
International Journal of Computer Applications (0975 – 8887)

Volume 35– No.10, December 2011

25

An Algorithm for Allocating DVE Environment with

Objects Consideration for Heterogeneous System

Amany Sarhan

Associate Professor at
Computers and Control

Engineering, Tanta University,
Egypt

ABSTRACT

Distributed Virtual Environment (DVE) systems model and

simulate the activities of thousands of entities interacting in a

virtual world over a wide area network. These systems are

composed of many servers each of which is responsible to

manage multiple clients who want to participate in the virtual

world. Each server delivers the information updated from

different clients to other client in virtual world. Previous

algorithms were proposed for balancing the workload among the

servers of the DVE. However, these algorithms did not take into

consideration active objects found in the virtual environment

which affects the calculations of system cost. They also assumed

homogenous environment where all servers have the same

capabilities and all links have the same speed. This paper

presents a partitioning algorithm that takes into account the

active objects and a modified object layering algorithm that

concentrates only the boarder to improve the performance (total

cost of the system and execution time) of Distributed Virtual

Environment. This paper also generalizes the system to be

heterogeneous in servers’ speed and link capacity. The

evaluation results show that the performance of the allocation

algorithm is significantly improved where the total system cost

was reduced.

General Terms

Distributed system, Partitioning algorithm, Distributed virtual

environments.

Keywords

Distributed virtual environment, scalability issue, partitioning

algorithm, load balancing, communication reduction, linear

optimization.

1. INTRODUCTION
Virtual environments are gaining more popularity with the wide

usage of computer and Internet applications. It can be used in

many areas like game and learning [1]. There are many types of

the virtual environment; the first one is called Collaborative

Virtual Environments (CVEs) describes virtual environments

that involve more than one user, with avatars interacting with

each other. With increased bandwidth and more available

Internet access, virtual environments that allow for greater

multi-user interactivity have become more widely available in

recent years [1]. The second type is called Immersive Virtual

Environments (IVEs) which perceptually surrounds the user in a

way that increases the user’s sense of being a part of it. IVEs

requires special equipments such as a head mounted display or

project equipment located in a room or any place. The third type

is called Virtual Reality (VR) which gives the ability to see the

real world and the virtual world at the same time [1]. The last

type is called Distributed Virtual Environment (DVE). It is a

simulated world which runs not on one computer system but on

several computers. The computers are connected over a network

(mostly the Internet) and users of those computers interact with

each other and with environment in real time, sharing and

altering the same virtual world [1].

There are two possible architectures for implementing a DVE

system: 1) single server distributed virtual environment

architecture (SSDVE) and 2) multiple servers distributed virtual

environment architecture (MSDVE). The size of the virtual

world and the average number of users of this virtual world

determines which architecture to use. Under SSDVE

architecture, all clients are connected to a powerful single and

dedicated server. To guarantee that all users have the same

consistent view of the virtual world, the system should report

any action or activity generated by any user in real time to all

users. Sometimes to minimize the communication cost, the

system only deliver these changes to those users who can be

affected by this new activity in their local view of this virtual

world. SSDVE architecture is only suitable for a small scale

DVE system, for example, a virtual world with a small number

of objects and a small number of participating users.

In an MSDVE architecture, multiple servers are used where each

server is responsible for handling a subset of the virtual world

(e.g., some number of users and some number of objects in the

virtual environment), as well as the communication of its

attached users and the communication between servers. It is

important to point out that, in order to keep the view consistency

among the participating clients, some form of server-to-server

communication is necessary. Large scale distributed virtual

environments (DVEs) have become a major trend in distributed

applications. Peer-to-peer (P2P) architectures have been

proposed as an efficient and truly scalable solution for these

kinds of systems. However, in order to design efficient P2P

DVEs these systems must be carefully design to obtain good

distribution of the environment resposibilities. Therefore, a DVE

system designer has to consider the issue of balancing the

computational workload among different servers and reducing

the communication cost between different servers [2,3,4].

