
International Journal of Computer Applications (0975 – 8887)

Volume 35– No.2, December 2011

1

An approach for a Standard Polynomial for Cyclic
Redundancy Check

Hasan Md. Mohtarim
MBA

Institute of Business
Administration

University of Dhaka

Ayesha Zaman
Lecturer

Dept. of Applied
Physics,Electronics &

Communication Engineering
University of Dhaka

Nowrin Hoque
MBA

University of Dhaka

ABSTRACT
In this paper Cyclic Redundancy Check codes are implemented

to detect the effectiveness of various types of errors that might

occur during the transmission of datastream carrying message

signal through the internet. MATLAB simulation software is

used to propose a standard polynomial to justify such errors. The

justification has been done in such a way that bit position,

number of bits of dataword and codeword of the generator

polynomial are considered random. For getting accuracy,

simulation at every step of error detection was done many a

times in numerous ways. This helped to procure satisfactory

result with the proposed polynomial.

General Terms
Transmission Technology, Data Communication, Data Security,

Latency.

Keywords
Generic Polynomial, Cyclic Redundancy Check, Dataword,

Codeword, Syndrome.

1. INTRODUCTION
When a message signal is sent from one network to another

various distortion or change within the shape of that signal

occurs. This is due to attenuation, presence of noise, high

latency all these factors. Broadcast links and transmission links

are the two main types of data transmission technology[1].

Many error-detecting and error-correcting codes are known, but

both ends of the connection must agree on which one is being

used. In addition, the receiver must have some way of telling the

sender which messages have been correctly received and which

has not. There are various error detection methods. Method of

coding can be mainly classified as block coding and convolution

coding. There are also other ways like evaluation of minimum

hamming distance, internet checksum, cyclic coding. Among

these, cyclic codes provide better performance in detecting

different types of errors. These can easily be implemented in

hardware and software . Also they are especially fast in action.

Cyclic codes are special linear block codes with one extra

property. In a cyclic code, if a codeword is cyclically shifted

(rotated), the result is another codeword. Cyclic Redundancy

Check (CRCs) codes are so called because the check (data

verification) code is a redundancy (it adds zero information) and

the algorithm is based on cyclic codes[2]. The central concept in

detecting or correcting errors is redundancy. To be able to detect

or correct errors, extra bits are needed to be sent with the data.

These redundant bits are added by the sender and removed by

the receiver. Their presence allows the receiver to detect or

correct the corrupted bits.

2. BASIC TYPES OF ERRORS AND A

PROPOSED POLYNOMIAL
Whenever bits flow from one point to another, they are subject

to unpredictable changes because of interference. This

interference can change the shape of the signal. In a single-bit

error, a 0 is changed to a 1 or a 1 to a 0. In a burst error, multiple

bits are changed. A burst error is more likely to occur than a

single-bit error. The duration of noise is normally longer than

the duration of 1 bit, which means that when noise affects data,

it affects a set of bits. The number of bits affected depends on

the data rate and duration of noise. Now a better way to

understand cyclic codes and how they can be analyzed is to

represent them as polynomials. A pattern of 0s and 1s can be

represented as a polynomial with coefficients of 0 and 1. The

power of each term shows the position of the bit; the coefficient

shows the value of the bit. Here (x4 + x3 + x + 1) this 4th order

polynomial is chosen as a standard one ,whose binary pattern is

represented as 11011.

3. ALGORITHM FOR CRC ERROR

DETECTION
CRC_ENCODER (data_word, divisor)

k  length of the data_word

n  length of the code_word

c  n – k

Augment c 0’s to the right hand side of the data_word to create

the augmented_data_word

remainder = MOD_2_DIV (augmented_data_word, divisor)

Append the remainder to the original data_word to create the

code_word

CRC_DECODER (code_word, divisor)

remainder = MOD_2_DIV (code_word, divisor)

If the remainder contains all 0’s then

 the data_word is accepted

 Else

 the data_word is discarded

MOD_2_DIV (augmented_data_word, divisor)
Call the uppermost c bits of the message the remainder

Beginning with the most significant bit in the original message

and for each bit position that follows, look at the c bit

remainder:

 If the most significant bit of the remainder is a one

then

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.2, December 2011

2

 Set the appropriate bit in the quotient to a

 one, and

 XOR the remainder with the divisor and

 store the result back into the remainder

 Else

 Set the appropriate bit in the quotient to a

 zero, and

 XOR the remainder with zero (no effect)

 Left-shift the remainder, shifting in the next bit of the

 message.

