
International Journal of Computer Applications (0975 – 8887) 

Volume 35– No.11, December 2011 

17 

Genetic Algorithm solution for Cryptanalysis of 

Knapsack Cipher with Knapsack Sequence of Size 16 

 
Dr. R. Geetha Ramani 

Professor and the Head 
Department of Computer Science and Engineering 

Rajalakshmi Engineering College 
Chennai, India 

 

Lakshmi Balasubramanian  
Department of Computer Science and Engineering 

Pondicherry Engineering College 
Puducherry, India 

 

 

ABSTRACT 

With growth of networked systems and applications such as e-

commerce, the demand for internet security is increasing. 

Information can be secured using cryptography, anti-virus, 

malwares, spywares, firewall etc. In cryptology, cryptanalysis 

is a discipline where the ciphers are attacked and broke thus 

enabling the developers to strengthen the cipher. Nowadays 

cryptanalysis of ciphers is gaining popularity among the 

research world. One among the ciphers is the knapsack cipher. 

There are many methods to attack this cipher. One among 

them is the Genetic Algorithm (GA) approach. Using GA, 

researchers have attacked the knapsack cipher with a 

knapsack sequence of size 8. This supports the ASCII 

representation of the characters. The ASCII representation 

supports the regional languages like English, numerals and 

symbols. In this paper we propose the attack on knapsack 

cipher with knapsack sequence of size 16 using Genetic 

Algorithm. The increase in knapsack sequence size increases 

the strength of the knapsack cipher. The increase in knapsack 

sequence size also supports for Unicode representation. 

Unicode representation gives hold for many regional 

languages. Since any language information can be transmitted 

over the network, this approach supports attack on text of any 

language. Also there is no constraint on the length of text to 

be attacked. An analysis on the impact of various GA control 

parameters viz. initial population size, operators‘ type and 

probability, etc are also carried out in this research work. 

General Terms 

Cryptanalysis, Genetic Algorithm (GA), Knapsack Cipher, 

multilingual languages, Cryptography.   
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1. INTRODUCTION 
With more and more development in the field of computer 

networks and internet, the need for network, computer and 

information security is also increasing. Computer and 

information security [19] deals with CIA: confidentiality, 

integrity, and authentication. There are different ways to 

secure information passed over the network. One such a 

technique is cryptology. Cryptology is the science and study 

of systems for secret communication. It consists of two 

complementary fields. They are cryptography and 

cryptanalysis. Cryptography is the science of building new 

powerful and efficient encryption and decryption methods. 

Cryptanalysis is the science and study of method to break 

cryptographic techniques i.e. ciphers. It is used to find 

loopholes in the design of cipher. It in turns helps in 

increasing the potency of cipher. A cipher is a pair of 

algorithms, which create the encryption and the reversing 

decryption. Some of the ciphers are Monoalphabetic 

Substitution cipher, Polyalphabetic Substitution cipher, 

Permutation cipher, Transposition cipher, Merkle-Hellman 

Knapsack cipher, Chor-Rivest Knapsack cipher and Vernam 

cipher. Cipher which is taken in our study, knapsack cipher is 

explained below.  

Knapsack cipher is a public-key encryption system. It is based 

on the sum of subset problem. It belongs to NP hard problem 

where it is difficult to find the solution and if the solution is 

provided then it can be verified quickly. In the subset 

problem, S is a finite set. S belongs to N which is a set of 

natural numbers and target is t. The question is whether there 

exists S‘ which belongs to S whose elements sum to target t 

[3]. The Merkle-Hellman knapsack cipher was the first 

implementation of a public-key encryption scheme. The 

Merkle-Hellman knapsack cipher attempts to disguise an 

easily solved instance of the sum of subset problem, called a 

super increasing sum of subset problem, by modular 

multiplication and permutation [11]. A super increasing 

sequence is a sequence (b1, b2, . . . , bn) of positive integers 

which satisfies the following condition bi is greater than sum 

of all bj where j=1 to i-1, for each i such that i is between 2 

and n, The integer n is a common system parameter. M is the 

modulus, selected such that M > b1 + b2 + . . . + bn. W is a 

random integer, such that 1≤ W≤ M − 1 and gcd(W,M) = 1. π 

is a random permutation of the integers {1, 2, . . . , n}. The 

public key of A is (a1, a2, . . . , an), where ai = W bπ(i) mod M, 

and the private key of A is (π ,M, W, (b1, b2, . . . , bn)). 

