
International Journal of Computer Applications (0975 – 8887)

Volume 35– No.11, December 2011

17

Genetic Algorithm solution for Cryptanalysis of

Knapsack Cipher with Knapsack Sequence of Size 16

Dr. R. Geetha Ramani

Professor and the Head
Department of Computer Science and Engineering

Rajalakshmi Engineering College
Chennai, India

Lakshmi Balasubramanian
Department of Computer Science and Engineering

Pondicherry Engineering College
Puducherry, India

ABSTRACT

With growth of networked systems and applications such as e-

commerce, the demand for internet security is increasing.

Information can be secured using cryptography, anti-virus,

malwares, spywares, firewall etc. In cryptology, cryptanalysis

is a discipline where the ciphers are attacked and broke thus

enabling the developers to strengthen the cipher. Nowadays

cryptanalysis of ciphers is gaining popularity among the

research world. One among the ciphers is the knapsack cipher.

There are many methods to attack this cipher. One among

them is the Genetic Algorithm (GA) approach. Using GA,

researchers have attacked the knapsack cipher with a

knapsack sequence of size 8. This supports the ASCII

representation of the characters. The ASCII representation

supports the regional languages like English, numerals and

symbols. In this paper we propose the attack on knapsack

cipher with knapsack sequence of size 16 using Genetic

Algorithm. The increase in knapsack sequence size increases

the strength of the knapsack cipher. The increase in knapsack

sequence size also supports for Unicode representation.

Unicode representation gives hold for many regional

languages. Since any language information can be transmitted

over the network, this approach supports attack on text of any

language. Also there is no constraint on the length of text to

be attacked. An analysis on the impact of various GA control

parameters viz. initial population size, operators‘ type and

probability, etc are also carried out in this research work.

General Terms

Cryptanalysis, Genetic Algorithm (GA), Knapsack Cipher,

multilingual languages, Cryptography.

Keywords

Cryptanalysis, Genetic Algorithm (GA), Knapsack Cipher.

1. INTRODUCTION
With more and more development in the field of computer

networks and internet, the need for network, computer and

information security is also increasing. Computer and

information security [19] deals with CIA: confidentiality,

integrity, and authentication. There are different ways to

secure information passed over the network. One such a

technique is cryptology. Cryptology is the science and study

of systems for secret communication. It consists of two

complementary fields. They are cryptography and

cryptanalysis. Cryptography is the science of building new

powerful and efficient encryption and decryption methods.

Cryptanalysis is the science and study of method to break

cryptographic techniques i.e. ciphers. It is used to find

loopholes in the design of cipher. It in turns helps in

increasing the potency of cipher. A cipher is a pair of

algorithms, which create the encryption and the reversing

decryption. Some of the ciphers are Monoalphabetic

Substitution cipher, Polyalphabetic Substitution cipher,

Permutation cipher, Transposition cipher, Merkle-Hellman

Knapsack cipher, Chor-Rivest Knapsack cipher and Vernam

cipher. Cipher which is taken in our study, knapsack cipher is

explained below.

Knapsack cipher is a public-key encryption system. It is based

on the sum of subset problem. It belongs to NP hard problem

where it is difficult to find the solution and if the solution is

provided then it can be verified quickly. In the subset

problem, S is a finite set. S belongs to N which is a set of

natural numbers and target is t. The question is whether there

exists S‘ which belongs to S whose elements sum to target t

[3]. The Merkle-Hellman knapsack cipher was the first

implementation of a public-key encryption scheme. The

Merkle-Hellman knapsack cipher attempts to disguise an

easily solved instance of the sum of subset problem, called a

super increasing sum of subset problem, by modular

multiplication and permutation [11]. A super increasing

sequence is a sequence (b1, b2, . . . , bn) of positive integers

which satisfies the following condition bi is greater than sum

of all bj where j=1 to i-1, for each i such that i is between 2

and n, The integer n is a common system parameter. M is the

modulus, selected such that M > b1 + b2 + . . . + bn. W is a

random integer, such that 1≤ W≤ M − 1 and gcd(W,M) = 1. π

is a random permutation of the integers {1, 2, . . . , n}. The

public key of A is (a1, a2, . . . , an), where ai = W bπ(i) mod M,

and the private key of A is (π ,M, W, (b1, b2, . . . , bn)).

