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ABSTRACT 

This paper considers the application of finite element method 

for the analysis of thermoelastic characteristics of a thin 

circular disk which is further subjected to a thermal load and 

an inertia force arising due to rotation of the disk. On the basis 

of the two dimensional thermoelastic theories, the 

axisymmetric problem is formulated in terms of second order 

ordinary differential equation which is solved by FEM. 

Further, it is assumed that the disk is vibrating. The effect of 

Kibel number on different components of stress, strain and 

displacement has also been discussed. The numerical results 

reveal that these quantities are significantly influenced by 

temperature distribution and angular speed of the disk. 
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1. INTRODUCTION 
Rotating disks are important components in various 

mechanical applications such as circular saws, disk brakes, 

hard disks, optical discs and gas turbines. These are often 

subject to loading or excitation in the transverse (out-of-plane) 

direction. Analysis of rotating disks has been studied by a 

number of researchers. Afsar and Go [1] analysed 

thermoelastic characteristics of a thin circular FGM rotating 

disk having a concentric hole and subjected to a thermal load. 

Yongdong et al. [2] and Zhong and Yu [3] established a 

mechanical model for the functionally gradient material 

(FGM) beam with rectangular cross section and also discussed 

the effects of the non-homogeneity parameter on the 

distribution of the normal stress and on the position of the 

natural axis for several different loading cases. Lamb and 

Southwell [4], have reported a study on the free vibration of 

flexible disk and obtained the solution for complete disk of 

uniform thickness, accounting for the effects of centrifugal 

and bending stresses. Eversman and Dodson [5] studied the 

free vibration of a centrally clamped spinning disk. Shahbab 

[6] analyzed the transverse vibrations of a spinning flexible 

variable thickness disc. He employed both Ritz method and 

finite element technique and also carried out experimental 

investigation. An analytical solution in order to study 

deformation of a rotating disk composed of a linear, elastic, 

isotropic and homogeneous material by application of 

mechanical and thermal load have been studied thoroughly by 

Timoshenko and Goodier [7]. 

Benson [8] discussed the steady deflection of a transversely 

loaded, extremely flexible spinning disk using a hybrid of 

membrane and late theories when bending stiffness of the disk 

is small. Chen and Bogy [9] obtained the derivatives of the 

eigen values of a flexible spinning disk with a stationary load 

with respect to certain parameters in the system. Further, in 

another study Mote [10] has also been developed finite 

element method (FEM) procedures for plates with significant 

membrane stresses. Nigh and Olson [11] presented a FEM 

formulation for analysis of disks either in a body-fixed or a 

space-fixed co-ordinate system. 

Finite Element Method (FEM) is one of the most successful 

and dominant numerical method in the last century. It is 

extensively used in modeling and simulation of engineering 

and science due to its versatility for complex geometries of 

solids and structures and its flexibility for many non-linear 

problems. The FEM is regarded as relatively accurate and 

versatile numerical tool for solving differential equations that 

model physical phenomenon [12-13]. The FEM is closely 

related to the classical variational concept of the Rayleigh 

Ritz method [14, 15].The finite element method is well 

addressed and needs less computation in addition to high 

accuracy in literature. In the present paper finite element 

technique is used to evaluate the different components of 

stress, strain and displacement for two different cases of 

temperature distributions.  

2. MATHEMATICAL MODEL 
A circular disk with a concentric circular hole as shown in 

Figure 1 has been studied. The disk is assumed to be rotating 

with angular frequency . The origin of the polar co-ordinate 

system r  is assumed to be located at the center of the 

disk and hole. 

 

 

 

 

 

 

 

 

 

Figure. 1: Schematic diagram of a rotating disk with 

concentric circular hole 
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3. BOUNDARY CONDITIONS 
The disk considered in the present study is subjected to a 

temperature gradient field. The inner surface of the disk is 

assumed to be fixed to a shaft so that isothermal conditions 

can be prevailed on it. The outer surface of the disk is free 

from any mechanical load and maintained at uniform 

temperature gradient. Thus, the boundary conditions of the 

problem are given by: 

(i) 0,0,  Tuar r   

(ii) 0,0, T
dr

dT
br r                            (1) 

where ru  and r  denote displacement and stress along the 

radial direction. 

 

4. FORMULATION OF THE PROBLEM 
When a material is subjected to a temperature gradient field, it 

experiences a stress arising from an incompatible eigen-strain. 