Researchers have worked on cryptanalysis using traditional 

methods like Tabu Search, Genetic Algorithm etc. This paper 

focuses on attack on knapsack cipher using Genetic Algorithm 

(GA). Genetic Algorithm [21] is an evolutionary computation 

technique, which is a rapidly growing area of Artificial 

Intelligence. Genetic Algorithm is inspired by Darwin's theory 

[6] about evolution. The survey of attack on knapsack ciphers 

using Genetic Algorithm (GA) is presented in the next 

section. 

2. RELATED WORKS IN ATTACK ON 

KNAPSACK CIPHER USING GA 
Spillman [14] is the one who first tried to attack Merkle-

Hellman knapsack cipher by Genetic Algorithm. In his 

approach, binary encoding and random selection are used. The 

evaluation function determines the nearness of the target sum 

of the knapsack to the given sum of terms. The function 

ranges between zero and one with one indicating the exact 

match. The mating process used is simple crossover. The 

mutation process consists of three different ways. The 

characters are encoded as 8 bit ASCII characters. Initial 
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population of 20 random 15-bit binary strings is used. Overall, 

in Spillman‘s work a minimal level of experimentation is 

included. 5 ASCII characters are used and all characters are 

decrypted. The Spillman‘s algorithm searches on an average 

of less than 2% of the space. [14]. In the Spillman's report of 

work there is no information about the initial conditions for 

the GA. Clark, Dawson, and Bergen [2] worked in attacking 

the knapsack cipher. It is an extension of Spillman‘s work. It 

contains the modified version of the same fitness function. 

This approach also uses 8 bit ASCII characters. The number 

of generations required, and the percentage of the key space 

searched vary widely between runs. The fitness function does 

not accurately describe the suitability of a given solution. A 

reimplementation can be done and comparison is also 

possible. But they are unnecessary because the fitness 

function used is inappropriate and new. 

Kolodziejczyk [9] extended the work of Spillman [14]. 

Certain restrictions were defined on the encoding algorithm. 

They are: only the ASCII code will be encrypted, then, the 

super increasing sequence will have 8 elements; this number 

of elements guarantees that each character has a unique 

encoding (There are 256 ASCII codes and 8-element length 

will allow encrypting 28 characters), and plaintext should not 

more than 100 character length [9]. Binary encoding is 

applied and the crossover is simple. The mutation process is 

to move between two random points. Overall the paper [9] 

uses a completely trivial knapsack. But the algorithm used in 

this work, searches about 50% of search space, when 

compared with Spillman's results which is about 2% [14]. 

Large size of population, high crossover probability and a 

small mutation probability are the most optimal arrangements 

for GA. 

Poonam Garg and Aditya Shastri [12] enhanced the 

previously published attack and re-implemented it with 

variation of initial entry parameters and results are compared 

with Spillman [14] results. It included the encoding 

restrictions given by kolodziejczyk. The initial population size 

has range in between 10 to 100. The fitness function given by 

Spillman is applied. One point crossover is used. The 

mutation process is to move between two random points. The 

effect of crossover rate, initial population and mutation rate 

are analyzed. The 8-elements sequence of hard knapsack 

problem is used to encode 8 bits ASCII code. Correct results 

are obtained on an average after 115 generations and 

exploring 50% of the search space. 

Raghavan Muthuregunathan, et.al. [13] proposed a hybrid 

technique that uses both Genetic Algorithm and Hill Climbing 

in attacking the knapsack cipher. A Parallel computation is 

done using MPI (Message Passing Interface) and the results 

are analyzed. A Synchronous Master Slave approach has been 

used. 8 bit binary encoding is applied. Spillman‘s fitness 

function is applied for evaluation [14]. A random selection of 

individuals is made. Single point crossover is used.  Interval 

Flip and Neighbouring Effect are types of mutation carried 

out. The reason for mixing Hill Climbing and Genetic 

Algorithm (GA) is that it is better to mutate the weaker 

individuals than breeding them with stronger individuals. The 

computational time was approximately 4 times less compared 

to Garg‘s work [12] but there is no decrease in number of 

generations. 