Researchers have worked on cryptanalysis using traditional

methods like Tabu Search, Genetic Algorithm etc. This paper

focuses on attack on knapsack cipher using Genetic Algorithm

(GA). Genetic Algorithm [21] is an evolutionary computation

technique, which is a rapidly growing area of Artificial

Intelligence. Genetic Algorithm is inspired by Darwin's theory

[6] about evolution. The survey of attack on knapsack ciphers

using Genetic Algorithm (GA) is presented in the next

section.

2. RELATED WORKS IN ATTACK ON

KNAPSACK CIPHER USING GA
Spillman [14] is the one who first tried to attack Merkle-

Hellman knapsack cipher by Genetic Algorithm. In his

approach, binary encoding and random selection are used. The

evaluation function determines the nearness of the target sum

of the knapsack to the given sum of terms. The function

ranges between zero and one with one indicating the exact

match. The mating process used is simple crossover. The

mutation process consists of three different ways. The

characters are encoded as 8 bit ASCII characters. Initial

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.11, December 2011

18

population of 20 random 15-bit binary strings is used. Overall,

in Spillman‘s work a minimal level of experimentation is

included. 5 ASCII characters are used and all characters are

decrypted. The Spillman‘s algorithm searches on an average

of less than 2% of the space. [14]. In the Spillman's report of

work there is no information about the initial conditions for

the GA. Clark, Dawson, and Bergen [2] worked in attacking

the knapsack cipher. It is an extension of Spillman‘s work. It

contains the modified version of the same fitness function.

This approach also uses 8 bit ASCII characters. The number

of generations required, and the percentage of the key space

searched vary widely between runs. The fitness function does

not accurately describe the suitability of a given solution. A

reimplementation can be done and comparison is also

possible. But they are unnecessary because the fitness

function used is inappropriate and new.

Kolodziejczyk [9] extended the work of Spillman [14].

Certain restrictions were defined on the encoding algorithm.

They are: only the ASCII code will be encrypted, then, the

super increasing sequence will have 8 elements; this number

of elements guarantees that each character has a unique

encoding (There are 256 ASCII codes and 8-element length

will allow encrypting 28 characters), and plaintext should not

more than 100 character length [9]. Binary encoding is

applied and the crossover is simple. The mutation process is

to move between two random points. Overall the paper [9]

uses a completely trivial knapsack. But the algorithm used in

this work, searches about 50% of search space, when

compared with Spillman's results which is about 2% [14].

Large size of population, high crossover probability and a

small mutation probability are the most optimal arrangements

for GA.

Poonam Garg and Aditya Shastri [12] enhanced the

previously published attack and re-implemented it with

variation of initial entry parameters and results are compared

with Spillman [14] results. It included the encoding

restrictions given by kolodziejczyk. The initial population size

has range in between 10 to 100. The fitness function given by

Spillman is applied. One point crossover is used. The

mutation process is to move between two random points. The

effect of crossover rate, initial population and mutation rate

are analyzed. The 8-elements sequence of hard knapsack

problem is used to encode 8 bits ASCII code. Correct results

are obtained on an average after 115 generations and

exploring 50% of the search space.

Raghavan Muthuregunathan, et.al. [13] proposed a hybrid

technique that uses both Genetic Algorithm and Hill Climbing

in attacking the knapsack cipher. A Parallel computation is

done using MPI (Message Passing Interface) and the results

are analyzed. A Synchronous Master Slave approach has been

used. 8 bit binary encoding is applied. Spillman‘s fitness

function is applied for evaluation [14]. A random selection of

individuals is made. Single point crossover is used. Interval

Flip and Neighbouring Effect are types of mutation carried

out. The reason for mixing Hill Climbing and Genetic

Algorithm (GA) is that it is better to mutate the weaker

individuals than breeding them with stronger individuals. The

computational time was approximately 4 times less compared

to Garg‘s work [12] but there is no decrease in number of

generations.