Return the remainder

4. DESIGN OF CRC ENCODER-

DECODER
A code is called cyclic if [xnx0x1...xn-1] is a codeword whenever

[x0x1...xn-1xn] is also a codeword. CRCs are also classified as

block coding. In block coding, the original message is divided

into blocks, each of k bits, called datawords, r redundant bits

are added to each block to make the length n = k + r. The

resulting n-bit blocks are called codewords. Now the extra r bits

are chosen or calculated. CRC is used in networks as LANs or

WANs. Figure (1) depicts the principle of operation of CRC

Encoder and Decoder.

 Fig 1: CRC encoder and decoder

In the encoder, the dataword has k bits (8 here); the codeword

has n bits (12 here). The size of the dataword is augmented by

adding n - k (4 here) 0’s to the right-hand side of the word. The

n-bit result is fed into the generator. The generator uses a divisor

of size n - k + 1 (5 here), predefined and agreed upon. The

generator divides the augmented dataword by the divisor

(modulo-2 division). The quotient of the division is discarded;

the remainder (r3r2 r1r0) is appended to the dataword to create the

codeword. The decoder receives the possibly corrupted

codeword. A copy of all n bits is fed to the checker which is a

replica of the generator. The remainder produced by the checker

is a syndrome of n - k (4 here) bits, which is fed to the decision

logic analyzer. The analyzer has a simple function. If the

syndrome bits are all as, the 8 leftmost bits of the codeword are

accepted as the dataword (interpreted as no error); otherwise, the

8 bits are discarded (error).

5. CYCLIC CODE ANALYSIS
A cyclic code can be analyzed to find its capabilities by using

polynomials. The following is defined where f(x) is a

polynomial with binary coefficients.

Dataword: d(x) Codeword: c(x) Generator: g(x)

Syndrome: s(x) Error: e(x)

If s(x) is not zero, then one or more bits is corrupted. However,

if s(x) is zero, either no bit is corrupted or the decoder failed to

detect any errors. In a cyclic code,

I. If s(x) ≠ 0, one or more bits is corrupted.

2. If s(x) = 0, either

a. No bit is corrupted. or

 b. Some bits are corrupted, but the decoder failed to detect

them.

In this analysis the intention is to find the criteria that must be

imposed on the generator, g(x) to detect the type of error . Now

the relationship among the sent codeword, error, received

codeword, and the generator is also found as shown below:

Here, received codeword =c(x) + e(x)

In other words, the received codeword is the sum of the sent

codeword and the error. The receiver divides the received

codeword by g(x) to get the syndrome. This can be written as-

The first term at the right-hand side of the equality does not have

a remainder (according to the definition of codeword). So the

syndrome is actually the remainder of the second term on the

right-hand side. If this term does not have a remainder

(syndrome =0), either e(x) is 0 or e(x) is divisible by g(x). The

first case is simple if there is no error; the second case is very

important. Those errors that are divisible by g(x) are not caught.

In a cyclic code, those e(x) errors that are divisible by g(x) are

not caught.

6. SIMULATION & RESULTS
One main program CRC.m and one sub-program DIV.m is used

to check the effectiveness of the proposed polynomial and

finally to implement Cyclic Redundancy Check as an error

detection method using MATLAB.

6.1 Single bit error
A single-bit error is e(x) =xi, where i is the position of the bit. If

a single-bit error is caught, then xi is not divisible by g(x). If

g(x) has at least two terms (which is normally the case) and the

coefficient of x0 is not zero (the rightmost bit is 1), then e(x)

cannot be divided by g(x).The proposed polynomial is(x4 + x3

+ x + 1). So it can detect all single-bit errors. No xi can be

divisible by x + 1. In other words, xi/(x + 1) always has a

remainder. So the syndrome is nonzero. Any single-bit error can

be caught.