In the previous works all have attempted to attack knapsack 

cipher which uses 8 bits ASCII code to encode. In our work, 

cryptanalysis of knapsack cipher is done which encodes 16 

bits UNICODE. In previous works researchers have given 

restriction that plaintext cannot be more than 100 character 

length. In our work the plaintext character can be of any 

length. There is no restriction in the size of plaintext. 

3. GA SOLUTION FOR ATTACK ON 

KNAPSACK CIPHER  
Cryptanalytic attack on knapsack cipher belongs to the class 

of NP-hard problem.  Due to the constrained nature of the 

problem, the attack reaches to varying levels of performance 

optimization. Therefore, this paper is attempting for a optimal 

solution that further improves the robustness against 

cryptanalytic attack with high effectiveness. So far only 8 bit 

ASCII character encoding is used and constraints such as the 

plaintext can only be English and some symbols were made. 

In this paper knapsack sequence of size 16 is used. It leads to 

the next level of representation of characters from ASCII to 

Unicode representation. Unicode representation can be used 

for any regional languages like Greek, Latin, Hindi, Tamil etc. 

Thus the information transferred in the network to be attacked 

can be multilingual.  Secret conversations in defense, 

Government sectors adapt the knapsack cipher with the 

knapsack sequence of size 16. Merkle-Hellman knapsack 

cipher is used to convert plaintext into ciphertext. Super 

increasing sequence is converted into non super increasing 

using the values W, M. Non super increasing sequence of 

knapsack cipher is more difficult to break and hence it is used 

as the public key. The public key is only available for attack. 

Ciphertext is calculated from the non super increasing 

sequence. If the non super increasing sequence is {21033, 

63094, 16375, 11711, 23422, 58557, 16665, 54322, 64252, 

39720, 32718, 63106, 63119, 18753, 21135, 42270} then the 

ciphertext for the plaintext ―QUICK‖ can be calculated as 

shown in Table 1. 

Table 1: Ciphertext calculation 

PLAIN

TEXT 

UNICODE 

(in binary) 

CIPHER

TEXT 

Q 0000000001010001 145096 

U 0000000001010101 163849 

I 0000000001001001 145109 

C 0000000001000011 103125 

K 0000000001001011 166244 
 

Similarly plaintext is converted into cipher text which is 

attacked using Genetic Algorithm. Hence this paper attempts 

to attack the strengthened knapsack cipher using GA. This 

paper also presents the analysis on the effect of various 

genetic control parameters viz. initial population size, 

operator probabilities and selection process. In following 

subsections Genetic Algorithm process, Individual 

representation, Initial population, Fitness evaluation, 

Termination condition, Selection methods, Crossover and 

Mutation are explained. 

3.1 Basic Genetic Algorithm Process 
The whole Genetic Algorithm process will be continued until 

all the characters of the plaintext are found. The process is 

shown in Fig 1. 
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Fig 1: Genetic Algorithm Process 

 

3.2 Individual Representation 
Before the Genetic Algorithm can be put to work a method is 

needed to encode potential solutions to that problem in a form 

that a computer can process. Individuals are set of solutions 

which are initially randomly generated. For this problem, the 

approach that is used is to encode solutions as binary strings: 

sequences of 1's and 0's, where the 1‘s at each position 

represents the inclusion of the corresponding element in the 

non super increasing sequence solution.  The binary 

representation is shown in Table 2. 

Table 2: Binary repreaentation of the character 

Character Binary Representation 

M (English) 0000000001001101 

அ (Tamil) 0000101100010101 

 

After representing the individuals, number of individuals to be 

generated initially is provided which is given in next 

subsection. 

3.3 Initial Population 
Process is started with a set of individuals which are ciphered 

plaintext called population. These individuals are randomly 

generated.  

Randomly generated individuals with the initial population 

size of 3 are: 

0100000100000000, 0110001000000000 and 

0110001100000000  

 
After the individuals are created they are evaluated using the 

function provided which is explained in next subsection. 