In the previous works all have attempted to attack knapsack

cipher which uses 8 bits ASCII code to encode. In our work,

cryptanalysis of knapsack cipher is done which encodes 16

bits UNICODE. In previous works researchers have given

restriction that plaintext cannot be more than 100 character

length. In our work the plaintext character can be of any

length. There is no restriction in the size of plaintext.

3. GA SOLUTION FOR ATTACK ON

KNAPSACK CIPHER
Cryptanalytic attack on knapsack cipher belongs to the class

of NP-hard problem. Due to the constrained nature of the

problem, the attack reaches to varying levels of performance

optimization. Therefore, this paper is attempting for a optimal

solution that further improves the robustness against

cryptanalytic attack with high effectiveness. So far only 8 bit

ASCII character encoding is used and constraints such as the

plaintext can only be English and some symbols were made.

In this paper knapsack sequence of size 16 is used. It leads to

the next level of representation of characters from ASCII to

Unicode representation. Unicode representation can be used

for any regional languages like Greek, Latin, Hindi, Tamil etc.

Thus the information transferred in the network to be attacked

can be multilingual. Secret conversations in defense,

Government sectors adapt the knapsack cipher with the

knapsack sequence of size 16. Merkle-Hellman knapsack

cipher is used to convert plaintext into ciphertext. Super

increasing sequence is converted into non super increasing

using the values W, M. Non super increasing sequence of

knapsack cipher is more difficult to break and hence it is used

as the public key. The public key is only available for attack.

Ciphertext is calculated from the non super increasing

sequence. If the non super increasing sequence is {21033,

63094, 16375, 11711, 23422, 58557, 16665, 54322, 64252,

39720, 32718, 63106, 63119, 18753, 21135, 42270} then the

ciphertext for the plaintext ―QUICK‖ can be calculated as

shown in Table 1.

Table 1: Ciphertext calculation

PLAIN

TEXT

UNICODE

(in binary)

CIPHER

TEXT

Q 0000000001010001 145096

U 0000000001010101 163849

I 0000000001001001 145109

C 0000000001000011 103125

K 0000000001001011 166244

Similarly plaintext is converted into cipher text which is

attacked using Genetic Algorithm. Hence this paper attempts

to attack the strengthened knapsack cipher using GA. This

paper also presents the analysis on the effect of various

genetic control parameters viz. initial population size,

operator probabilities and selection process. In following

subsections Genetic Algorithm process, Individual

representation, Initial population, Fitness evaluation,

Termination condition, Selection methods, Crossover and

Mutation are explained.

3.1 Basic Genetic Algorithm Process
The whole Genetic Algorithm process will be continued until

all the characters of the plaintext are found. The process is

shown in Fig 1.

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.11, December 2011

19

Fig 1: Genetic Algorithm Process

3.2 Individual Representation
Before the Genetic Algorithm can be put to work a method is

needed to encode potential solutions to that problem in a form

that a computer can process. Individuals are set of solutions

which are initially randomly generated. For this problem, the

approach that is used is to encode solutions as binary strings:

sequences of 1's and 0's, where the 1‘s at each position

represents the inclusion of the corresponding element in the

non super increasing sequence solution. The binary

representation is shown in Table 2.

Table 2: Binary repreaentation of the character

Character Binary Representation

M (English) 0000000001001101

அ (Tamil) 0000101100010101

After representing the individuals, number of individuals to be

generated initially is provided which is given in next

subsection.

3.3 Initial Population
Process is started with a set of individuals which are ciphered

plaintext called population. These individuals are randomly

generated.

Randomly generated individuals with the initial population

size of 3 are:

0100000100000000, 0110001000000000 and

0110001100000000

After the individuals are created they are evaluated using the

function provided which is explained in next subsection.

3.4 Fitness Evaluation
In our work we used the following fitness function [14] to

evaluate the generated individuals. Based on the fitness value

obtained, it can be determined whether the optimal solution is

reached or not.