There are many problems in DVE like awareness problem [5],

discard information [6], latency problem [5,7] , QOS problem

[5], multicast protocol problem [7], unreliable transport

mechanisms problem [7], avatar migration problem [8], and

partitioning problem [2,3,7,9,10,11]. There are many ways try to

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.10, December 2011

26

solve the partitioning problem in order to minimize the impact

of network traffic on the performance of the DVE system. Lui

and Chan [2,9] have shown the key role of finding a good

assignment of avatars (users) to servers in order to ensure a

minimum network traffic in DVE system. However, their

algorithm did not take into consideration the active objects

found in the virtual world which causes an additional cost to the

system on both sides: computation and communication.

The main contribution of this paper is to propose enhanced DVE

allocation algorithms with objects taken into consideration and a

modified layering algorithm that decreases the execution time

for the partitioning process. This will allow the dynamic usage

of the algorithm when it is used on run-time load changes to

adjust the workload and communication cost of the system. The

paper also deals with heterogeneous system constrains, where

the servers’ speeds and communication link capacities are

heterogeneous by modifying the cost equations of the system to

accommodate this assumption.

The paper is organized as follows: section 2 discusses the DVE

system architecture. Section 3 contains the proposed object

allocation algorithms. Section 4 introduces the Modified Object

Layering Partitioning (M-OLP) algorithm. Section 5 discusses

the problem of using heterogeneous environment and presents a

modification of the balancing condition equations. Experimental

results are given in section 6 with their explanation. Finally

conclusions are drawn in section 7.

2. DISTRIBUTED VIRTUAL

ENVIRONMENT SYSTEM

2.1 System Architecture
The architecture of the DVE system is shown in Figure 1 which

shows a DVE system with multiple servers. Each server is

responsible of handling the activities of multiple users. All the

multiple servers view and access the same virtual environment

that contains avatars and objects.

Fig. 1: Multiple server architecture for a DVE system

System users communicate via inter-server communication, if

each of them is the responsibility of different server, or via

inner-server communication, if both of them were the

responsibility of the same server as shown in figure. The inner-

server communication is too small compared to external

communication so it will be neglected in the cost equation as it

is performed internally on the server.

2.2 Avatar and Area-of-Interest (AOI)
The avatar is a 3D active object that represents a user of the

system of the virtual world. In order to provide the interactive

capability of a user, the avatar can move in a virtual world. The

user uses his/her avatar to communicate with other avatars (or

other users in the virtual world) or use his/her avatar to access

any 3D objects, such as books, chairs, glasses, etc., in the virtual

environment.

Since an avatar can move and interact with any static or

dynamic 3D objects within the virtual world, a DVE system

needs to transfer the information for this activity to other avatars

so as to keep the information of the virtual world consistent. In

general, each avatar only needs to know those activities that

happened near his/her vicinity only. Figure 2 illustrates the area-

of-interest (AOI) concept of different avatars. We use a circle to

represent the AOI of each avatar as in [2,9].

Let AOI(Ai) be the area-of-interest of avatar Ai. From the

figure, we can see that AOI (A4) € AOI(A1). Therefore, the DVE

system has to send avatar A1 any activity generated by avatar

A4. On the other hand, if there is any activity happened within

the intersection of AOI(A1) and AOI(A3), then the DVE system

only needs to send to avatars A1 and A3 about this activity.

Since AOI(A5) or AOI(A6) does not intersect with the AOI of A1

to A4, the DVE system does not have to send to avatars A1, A2,

A3, and A4 of any activity generated by avatars A5 or A6 [2,3].

Fig. 2: Area-of-interest (AOI) of avatars

3. THE PROPOSED OBJECT-DRIVEN

ALLOCATION ALGORITHMS
The main problem in the area of multiple servers of virtual

environment is how to distribute the avatars to the servers such

that they are balanced and the total system cost is minimized. In

previous work, Recursive Bisection Partitioning (RBP),

Layering Partitioning (LP), and Communication Refinement

Partitioning (CRP) algorithms were presented [2]. However,

their work was primitive as it did not consider the active objects

available in the environment when partitioning the system to the

servers. This causes additional workload and communication

cost of the system as we will show by example.