3.4 Fitness Evaluation 
In our work we used the following fitness function [14] to 

evaluate the generated individuals. Based on the fitness value 

obtained, it can be determined whether the optimal solution is 

reached or not. 

Fitness =   1 −  
𝑇𝑎𝑟𝑔𝑒𝑡 −𝑠𝑢𝑚

𝑇𝑎𝑟𝑔𝑒𝑡
 

1

2
 if 

sum<=target 

1 −  
𝑆𝑢𝑚 −𝑇𝑎𝑟𝑔𝑒𝑡

𝑀𝑎𝑥  𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐 𝑒
 

1

6
 if sum > 

target 

 

where,  

MaxDifference = max(Target, FullSum −  Target) 

Target  - the ciphertext. 

Sum  - the sum of the current chromosome. 

FullSum - the sum of all components in the    

                 knapsack. 

                        

If the solution is not obtained the individuals are passed to 

next generation through selection methods and the individual 

chromosomes may be varied using genetic operators in next 

subsection. 

3.5 Selection Methods and Genetic 

Operators 
In the process of evolution, if the termination condition is not 

satisfied then the individuals are selected for next generation. 

Selection of individuals is done according to their fitness 

value obtained. Various selection techniques in GA are best 

selection, first selection, random selection, greedy over 

Next Generation 

Individual 

Representation 

Fitness 

Evaluation 
Termination 

Criteria 

Ideal 

 Individual 

Yes 

No 

Selection 

Crossover Mutation Reproduction 
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selection, multi selection and tournament selection [20]. In 

our experiment tournament selection is used with different 

sizes. 

The genetic operators used to vary the individual 

chromosomes are crossover and mutation. Crossover selects 

the parent individuals and creates the offspring. Different 

types of crossover explored in our experiment are single point 

crossover, two point crossover and multi crossover [20]. 

Samples of single point crossover are shown in Table 3 and 

Table 4. 

Table 3: Sample1 of single point crossover 
 

Chromosome 

representation 

 Plaintext 

character 

Before 

Crossover 

0000000001000001 A 

0000000001100010 B 

After 

Crossover 

 

0000000001000010 B 

0000000001100010 A 

 
Table 4: Sample 2 of single point crossover: 

 

Chromosome 

representation 

 Plaintext 

character 

Before 

Crossover 

  0000101110000101 அ 

0000101110001010   ஊ 

After 

Crossover 

 

  0000101110000110 ஆ 

0000101110001001            உ 

 

After crossover is performed, mutation takes place. This is to 

prevent falling all solutions in population into a local 

optimum of solved problem. Types of mutation include bit 

inversion, order changing etc. Here we have used bit inversion 

kind of mutation [20]. Samples of mutation processes are 

shown in Table 5 and Table 6. 

Table 5: Sample 1 of mutation process: 
 

Chromosome 

representation 

Plaintext 

character 

Before 

Mutation 

0000000001000010 B 

After 

Mutation 

0000000001000011 C 

 

Table 6: Sample 2 of mutation process: 
 

Chromosome 

representation 

Plaintext 

character 

Before 

Mutation 

0000101110000101 அ 

After 

Mutation 

0000101110000110 ஆ 

 

3.6 Termination Condition 
If the fitness value is one then the chromosomes represent the 

UNICODE representation of the character which has been 

converted into cipher text using knapsack cipher, else the 

genetic evolution process take place until it obtains the 

optimal solution which represents the character. 
 

4. EXPERIMENTAL RESULTS  
Several sessions of experiment are conducted with sample test 

cases from different regional languages. In this paper the 

details of the experimental results are given for the following 

plaintext. 

“The quick brown fox jumps on lazy dog.” 

The results are obtained by varying population size, crossover 

type, crossover probability, mutation probability, reproduction 

rate, and various sizes in tournament selection. It is analyzed 

to find optimal solution to attack knapsack cipher using 

Genetic Algorithm. The implementation work is carried out in 

ECJ simulator [22]. The results present the time taken for 

attacking the plaintext considered (38 characters) and 

maximum number of generations (This corresponds to the 

greatest number of generations that the character (any 

character) taken to find the solution. For example, in one run 

‗q‘ may take maximum number of generations while in 

another ‘b‘ may take the maximum number of generations. 