Fitness = 1 −
𝑇𝑎𝑟𝑔𝑒𝑡 −𝑠𝑢𝑚

𝑇𝑎𝑟𝑔𝑒𝑡

1

2
 if

sum<=target

1 −
𝑆𝑢𝑚 −𝑇𝑎𝑟𝑔𝑒𝑡

𝑀𝑎𝑥 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐 𝑒

1

6
 if sum >

target

where,

MaxDifference = max(Target, FullSum − Target)

Target - the ciphertext.

Sum - the sum of the current chromosome.

FullSum - the sum of all components in the

 knapsack.

If the solution is not obtained the individuals are passed to

next generation through selection methods and the individual

chromosomes may be varied using genetic operators in next

subsection.

3.5 Selection Methods and Genetic

Operators
In the process of evolution, if the termination condition is not

satisfied then the individuals are selected for next generation.

Selection of individuals is done according to their fitness

value obtained. Various selection techniques in GA are best

selection, first selection, random selection, greedy over

Next Generation

Individual

Representation

Fitness

Evaluation
Termination

Criteria

Ideal

 Individual

Yes

No

Selection

Crossover Mutation Reproduction

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.11, December 2011

20

selection, multi selection and tournament selection [20]. In

our experiment tournament selection is used with different

sizes.

The genetic operators used to vary the individual

chromosomes are crossover and mutation. Crossover selects

the parent individuals and creates the offspring. Different

types of crossover explored in our experiment are single point

crossover, two point crossover and multi crossover [20].

Samples of single point crossover are shown in Table 3 and

Table 4.

Table 3: Sample1 of single point crossover

Chromosome

representation

 Plaintext

character

Before

Crossover

0000000001000001 A

0000000001100010 B

After

Crossover

0000000001000010 B

0000000001100010 A

Table 4: Sample 2 of single point crossover:

Chromosome

representation

 Plaintext

character

Before

Crossover

 0000101110000101 அ

0000101110001010 ஊ

After

Crossover

 0000101110000110 ஆ

0000101110001001 உ

After crossover is performed, mutation takes place. This is to

prevent falling all solutions in population into a local

optimum of solved problem. Types of mutation include bit

inversion, order changing etc. Here we have used bit inversion

kind of mutation [20]. Samples of mutation processes are

shown in Table 5 and Table 6.

Table 5: Sample 1 of mutation process:

Chromosome

representation

Plaintext

character

Before

Mutation

0000000001000010 B

After

Mutation

0000000001000011 C

Table 6: Sample 2 of mutation process:

Chromosome

representation

Plaintext

character

Before

Mutation

0000101110000101 அ

After

Mutation

0000101110000110 ஆ

3.6 Termination Condition
If the fitness value is one then the chromosomes represent the

UNICODE representation of the character which has been

converted into cipher text using knapsack cipher, else the

genetic evolution process take place until it obtains the

optimal solution which represents the character.

4. EXPERIMENTAL RESULTS
Several sessions of experiment are conducted with sample test

cases from different regional languages. In this paper the

details of the experimental results are given for the following

plaintext.

“The quick brown fox jumps on lazy dog.”

The results are obtained by varying population size, crossover

type, crossover probability, mutation probability, reproduction

rate, and various sizes in tournament selection. It is analyzed

to find optimal solution to attack knapsack cipher using

Genetic Algorithm. The implementation work is carried out in

ECJ simulator [22]. The results present the time taken for

attacking the plaintext considered (38 characters) and

maximum number of generations (This corresponds to the

greatest number of generations that the character (any

character) taken to find the solution. For example, in one run

‗q‘ may take maximum number of generations while in

another ‘b‘ may take the maximum number of generations.

Here only the number of generations is considered

irrespective of the character.),

4.1 Effect of Population Size
Different sizes of initial population taken for analysis are 10,

50, 100, 500, 1000, 5000, 10000 and 50000. The details are

tabulated in Table 7 and depicted graphically in Fig.2 and Fig.