In our work we intend to modify the previous allocation

algorithms by taking into account the objects during the steps of

allocation. We will also modify the layering algorithm to

consider only the boarder avatars to minimize the allocation

process execution time. Finally, we will extend the whole model

to be suitable for heterogeneous system where the servers and

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.10, December 2011

27

network links speed are not equal. The proposed algorithms will

be described in the following subsections.

3.1 Object Recursive Bisection Partitioning

(O-RBP) Algorithm
In this step, the main idea of the Object Recursive Bisection

Partitioning (O-RBP) algorithm is to divide the avatars and

objects in the virtual environment into p groups where p

represents number of servers. The difference between the

avatars and the objects is that the avatars send and receive

messages if there is any action between them but the objects

receive messages only [10].

The idea of considering the objects was given in [10]; however,

they did not introduce the equations required to compute the

communication and workload costs. Here, we add the cost of

objects to the cost equations to be as follows:

CP
W = (ω a𝑖 + Ψ a𝑖 −a𝑖=V𝐽

P
J=1

ω∗|J=1P(o𝑖=V𝐽 ωo𝑖+ Ψo𝑖−ω∗|)) (1)

Where:

𝜔∗ = (𝜔 𝑎𝑖 + 𝛹 𝑎𝑖 +

𝑛

𝑖=1

 𝜔 𝑜𝑖 + 𝛹 𝑜𝑖)

𝑛

𝑖=1

/𝑝

is the computational workload per server under the perfectly

balanced workload partition strategy. The communication cost

between the servers is calculated using equation 2 with

considering the AOI of each avatar. Specifically, if an avatar ai

lies within the AOI of another avatar aj, so avatar ai performs

any action, the DVE system must send this new information to

avatar aj and the object oi if exists.

Let P be given a partition strategy which divides V into P

partitions: {V1, V2 . . . VP } and thus we assign partition Vi to

server Si. Let ɀ(ai, aj) denote the amount of information

exchanged (in unit of bit) from avatar ai to avatar aj and ɀ(ai, oi)

denote the amount of information exchanged (in unit of bit)

from avatar ai to the object oi.

Let 𝜙𝑆𝑖 ,𝑆𝑗
() be a non decreasing function that determines the

amount of information exchange (in unit of bits) to the

communication cost server from Si to Sj in the DVE system. The

communication cost between partition Vl and Vm (for l≠ m),

denoted as Clm [5], can be expressed as:

Clm = {𝜙𝑆𝑙,𝑆𝑚
(ɀ(

a𝑗∈V𝑚a𝑖∈V𝑙

a𝑖, aj))}

+ {𝜙𝑆𝑚,𝑆𝑙
(ɀ(

a𝑖∈V𝑙a𝑗∈V𝑚

a𝑗, ai))}

 +

 {𝜙𝑆𝑙 ,𝑆𝑚
(ɀ(o𝑗∈V𝑙𝑚a𝑖∈V𝑙

a𝑖 , oj))} (2)

The first term of the above equation represents the

communication cost for transmitting information of the updates

from partition Vl to Vm between two avatars. The second term

represents the communication cost for transmitting information

of the updates from partition Vm to Vl between two avatars and

the third term represents the communication cost for

transmitting information of the updates from partition Vm to Vl

from avatar to object.