Here only the number of generations is considered 

irrespective of the character. ), 

4.1 Effect of Population Size 
Different sizes of initial population taken for analysis are 10, 

50, 100, 500, 1000, 5000, 10000 and 50000. The details are 

tabulated in Table 7 and depicted graphically in Fig.2 and Fig. 

3. The output shows that if initial population increases the 

number of generations to obtain optimal solution for attacking 

the plaintext decreases which in turn decrease the time taken 

to arrive at the solution. Table 7 shows that initial population 

is inversely proportional to maximum number of generations. 

The maximum number of generations given in this test case is 

20000. For this crossover type used is single point crossover 

and tournament selection is applied. The optimal initial 

population obtained in this experiment is 5000. It is used in 

further analysis.  

Table 7: Experimental Results of Effect of Population Size 

Initial 

Population 

Generation Time in min 

(m:s:ms) 

10 14121 2:22:41 

50 2717 0:30:19 

100 2449 0:32:46 

500 374 0:09:51 

1000 292 0:14:23 

5000 20 0:07:56 

10000 23 0:14:22 

50000 4 0:12:44 
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Fig. 2: Effect of Initial Population on time 

 

Fig. 3: Effect of Initial Population on generations 

 

4.2 Effect of Genetic Operator 

Probabilities 
The various genetic operators taken into consideration are 

crossover probability, mutation probability and reproduction 

probability. The different sets of values given for these 

parameters are from 0.1 to 0.9. As already mentioned initial 

population is set to 5000. Tournament selection and one point 

crossover is applied. The effect of genetic operator 

probabilities is tabulated in Table 8. The details of effect on 

time and generation are depicted graphically in Fig. 4 and Fig. 

5 respectively. Crossover probability increases number of 

generation decreases and time also decreases. But mutation 

probability acts in reverse way. If it increases number of 

generation increases and time also increases. From this test it 

is found that crossover probability 0.9 and mutation 

probability 0.1 produces optimal result which is applied in 

next experiments 

 

 

 

 

 

 

 

Table 8: Experimental Results of Effect of Genetic 

Operators 

Initial population =5000, Cross over type=one point, 

Selection=tournament 

 CP MP RP Generations Time in 

min 

(m:s:ms) 

CASE 

1 

0.9 0.1 0.0 20 0:07:56 

CASE 

2 

0.8 0.1 0.1 33 0:08:06 

CASE 

3 

0.1 0.8 0.1 48 0:11:11 

CASE 

4 

0.5 0.5 0.0 40 0:12:04 

CASE 

5 

0.1 0.9 0.0 25 0:10:30 

 

where, 

CP – Crossover Probability MP – Mutation 

Probability RP – Reproduction Probability 

 

Fig. 4 : Effect of GA Operators’ Parameters on time 

 

Fig. 5:  Effect of GA Operators’ Parameters on 

generations 

4.3 Effect of Crossover Type 
There are three kinds of crossover types explored. They are 

single point, two point and multi point crossover.  With initial 

population 5000, crossover rate 0.9 and mutation rate 0.1 

different crossover types are applied and outputs are obtained. 

The details are tabulated in Table 9 and are graphically 

depicted in Fig. 6 and Fig. 7. From the result it is found that 

one point crossover has high number of generation and 

maximum time whereas two point crossover has high number 

0:00:00

0:28:48

0:57:36

1:26:24

1:55:12

2:24:00

2:52:48

1
0

5
0

1
0

0
5

0
0

1
0

0
0

5
0

0
0

1
0

0
0

0
5

0
0

0
0

T
im

e 
(m

:s
:m

s)

Initial Population

Time 

(m:s:ms)

2717

2449

374 292

20 23 4
0

500

1000

1500

2000

2500

3000

N
u

m
b

er
 o

f 
G

en
er

a
ti

o
n

s

Initial Population

Generati

ons

0:00:00
0:01:26
0:02:53
0:04:19
0:05:46
0:07:12
0:08:38
0:10:05
0:11:31
0:12:58

C
A

S
E

 1

C
A

S
E

 2

C
A

S
E

 3

C
A

S
E

 4

C
A

S
E

 5

T
im

e 
in

 m
in

 (
m

:s
:m

s)

Time in min 

(m:s:ms)

20

33

48

40

25

0

10

20

30

40

50

60

N
u

m
b

er
 o

f 
G

en
er

a
ti

o
n

s

Generations



International Journal of Computer Applications (0975 – 8887) 

Volume 35– No.11, December 2011 

22 

of generation and less minimum time and multi point has less 

number of generations and time is less compared to one point 

crossover. 