3. The output shows that if initial population increases the

number of generations to obtain optimal solution for attacking

the plaintext decreases which in turn decrease the time taken

to arrive at the solution. Table 7 shows that initial population

is inversely proportional to maximum number of generations.

The maximum number of generations given in this test case is

20000. For this crossover type used is single point crossover

and tournament selection is applied. The optimal initial

population obtained in this experiment is 5000. It is used in

further analysis.

Table 7: Experimental Results of Effect of Population Size

Initial

Population

Generation Time in min

(m:s:ms)

10 14121 2:22:41

50 2717 0:30:19

100 2449 0:32:46

500 374 0:09:51

1000 292 0:14:23

5000 20 0:07:56

10000 23 0:14:22

50000 4 0:12:44

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.11, December 2011

21

Fig. 2: Effect of Initial Population on time

Fig. 3: Effect of Initial Population on generations

4.2 Effect of Genetic Operator

Probabilities
The various genetic operators taken into consideration are

crossover probability, mutation probability and reproduction

probability. The different sets of values given for these

parameters are from 0.1 to 0.9. As already mentioned initial

population is set to 5000. Tournament selection and one point

crossover is applied. The effect of genetic operator

probabilities is tabulated in Table 8. The details of effect on

time and generation are depicted graphically in Fig. 4 and Fig.

5 respectively. Crossover probability increases number of

generation decreases and time also decreases. But mutation

probability acts in reverse way. If it increases number of

generation increases and time also increases. From this test it

is found that crossover probability 0.9 and mutation

probability 0.1 produces optimal result which is applied in

next experiments

Table 8: Experimental Results of Effect of Genetic

Operators

Initial population =5000, Cross over type=one point,

Selection=tournament

 CP MP RP Generations Time in

min

(m:s:ms)

CASE

1

0.9 0.1 0.0 20 0:07:56

CASE

2

0.8 0.1 0.1 33 0:08:06

CASE

3

0.1 0.8 0.1 48 0:11:11

CASE

4

0.5 0.5 0.0 40 0:12:04

CASE

5

0.1 0.9 0.0 25 0:10:30

where,

CP – Crossover Probability MP – Mutation

Probability RP – Reproduction Probability

Fig. 4 : Effect of GA Operators’ Parameters on time

Fig. 5: Effect of GA Operators’ Parameters on

generations

4.3 Effect of Crossover Type
There are three kinds of crossover types explored. They are

single point, two point and multi point crossover. With initial

population 5000, crossover rate 0.9 and mutation rate 0.1

different crossover types are applied and outputs are obtained.

The details are tabulated in Table 9 and are graphically

depicted in Fig. 6 and Fig. 7. From the result it is found that

one point crossover has high number of generation and

maximum time whereas two point crossover has high number

0:00:00

0:28:48

0:57:36

1:26:24

1:55:12

2:24:00

2:52:48

1
0

5
0

1
0

0
5

0
0

1
0

0
0

5
0

0
0

1
0

0
0

0
5

0
0

0
0

T
im

e
(m

:s
:m

s)

Initial Population

Time

(m:s:ms)

2717

2449

374 292

20 23 4
0

500

1000

1500

2000

2500

3000

N
u

m
b

er
 o

f
G

en
er

a
ti

o
n

s

Initial Population

Generati

ons

0:00:00
0:01:26
0:02:53
0:04:19
0:05:46
0:07:12
0:08:38
0:10:05
0:11:31
0:12:58

C
A

S
E

 1

C
A

S
E

 2

C
A

S
E

 3

C
A

S
E

 4

C
A

S
E

 5

T
im

e
in

 m
in

 (
m

:s
:m

s)

Time in min

(m:s:ms)

20

33

48

40

25

0

10

20

30

40

50

60

N
u

m
b

er
 o

f
G

en
er

a
ti

o
n

s

Generations

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.11, December 2011

22

of generation and less minimum time and multi point has less

number of generations and time is less compared to one point

crossover.