 Let 𝐶𝑃
𝐿

 be the communication cost of a given partition strategy

P, where 𝐶𝑃
𝐿

 is computed as:

𝐶𝑃
𝐿 = 𝐶𝑙𝑚

𝑃
𝑚>𝑙

𝑃
𝑙=1 (3)

Therefore, 𝐶𝑃
𝐿

 represents the total server-to-server

communication cost of a given partition P. This assumption can

be easily relaxed and can be included in the total cost CP as in

[2]. The overall cost of the partition strategy P (CP) can be

expressed as:

 CP = W1CP
W + W2𝐶𝑃

𝐿
 (4)

W1 and W2 represent the relative importance of the

computational workload cost and the communication cost,

respectively (W1 + W2 = 1) [2]. Finally, the DVE partitioning

problem is to find an optimal partition P* such that:

CP
∗ = minP CP (5)

The following steps are used to calculate partitioning of objects

and avatars to the servers using the O-RBP algorithm:

Step1: Let the first server contains all cells while the second

server is empty.

Step2: Move a single cell (containing avatars and objects) to the

second server. Then calculate the cost of the system

(containing avatars and objects) as given by equation 4.

Step3: Move another cell to the second server.

Step4: Repeat step 3 until all cells move to the second server.

According to the minimum calculated cost, the loading of the

servers is calculated. Note that CPRBP (0) and CPRBP (N)

represent the two extremes of the highest load imbalanced cost

(i.e., all cells are assigned to one server and there is no server-to-

server communication). So, CPRBP (0) and CPRBP (N) aren't

taken into consideration. Note that; for a larger number of P, we

can first use the bisection partitioning algorithm shown before,

after that a partition is chosen that has the lowest cost and finally

apply the Recursive Bisection partitioning algorithm again

[2,10].

3.2 Object Layering Partitioning (O-LP)

Algorithm
The main idea of the Object Layering Partitioning algorithm (O-

LP) is to minimize the workload cost calculated from the O-RBP

algorithm. This can be done by labeling each avatar and object

using a server number. The label (or server number) serves as a

possibility of moving the corresponding avatar and object to a

new partition which has that server number [2,10]. The goal of

this algorithm tries to minimize the workload cost of the system.

We can apply this algorithm more than once to move avatars

and objects to reduce the workload cost. The following are the

steps of the O-LP algorithm:

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.10, December 2011

28

Algorithm:
01. Begin

02. For vi Є VLP do {

03. /* Create edges and mark those nodes along the partition

boarder as connected */

04. For vj Є VLP where i ≠ j, do {

05. If vj is within the AOI of vi then {

06. Create an edge eji in ELP ; /* eji is an edge between vj and vi

where vj , vi ЄVLP */

07. Set the weight of eji = ɀ(vj , vi);

08. If (server_num[vi] ≠ server_num[vj]) then {

09. Connected[vi] ≠connected[vj] = true; } }

10. If oj is within the AOI of vi then {

11. Create an edge eji in ELP ; /* eji is an edge between oj and

vi where oj , vi ЄVLP */

12. Set the weight of eji = ɀ(oj , vi);

13. If (server_num[vi] ≠ server_num[oj]) then {

14. Connected [vi] ≠connected [oj] = true;}}}}

15. For vj Є VLP do {

16. /* Create edges and mark those nodes along the partition

Boarder as connected */

17. For vi Є VLP where j ≠ i, do {

18. If vi is within the AOI of vj then

19. Create an edge eij in ELP ; /* eij is an edge between vi and vj

where vi , vj ЄVLP */

20. Set the weight of eij = ɀ(vi , vj);

21. If (server_num[vj] ≠ server_num[vi]) then {

22. Connected [vj] ≠ Connected [vi] = true;} }

23. For oi Є VLP where j ≠ i, do {

24. If oi is within the AOI of vj then

25. Create an edge eij in ELP ; /* eij is an edge between oi and

vj where oi , vj ЄVLP */

26. Set the weight of eij = ɀ(oi , vj);

27. If (server_num[vj] ≠ server_num[oi]) then {

28. Connected [vj] ≠ Connected [oi] = true;} } }

29. For all vi Є VLP do{ /*connect the remaining nodes*/

30. If (connected[vi] = false) then {

31. If ((there exists a node vj which is a neighbor of vi) /* vj is a

neighbor of vi if eij exists */

32. And (connected[vj] = true)) then

33. Connected[vi] = true;

34. If (connected[vi] = false) do {

35. Find a nearest node vk such that connected[vk] = true

 and server_num[vj] = server_num[vk];
36. Create an edge eik Є ELP;