6.2 Two isolated single bit errors

For the proposed polynomial shown with the function g(x) two

isolated single bit error is expressed as e(x) =: xj + xi. The

values of i and j define the positions of the errors, and the

difference (j-i) defines the distance between the two errors.

Hence e(x)/g(x) always has a remainder for any i, j<n. So every

two isolated single bit error is caught.

6.3 Odd number of errors

A generator with a factor of x+1 can catch all odd number of

errors. So the proposed polynomial g(x) = x4 + x3 + x + 1 can

detect all odd number of errors.

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.2, December 2011

3

6.4 Burst errors

Here burst error function is defined as e(x) = xj + ... + xi or

e(x)= xi(xj-i + ... + 1). In this type remainder of (xj-i + ... + 1)/(xr

+ ... + 1) must not be zero; where r is the degree of polynomial.

For the detection of burst error three cases are taken into

consideration:

Case 1: L ≤ r, all burst errors with length smaller than or equal

to the number of check bits will be detected.

 Case 2: L = r+1, s(x) = 0 and the probability of undetected

error of length r+1 is (1/2)r-1 .

 Case 3: L > r+1, s(x) = 0 and the probability of undetected error

of length greater than r+1 is (1/2)r ; L implies error length.

7. GRAPHICAL REPRESENTATION
To understand the effectiveness of the proposed polynomial for

the detection of the above mentioned three types of errors; a

simulation based comparison was done with the proposed

polynomial to that of other standard polynomials like (x3 + x

+1), (x4 + 1), (x7 + x6 +1), (x6 +1). It was found that the

proposed polynomial was able to detect with 100% accuracy the

single bit error, two isolated single bit error and burst error upto

11 bit. The simulation results are graphically shown below.

Fig 2: Graphical representation of the effectiveness of

different polynomials for Single-bit Error

Fig 3: Graphical representation of the effectiveness of

different polynomials for Two Isolated Single-bit Errors

Fig 4: Graphical representation of the effectiveness of

different polynomials for Burst Error (up to 11 bit)

8. COMPARISON OF DIFFERENT

POLYNOMIALS

Table: Data Analysis for Different Polynomials

From the above comparison table it is very conspicuous that the

accuracy of error detection capability of the proposed

polynomial (x4 + x3 + x + 1) is the maximum than the other

standard polynomials. After 11 bit of burst error this polynomial

got no effectiveness.

9. OVERALL PERFORMANCE

ANALYSIS
Most of the cases the generator polynomial (x3 + x +1)can

detect two isolated single bit errors but sometimes it cannot

detect two isolated errors. This is not a good polynomial for
detecting burst errors. In case of the polynomial (x4 + 1) cannot

detect two errors which are four positions apart. The location of

these two errors can be anywhere, but if their distance is 4, this

generator is unable to detect them. x7 + x6 +1 is good for

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.2, December 2011

4

detecting single-bit errors and two isolated single-bit errors.

Another (x6 +1) can detect which has a length less than or equal

to 6 bits. 3 out of 100 burst errors with a length of 7 will slip by.

16 out of 1000 burst errors with a length of 8 or more will slip

by. The overall performance of all of these polynomials with the

proposed generator polynomial is shown graphically in figure 5.

Fig 5: Graphical representation of the overall performance

of different polynomials for all error types.

10. CONCLUSION
The mechanism of CRC system is a little difficult to implement

as the division process is to be done using Modulo-2 arithmetic.

Selection of the generator polynomial is the most sophisticated

part of this work. A polynomial has been proposed considering

some standard features.The polynomial results quite

successfully up to 11 bit error. The proposed polynomial can

detect single bit error, two isolated single bit error and burst

error with cent percent efficiency.

11. ACKNOWLEDGEMENTS
The authors thank to all the experts who have worked earlier in

this field of computer networking and security system .

12. REFERANCES
[1] Andrew S. Tanenbaum, Computer Networks; 4th edition.

[2] Behrouz A. Forouzan, Data Communication and

Networking; 4th edition.

[3] MathWorks, available at www.mathworks.com

[4] Mathtools.net, available at www.mathtools.net

http://www.mathworks.com/
http://www.mathtools.net/