Table 9: Experimental Results of Effect of Crossover Type

Initial population=5000, Crossover probability=0.9, Mutation

probability=0.1, Selection=tournament

Crossover

Type

Generations Time in min

(m:s:ms)

One point 20 0:07:56

Two point 20 0:06:56

Multi point 16 0:07:18

Fig. 6: Effect of Crossover Type on time

Fig. 7: Effect of Crossover Type on generations

4.4 Effect of tournament size
The selection method used is tournament selection. Different

sizes of tournament can be selected. Since the above

experiment shows that one point crossover is not suitable to

obtain optimal solution it is applied for two point crossover

type. Tournament sizes used to analyze the impact are 2, 3, 4,

5 and 6. The details are tabulated in Table 10 and graphically

represented in Fig. 8 and Fig. 9. The output shows that

tournament size 5 is an optimal way to obtain output.

Table 10: Experimental Results of Effect of Tournament

Size

Tournament Size Generations Time in min

(m:s:ms)

2 20 0:06:56

3 25 0:09:00

4 12 0:06:48

5 11 0:05:42

6 68 0:19:09

Fig. 8: Effect of Tournament Size on time

Fig. 9: Effect of Tournament Size on generations

Experiments are conducted with the test case and the effects

of population size, effects of genetic operator probabilities,

effects of crossover types, effects of tournament selection size

are analyzed.

After a complete analysis on impacts of all the above

parameters another test case with more than 100 characters

was chosen and the optimal values for the parameters (found

from the analysis) were set accordingly and runs were taken.

The results are presented below.

The test case taken was:

India is my Country; all Indians are my brothers and sisters. I

love my country and I am proud of its rich and varied

heritage, I shall always strive to be worthy of it. I shall give

my parents, teachers and all elders respect, and treat

everyone with courtesy. To my country and its people, I

pledge my devotion. In their well being and prosperity alone

lies my happiness.

This test case contains 373 characters. Initial population of

5000, tournament selection with tournament size 5, two point

crossover with a crossover probability of 0.9, mutation

0:06:20

0:06:37

0:06:55

0:07:12

0:07:29

0:07:47

0:08:04

One

point

Two

point

Multi

point

T
im

e
in

 m
in

 (
m

:s
:m

s)

Crossover Type

Time in min

(m:s:ms)

20 20

16

0

5

10

15

20

25

One

point

Two

point

Multi

point

N
u

m
b

er
 o

f
G

en
er

a
ti

o
n

s

Crossover Type

Generations

0:00:00

0:02:53

0:05:46

0:08:38

0:11:31

0:14:24

0:17:17

0:20:10

2 3 4 5 6
T

im
e

in
 m

in
 (

m
:s

:m
s)

Tournament Size

Time in

min

(m:s:ms)

20 25
12 11

68

0

20

40

60

80

2 3 4 5 6

N
u

m
b

er
 o

f
G

en
er

a
ti

o
n

s

Tournament Size

Generations

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.11, December 2011

23

probability of 0.1 is chosen as the parameters. The time taken

for finding the plaintext for this test case was 45:88 seconds.

5. CONCLUSION
This paper presents the attack of knapsack cipher of knapsack

sequence of size 16 using Genetic Algorithm. This leads to

the cryptanalysis of plaintext encrypted using knapsack cipher

of knapsack sequence size 16. So the plaintext can be

multilingual and its length needed not be limited to 100. This

helps a lot in cryptographic field to increase the strength of

the knapsack cipher. It in turn provides high security of

information in any regional language. An improvised solution

has been proposed by tuning the various genetic parameters

like initial population size, selection methods, crossover type,

crossover rate, mutation rate, reproduction rate. These

parameters are tuned and their effect is analyzed to get an

optimal solution. From the experiments conducted it is found

that optimal solution can be obtained if initial population size

is 5000, crossover probability is 0.9, mutation probability is

0.1 crossover type that can be used is two point and

tournament size is 5. Our test shows that initial population

size is inversely proportional to number of generations and

time. Crossover probability is also inversely proportional to

number of generations and time. Thus Genetic Algorithm

offers a powerful tool for the cryptanalysis of knapsack

cipher. This work can be extended for other ciphers.