37. Set weight of eik = ɀ(vi , vk);

38. Connected[vi] = true;}

39. If (connected[vi] = false) do {

40. Find a nearest node vk Є GLP such that connected[vk] = true

41. Set weight of eik = ɀ(vi , vk);

42. Connected[vi] = true;}}

43. If (connected[vi] = false) do {

44. Find a nearest node oj Є GLP such that connected[oj] =

true

45. Set weight of eik = ɀ(vi , oj);

46. Connected[vi] = true;}}}

47. End

3.3 Object Communication Refinement

Partitioning (O-CRP) Algorithm
The objective of the Object Communication Refinement

Partitioning (O-CRP) algorithm is to reassign nodes (avatars and

objects) to another partition so as to reduce the server-to-server

communication cost. The boarder nodes only (avatars and

objects) under the constraint (external weight is larger than the

internal weight) are moved to another partition [10].

3.4 Importance of considering objects

during partitioning

To illustrate the importance of considering the objects during the

partitioning process, we will use a given environment where the

number of avatars was assumed to be =21 (represent it with a

circle), number of objects=12(represent it with a square), the

number of servers =3, and the number of cells =9. Let the

workload weighting (W1) and the communication cost weighting

(W2) =0.5. Assume the workload for maintaining an avatar and

object is 10 and that the three servers have the same speed. The

environment to be partitioned with avatars and objects

distributed is as shown in Fig. 3 which is required to be

partitioned over 3 identical servers.

Fig. 3: Environment containing 21 avatars and 12 objects

First, we will use the Lui and Chan algorithms [2] which omit

the objects from the environment before partitioning. Then, we

will see the effect of omitting the objects from the partitioning

on the total system cost as follows.

3.4.1 Allocation considering only the avatars (Lui

& Chan algorithms)
When we use Lui and Chan algorithms [2], we only consider the

avatars available in the virtual world so the cells partitioned will

be seen by the algorithms as shown in Fig. 4 with the objects

omitted from Fig. 3.

Fig. 4: Environment containing 21 avatars after omitting the

objects from the environment in fig. 3

The first step divides the number of avatars into partitions to

arrive to minimum cost of the system as follows:

1. Assign the first cell only to the first server and remaining

cells to the second server then calculate the total cost of

the system.

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.10, December 2011

29

2. Repeat this step but assign two cells to the first server and

the remaining cells to the second server and so on until we

reach the minimum cost of the system.

3. Divide the first server which contains the larger number of

avatars into two partitions as follows:

3.1 Assign the first cell to the first server, three cells to the

second server and the remaining cells to the third server

then calculate the total cost of the system.

3.2 Assign two cells to the first server, two cells to the

second server and the remaining cells to the third server

then calculate the total cost of the system and so on.

Fig. 5: Environment partitioning to the three servers

The minimum cost was reached when the first server contains

nine avatars (three cells), the second server contains eight

avatars (two cells) and the third server contains four avatars

(four cells) as shown in Fig. 5.

The total cost of the system partitioned as above is:

CP = W1 ∗ CP
W + W2 ∗ CP

L

Workload variance:

CP
W

= (ω a𝑖 + Ψ a𝑖 − ω∗|)a𝑖=V𝐽
 P

J=1

CP
W

= 10 *(9 − 7 + 8 − 7 + 4 − 7) = 60

Communication cost:

𝐶𝑃
𝐿

 = 𝐶12 + 𝐶21 + 𝐶13 + 𝐶31 + 𝐶23 + 𝐶32=

69

𝐶𝑃= 0.5 * 60 + 0.5 * 69 = 64.5

When applying the LP algorithm [2], we need to move two

avatars from the first server to the third and move one avatar

from the second server to the third as shown in Fig. 6. The total

cost of the system partitioned is:

CP = W1CP
W + W2𝐶𝑃

𝐿 = 45.5

 Fig. 6: The avatars that should be moved to the third server

When we moved this avatar, the partitioning becomes as shown

in Fig. 7 and 8. The total cost of the system partitioned is: 𝐶𝑃=

33.