Eigenstrains (Dhaliwal and Singh [16]) are non-elastic strains 

or free expansion strains that develop in a body due to various 

reasons, such as phase transformation, precipitation, 

temperature change, etc. in the present study, the eigenstrain 

is associated with the thermal expansion of the disk. Since the 

material of the disk is isotropic, the thermal eigenstrain at a 

point is the same in all directions which can be given by  

 

)()( rTr 

                                                           
(2)  

 

Where  )(rT  is the change in temperature at any distance r
. The total strain is the sum of the elastic strain and the eigen 

strain. Thus, the components of the total strain are given by  

 
* 

rr
e , 

*

e                                            (3) 

 

Where r  and 

 are the radial and circumferential 

component of the total strain and 
r

e and 


e  are the radial and 

circumferential components of the elastic strain. The elastic 

strains are related to stresses by Hooke’s law. Thus 

  ;
1   rr
E  

   
 r

E

1
                                          (4)  

 

Where  r and   are the radial and circumferential stress 

components, respectively. The two dimensional equilibrium 

equation in polar coordinates the inertia force due to rotation 

of the disk is given by 

0)(
1 22 
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
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rrr
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rrr
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





        

                                 (5) 

where   is angular rotation of the disk and   is being the 

angular frequency of the vibration modes in the disk. Because 

of symmetry, 



r

vanishes and 


 ,
r

are independent of

.  Thus, the second Eq. (5) is identically satisfied and the first 

equilibrium equation is reduced to 

0)()( 22  rr
dr

d
r                     (6)  

Now, substitute
r

rF 
 
into Eqs. (6) and (4) gives 

222 )( r
dr

dF
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Strain-displacement relations for the axisymmetric problem 

are 

r

u

dr

du
rr

r



 ,                                                        (8) 

From Eq. (8), it is seen that two strain components are related 

by )(

 r

dr

d
r
 . By making use of Eq. (7) into this 

relation, we get 

0

)3)(1(
11 22

22

2


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dr

dT
E

rF
rdr

dF
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Fd





       

(9)              (9) where 





 is called Kibel number. 

where 





 is called Kibel number. 

The heat conduction equation for a dynamic coupled 

thermoelastic solid is given by [Dhaliwal and Singh [18]]  




 





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
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)(1 0
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t

T
CT

rrr
K r

e



       

(10) 

where K  is the thermal conductivity, 
e

C -Specific heat at 

constant strain and 0T
 
being uniform reference temperature. 

The equations (9) and (10) constitute the mathematical model 

consisting of second order differential equations which 

provides us the function F  and the components of stress. 

 

5.  TEMPERATURE FIELD 
We shall consider following three cases of thermal variations 

in the disk: 

Case I: Disk having uniform temperature distribution. 

In this case, we have  

0)( TrT  , 0
dr

dT
                (11) 

Case II: Disk at steady state temperature distribution. 

In this case  0




t  
, so that the heat conduction equation 

(10) takes the form 
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Upon solving this equation with the help of thermal 

conditions (4), we obtain  

)/log()( 0 arbTrT  ,
r

bT

dr

dT 0         (12) 

These temperature distributions given by Eqs.(11) and (12) 

holds in the domain bra  . 

6. FINITE ELEMENT FORMULATION 

Substituting the values of T and 
dr

dT
 from equations (11) 

and (12) in Eq. (9) and following a standard finite element 

discretization approach, the domain of the disk is divided 

radially into N number of elements of equal size and above 

Eq. (9) can be transformed to the following system of 

simultaneous algebraic equations: 
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The symbol e  used in the above equation indicates the 

element number which is used to discretize the domain of the 

disk. 
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7. RESULTS AND DISCUSSIONS 
The variation of radial stress, radial strain, circumferential 

stress, circumferential strain, and displacement for different 

values of r  with Kibel for first cases has been shown in 

Figures 2-6. Figure 2 illustrates the variation of radial stress 

with change in Kibel number for case I at different values of 

r .  Radial stress is increasing in magnitude with the increase 

in Kibel number for all the three values of r . The value of 

radial stress is maximum in magnitude for minimum r value 

and minimum for maximum r  value and the intermediate 

value of radial stress lie for the r = 0.5 mm. 

