one or more bits is corrupted. However, 

if s(x) is zero, either no bit is corrupted or the decoder failed to 

detect any errors. In a cyclic code, 

I. If s(x) ≠ 0, one or more bits is corrupted. 

2. If s(x) = 0, either 

a. No bit is corrupted. or 

  b. Some bits are corrupted, but the decoder failed to detect 

them. 

In this analysis the intention is to find the criteria that must be 

imposed on the generator, g(x) to detect the type of error . Now 

the relationship among the sent codeword, error, received 

codeword, and the generator is also found as shown below: 

Here,  received codeword =c(x) + e(x) 

In other words, the received codeword is the sum of the sent 

codeword and the error. The receiver divides the received 

codeword by g(x) to get the syndrome. This can be written as- 

 

 
 

The first term at the right-hand side of the equality does not have 

a remainder (according to the definition of codeword). So the 

syndrome is actually the remainder of the second term on the 

right-hand side. If this term does not have a remainder 

(syndrome =0), either e(x) is 0 or e(x) is divisible by g(x). The 

first case is simple if there is no error; the second case is very 

important. Those errors that are divisible by g(x) are not caught. 

In a cyclic code, those e(x) errors that are divisible by g(x) are 

not caught.  

6. SIMULATION & RESULTS 
One main program CRC.m and one sub-program DIV.m is used 

to check the effectiveness of the proposed polynomial and 

finally to implement Cyclic Redundancy Check as an error 

detection method using MATLAB.  

6.1  Single bit error 
A single-bit error is e(x) =xi, where i is the position of the bit. If 

a single-bit error is caught, then xi is not divisible by g(x). If 

g(x) has at least two terms (which is normally the case) and the 

coefficient of x0 is not zero (the rightmost bit is 1), then e(x) 

cannot be divided by g(x).The proposed polynomial is( x4 + x3 

+ x + 1).  So it can detect all single-bit errors. No xi can be 

divisible by x + 1. In other words, xi/(x + 1) always has a 

remainder. So the syndrome is nonzero. Any single-bit error can 

be caught. 

6.2  Two isolated single bit errors 

For the proposed polynomial shown with the function g(x) two 

isolated single bit error is expressed as e(x) =: xj + xi. The 

values of i and j define the positions of the errors, and the 

difference    (j-i) defines the distance between the two errors. 

Hence e(x)/g(x) always has a remainder for any i, j<n. So every 

two isolated single bit error is caught.  

6.3  Odd number of errors 

A generator with a factor of x+1 can catch all odd number of 

errors. So the proposed polynomial g(x) = x4 + x3 + x + 1 can 

detect all odd number of errors. 
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6.4  Burst errors 

Here burst error function is defined as e(x) = xj + ... + xi  or  

e(x)= xi(xj-i + ... + 1). In this type remainder of (xj-i + ... + 1)/(xr 

+ ... + 1) must not be zero; where r is the degree of polynomial. 

For the detection of burst error three cases are taken into 

consideration: 

Case 1:  L ≤ r, all burst errors with length smaller than or equal 

to the number of check bits will be detected. 

 Case 2:  L = r+1, s(x) = 0 and the probability of undetected 

error of length r+1 is (1/2)r-1 .  

 Case 3: L > r+1, s(x) = 0 and the probability of undetected error 

of length greater than r+1 is (1/2)r ; L implies error length. 

7. GRAPHICAL REPRESENTATION 
To understand the effectiveness of the proposed polynomial  for 

the detection of  the above mentioned three types of  errors; a 

simulation based comparison was done with the proposed 

polynomial  to that of  other  standard polynomials like (x3 + x 

+1), (x4 + 1), (x7 + x6 +1), (x6 +1). It was found that the 

proposed polynomial was able to detect with 100% accuracy the 

single bit error, two isolated single bit error and burst error upto 

11 bit. The simulation results are graphically shown below. 

 

Fig 2: Graphical representation of the effectiveness of 

different polynomials for Single-bit Error 

 

Fig 3: Graphical representation of the effectiveness of 

different polynomials for Two Isolated Single-bit Errors 

 

Fig 4: Graphical representation of the effectiveness of 

different polynomials for Burst Error (up to 11 bit) 

8. COMPARISON OF DIFFERENT 

POLYNOMIALS 

 

 

Table: Data Analysis for Different Polynomials 

From the above comparison table it is very conspicuous that the 

accuracy of error detection capability of the proposed 

polynomial (x4 + x3 + x + 1) is the maximum than the other 

standard polynomials. After 11 bit of burst error this polynomial 

got no effectiveness.  

9. OVERALL PERFORMANCE  

ANALYSIS 
Most of the cases the generator polynomial (x3 + x +1 )can 

detect two isolated single bit errors but sometimes it cannot 

detect two isolated errors. This is not a good polynomial for 
detecting burst errors. In case of the polynomial (x4 + 1) cannot 

detect two errors which are four positions apart. The location of 

these two errors can be anywhere, but if their distance is 4, this 

generator is unable to detect them. x7 + x6 +1 is good for 
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detecting single-bit errors and two isolated single-bit errors. 

Another (x6 +1) can detect which has a length less than or equal 

to 6 bits. 3 out of 100 burst errors with a length of 7 will slip by. 

16 out of 1000 burst errors with a length of 8 or more will slip 

by. The overall performance of all of these polynomials with the 

proposed generator polynomial is shown graphically in figure 5. 

 

Fig 5: Graphical representation of the overall performance 

of different polynomials for all error types. 

10. CONCLUSION 
The mechanism of CRC system is a little difficult to implement 

as the division process is to be done using Modulo-2 arithmetic. 

Selection of the generator polynomial is  the most sophisticated 

part of this work. A polynomial has been proposed considering 

some standard features.The polynomial results quite 

successfully up to 11 bit error. The proposed polynomial can 

detect single bit error, two isolated single bit error and burst 

error with cent percent efficiency. 
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