Fig.7: Another avatar should be move to the third partition

Finally we apply the CRP algorithm [2] to minimize the

communication cost. To reduce the communication cost of the

system, we should move the circled avatars between the two

servers as shown in Fig. 9 and 10. The total cost of the system

becomes: 𝐶𝑃= 27. So, the total cost of the system after applying

the three algorithms is 27.

Fig. 8: The partitioning after applying LP algorithm

S1

S3

S2

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.10, December 2011

30

Fig. 9: The avatars that should be moved to apply CRP

algorithm

Fig. 10: The final partitioning after applying CRP algorithm

3.3.2 Computing the effect of objects on the cost
When we return the objects to the cells, the actual partitioning of

the cells to the three servers is as shown in Fig. 11.

Fig. 11: The partitioning after returning the objects to cells

The actual load and communication of the servers should be

recomputed after considering the effect of objects in the system

as:

CP
W

= (ω a𝑖 + Ψ a𝑖 − ω∗|)a𝑖=V𝐽
 P

J=1

CP
W

= 10 * (13 − 7 + 11 − 7 + 9 − 7) = 120

𝐶𝑃
𝐿

 = 𝐶12 + 𝐶21 + 𝐶13 + 𝐶31 + 𝐶23 + 𝐶32

 = (6+6+3)+(6+8+3+4)+(4)+(4+5)+(6+4+4)+(4+6) = 73

𝐶𝑃= 0.5 * 120 + 0.5 * 73 = 96.5

From these results, it is clear that neglecting the effect of objects

during the partitioning leads to an increase in the actual system

cost (from 27 to 96.5). This confirms the effectiveness of the

proposed algorithms in reducing the system cost.

3.5 Applying the proposed algorithms on an

illustrating example

In the illustrating environment example, we will use the same

environment described in Fig. 3. We assume the workload for

maintaining an avatar or an object is 10. The three servers have

the same speed.

The first step is to apply the proposed O-RBP that divides the

number of avatars and objects into partitions to arrive to

minimum cost of the system as discussed below.

1. Assign the first cell only to the first server and remaining

cells to the second server then calculate the total cost of

the system.

2. Repeat this step but assign two cells to the first server and

the remaining cell to the second server and so on.

3. The minimum cost is obtained when the first server

contains 13 avatars and 6 objects (four cells) and the

second server contains 8 avatars and 6 objects (five cells).

4. Divide the first server which contains the larger number of

avatars into two partitions.

4.1 Assign the first cell to the first server, three cells to

the second server and the remaining cells to the third

server then calculate the total cost of the system.

4.2 Assign two cells to the first server, two cells to the

second server and the remaining cells to the third

server then calculate the total cost of the system and

so on.

The final result after partitioning to the three servers, as shown

in Fig. 12, where the first server contains four avatars and three

objects (two cells), the second server contains nine avatars and

three objects (two cells) and the third server contains eight

avatars and six objects (five cells).

The total cost of the system partitioned is:

𝐶𝑃 = 𝑊1 ∗ 𝐶𝑃
𝑊 + 𝑊2 * 𝐶𝑃

𝐿

CP
W

= (ω a𝑖 + Ψ a𝑖 − ω∗|)a𝑖=V𝐽
 P

J=1

CP
W

= 10 * (7 − 11 + 12 − 11 + 14 − 11) = 80

𝐶𝑃
𝐿

 = 𝐶12 + 𝐶21 + 𝐶13 + 𝐶31 + 𝐶23 + 𝐶32

 = 7+(7+5)+(5+4+6)+(6+6+8)+(5+2+4)+(3+4) = 72

𝐶𝑃= 0.5 * 80 + 0.5 * 72 = 76

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.10, December 2011

31

Fig. 12: Partitioning the system into three servers

considering the objects

The minimum cost here is 76. When applying the O-LP

algorithm, we need to move one avatar from the second server to

the first and move three avatars from the third server to the first.