The variation of circumferential stress with Kibel number at 

different values of r  has been shown in Figure 3. An increase 

in circumferential stress is observed with the increase in 

values of r . It is observed from the figure that 

circumferential stress is maximum for the maximum value of 

r ie r  = 0.7mm. The circumferential stress is varied lineraly 

with increase in Kibel number for all values of r .  The 

circumferential stress starts decreasing as the kibel number 

crosses to 1 for r = 0.3mm and r  = 0.5 mm but for r  = 0.7 

mm, it starts increasing. The effect of kibel number on radial 

strain for different values of r  is ilustraited in Figure 4. It has 

been observed from the figure that Radial strain increases 

with increase in kebel number for r  = 0.3 mm and r  = 0.5 

mm but the behaviour is opposite for r  = 0.7 mm. The 

behaviour of circumferential strain is opposite of the radial 

strain as illustrated in Figure 5. The circumferential strain 

decreases with increase in Kibel number for r  = 0.3mm and 

r  = 0.5 mm and increases for r  = 0.7 mm. The variation of 

displacement with Kibel number is reported in Figure 6. The 

displacement is varied linearly with Kibel number for all the 

cases. The value of displacement is maximum for r  = 0.7 

mm and minimum for r  = 0.3 mm.  

 

The variation of radial stress, radial strain, circumferential 

stress, circumferential strain, and displacement for different 

values of r  with Kibel for IInd case has been shown in 

Figures 7-11. From Figure 7, is has been observed that radial  

stress is maximum in magnitude for r  = 0.3 mm as for the 

first case but the values of radial stress are not closer for all 

values of Kibel number. The radial stress is increased at a 

regular interval with different r  values. It is observed from 

the Figure 8 that the values of circumferential stress is 

negative for r  = 0.3 mm and r  = 0.5 and positive for r  = 

0.7 mm. For all three values of r , circumferential stress is 

decreasing linearly with increase in Kibel number. In Figure 

9, variation of radial strain with Kibel number for three values 

of r has been reported. The radial strain is positive for all 

values of r  in case I but for the case II, it is positive for r  = 

0.3 mm and r  = 0.5 mm. Variation of circumferentail strain 

with Kibel number at different values of r  has been shown in 

Figure 10. The circumferentail strain follow the order as it has 

minimum value for r  = 0.5 mm and the maximum for r  = 

0.7 mm. In Figure 11, variation of displacement has been 

shown with increase in Kibel number. The values of 

displacement are quite closer for r  = 0.3 mm and r  = 0.5 

mm and varied linearly with Kibel number. For r  = 0.7 mm, 

displacement attained a maximum value. 
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8. CONCLUSIONS 
An analytical solution for thermoelasticity equilibrium 

equations of a thin axisymmetric rotating disk made of an 

isotropic material is presented. The variation of different 

components of stress, strain and displacement in radial 

direction is measured by applying thermal load with the help 

of finite element method. It is found that the thermoelastic 

field in disk is significantly influenced by the temperature 

distribution profile. Thus, the thermoelastic field in a disk can 

be controlled and optimized by controlling these parameters. 

Finally the model is helpful in designing circular cutter or 

grinding disk. 
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Figure 2. Radial Stresses versus Kibel number for Case I at different values of r . 
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Figure 3. Circumferential Stress versus Kibel number for Case I at different values of r . 

 

 

 

 

Figure 4. Radial Strain versus Kibel number for Case I at different values of r . 
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Figure 5. Circumferential Strain versus Kibel number for Case I at different values of r . 
 

 

Figure 6. Displacement versus Kibel number for case I at different values of r . 
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Figure 7. Radial Stresses versus Kibel number for Case II at different values of r . 

 

 

 

Figure 8. Circumferential Stress versus Kibel number for Case II at different values of r . 
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Figure 9. Radial Strain versus Kibel number for Case II at different values of r . 

 

 

Figure 10. Circumferential Strain versus Kibel number for Case II at different values of r . 

 

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.5 1 1.5 2

R
ad

ia
l s

tr
ai

n

Kibel number

r=0.3mm
r=0.5mm
r=0.7mm

0

0.005

0.01

0.015

0.02

0.025

0 0.5 1 1.5 2

C
ir

cu
m

fe
re

n
ti

al
 s

tr
ai

n

Kibel number

r=0.3mm
r=0.5mm
r=0.7mm



International Journal of Computer Applications (0975 – 8887) 

Volume 35– No.13, December 2011 

9 

 

Figure 11. Displacement versus Kibel number for Case II at different values of r . 
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