Table 9: Experimental Results of Effect of Crossover Type 

Initial population=5000, Crossover probability=0.9, Mutation 

probability=0.1, Selection=tournament 

Crossover 

Type 

Generations Time in min 

(m:s:ms) 

One point 20 0:07:56 

Two point 20 0:06:56 

Multi point 16 0:07:18 

 

 

Fig. 6: Effect of Crossover Type on time 

 

Fig. 7: Effect of Crossover Type on generations 

4.4 Effect of tournament size 
The selection method used is tournament selection. Different 

sizes of tournament can be selected. Since the above 

experiment shows that one point crossover is not suitable to 

obtain optimal solution it is applied for two point crossover 

type. Tournament sizes used to analyze the impact are 2, 3, 4, 

5 and 6. The details are tabulated in Table 10 and graphically 

represented in Fig. 8 and Fig. 9. The output shows that 

tournament size 5 is an optimal way to obtain output. 
 

 

 

 

 

 

 

 

 

 

Table 10: Experimental Results of Effect of Tournament 

Size 

Tournament Size Generations Time in min 

(m:s:ms) 

2 20 0:06:56 

3 25 0:09:00 

4 12 0:06:48 

5 11 0:05:42 

6 68 0:19:09 

 

 

Fig. 8: Effect of Tournament Size on time 

 

Fig. 9: Effect of Tournament Size on generations 

Experiments are conducted with the test case and the effects 

of population size, effects of genetic operator probabilities, 

effects of crossover types, effects of tournament selection size 

are analyzed.    

After a complete analysis on impacts of all the above 

parameters another test case with more than 100 characters 

was chosen and the optimal values for the parameters (found 

from the analysis) were set accordingly and runs were taken. 

The results are presented below. 

The test case taken was: 

India is my Country; all Indians are my brothers and sisters. I 

love my country and I am proud of its rich and varied 

heritage, I shall always strive to be worthy of it. I shall give 

my parents, teachers and all elders respect, and treat 

everyone with courtesy. To my country and its people, I 

pledge my devotion. In their well being and prosperity alone 

lies my happiness. 

This test case contains 373 characters. Initial population of 

5000, tournament selection with tournament size 5, two point 

crossover with a crossover probability of 0.9, mutation 
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probability of 0.1 is chosen as the parameters. The time taken 

for finding the plaintext for this test case was 45:88 seconds. 

5. CONCLUSION 
This paper presents the attack of knapsack cipher of knapsack 

sequence of size 16 using Genetic Algorithm. This leads to 

the cryptanalysis of plaintext encrypted using knapsack cipher 

of knapsack sequence size 16. So the plaintext can be 

multilingual and its length needed not be limited to 100. This 

helps a lot in cryptographic field to increase the strength of 

the knapsack cipher. It in turn provides high security of 

information in any regional language. An improvised solution 

has been proposed by tuning the various genetic parameters 

like initial population size, selection methods, crossover type, 

crossover rate, mutation rate, reproduction rate. These 

parameters are tuned and their effect is analyzed to get an 

optimal solution. From the experiments conducted it is found 

that optimal solution can be obtained if initial population size 

is 5000, crossover probability is 0.9, mutation probability is 

0.1 crossover type that can be used is two point and 

tournament size is 5. Our test shows that initial population 

size is inversely proportional to number of generations and 

time. Crossover probability is also inversely proportional to 

number of generations and time. Thus Genetic Algorithm 

offers a powerful tool for the cryptanalysis of knapsack 

cipher. This work can be extended for other ciphers. 
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