6. REFERENCES
[1] B. Delman, Genetic Algorithms in Cryptography, Master

of Science Thesis, Rochester Institute of Technology,

2004.

[2] Clark.A, Dawson.Ed, and Bergen.H, Combinatorial

Optimisation and the Knapsack Cipher, Cryptologia,

Taylor & Francis, 1996;20(1), p. 85-93.

[3] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein,

C., Introduction to Algorithms, Second Edition.

Cambridge, Boston: MIT Press, McGraw-Hill, 2001

[4] Darwin, Charles Robert, The Origin of Species Vol. XI,

The Harvard Classics. NewYork: P.F. Collier &Son,

1909-14

[5] David Kahn, The Codebreakers— The Story of Secret

Writing, 1967, ISBN 0-684-83130-9.

[6] Goldberg, D. E, Genetic Algorithms in Search,

Optimization, and Machine Learning, Boston: Addison-

Wesley, 1989.

[7] Ingo Rechenberg, Evolutionsstrategie, Stuttgart,

Frommann-Holzboog, 1994.

[8] John Holland, Adaption in Natural and Artificial

Systems, Ann Arbor, MI: The University of Michigan

Press, 1975.

[9] Kolodziejczyk.J, Miller.J and Phillips. P, The application

of genetic algorithm in cryptoanalysis of knapsack

cipher, In Krasnoproshin.V, Soldek.J, Ablameyko.S and

Shmerko.V (Eds.), Proceedings of Fourth International

Conference PRIP ’97 Pattern Recognition and

Information Processing, 1997, p. 394-401.

[10] Liddell and Scott's Greek-English Lexicon, Oxford

University Press, 1984.

[11] Menezes, A., van Oorschot, P., & Vanstone. S.,

Handbook of Applied Crytography, Boca Raton: CRC

Press, 1997.

[12] Poonam Garg and Aditya Shastri, An Improved

Cryptanalytic Attack on Knapsack Cipher using Genetic

Algorithm‖, International Journal of Information

Technology, 2006;3.

[13] Raghavan Muthuregunathan, Divya Venkataraman, and

Parthiban Rajasekaran, Cryptanalysis of Knapsack

Cipher using Parallel Evolutionary Computing,

International Journal of Recent Trends in Engineering,

Academy Publishers, 2009;1(1), p. 260-263.

[14] Spillman Richard, Cryptanalysis of knapsack ciphers

using genetic Algorithms, Cryptologia, Taylor &

Francis, 1993;17(4), p. 367-377.

[15] Tomassini, M, Parallel and Distributed Evolutionary

Algorithms: A Review, In K. Miettinen, M. M ¨ akel¨ a,

P. Neittaanm¨aki and J. Periaux (Eds.), Evolutionary

Algorithms in Engineering and Computer Science,

Chichester: J. Wiley and Sons, 1999, p. 113 – 133,.

[16] Tom Davis, Cryptography, 2000. Available:

http://www.geometer.org/mathcircles.

[17] Yaseen, I.F.T., & Sahasrabuddhe, H.V. (1999), A genetic

algorithm for the cryptanalysis of Chor-Rivest knapsack

public key cryptosystem (PKC), In Proceedings of Third

International Conference on Computational Intelligence

and Multimedia Applications, 1999, p. 81-85,.

[18] Tech-FAQ Available: http://www.tech-faq.com.

[19] Genetic Algorithm Available:

http://en.wikipedia.org/wiki/Genetic_algorithm

[20] Genetic Algorithms Available:

http://www.obitko.com/tutorials/

[21] Sinkov, A. ―Elementary Cryptanalysis: A Mathematical

Approach‖, New York: Random House, 1968.

[22] Sean Luke, Liviu Pnait, Gabriel Balan, Sean Paus,

Zbigniew Skolicki, elena Popovici, Keith Sullivan,

Joseph Harrison, Jeff Baskett, Rober Hubley, Alexander

Chircop, ―Evolutionary Computation System in Java‖.

[Available at] http://cs.gmu.edu/~eclab/projects/ecj/

http://cs.gmu.edu/~eclab/projects/ecj/