We can't move the avatar from the second server to the first

because the external weight is less than the internal weight as

shown in Fig. 13.

 Fig. 13: The avatars should be moved to the first server

After applying O-LP algorithm as shown in Fig. 14, the cost

becomes 𝐶𝑃= 41. We do not need to apply O-CRP in this

example because the external communication weights of the

avatars and objects are less than the internal weights. So the

final partitioning is given in Fig. 15 with cost = 41 which is

much smaller than the portioning produced by [2].

Fig. 14: The system after applying LP algorithm

4. THE MODIFIED OBJECT LAYERING

PARTITIONING (M-OLP) ALGORITHM

This algorithm is based on the object layering algorithm (O-LP)

with the aim to reduce the execution time of the algorithm which

makes it suitable for making any improvements in the partition

if the environment status is varied.

The proposed M-OLP algorithm, in order to reduce the

partitioning time, will only consider the boarder avatars and

objects when performing the movement from one partition to the

other. The boarder avatars/objects are defined to be the

avatars/objects in the partition that communicate with the avatar

or/and objects in another partition. The non boarder

avatars/objects will not be checked for possible movement.

The steps of the M-OLP algorithm are given below:

01. Begin

02. Initialize variables max_par=0; min_par=0

03. For each avatar ai, create a node vi in GLP;

04. For each vi Є GLP, do {/* initiate */

05. Initialize variables Connected [vi] = false;

06. Initialize variables server_number[vi] = k where v i Є Vk and 1 ≤

k ≤ P;

07. /* note that the server index k for Vk can be obtained from the

output of the RBP algorithm */ }

08. For each object oj, create a node oj in GLP;

09. For each oj Є GLP, do {/* initiate */

10. Initialize variables Connected [oj] = false;

11. Initialize variables server_number[oj] = k where v i Є Vk and 1 ≤

k ≤ P;}

12. While (max_par - min_par or optimization reach>0) {

13. For vi Є VLP do {

14. /* create edges and mark those nodes along the partition

boarder as connected */

15. For vj Є VLP where i ≠j, do {

16. If vj is within the AOI of vi then {

17. Create an edge eji in ELP; /* eji is an edge between vj and vi where

vi ,vj Є VLP */

18. Set the weight of eji=ɀ(vj, vi);

19. If (server_num[vi] ≠server_num[vj])Then {

20. Connected [vi] = connected [vj] = true ;}}}

21. For oj Є VLP where i ≠j, do {

22. If oj is within the AOI of vi then {

23. Create an edge eji in ELP; /* eji is an edge between oj and vi where

vi , oj Є VLP */

24. Set the weight of eji=ɀ(oj, vi);

25. If (server_num[vi] ≠server_num[oj])Then {

26. Connected [vi]= connected[oj] = true; }}}}

27. For vj Є VLP do {

S2

S3 S1

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.10, December 2011

32

28. /* Create edges and mark those nodes along the partition

boarder as connected */

29. For vi Є VLP where j ≠ i, do {

30. If vi is within the AOI of vj then {

31. Create an edge eij in ELP ; /* eij is an edge between vi and vj where

vi , vj ЄVLP */

32. Set the weight of eij = ɀ(vi , vj);

33. If (server_num[vj] ≠ server_num[vi]) then {

34. Connected[vj] ≠Connected[vi] = true; }}}

35. For oi Є VLP where j ≠ i, do {

36. If oi is within the AOI of vj then {

37. Create an edge eij in ELP ; /* eij is an edge between vi and vj

where vi , vj ЄVLP */

38. Set the weight of eij = ɀ(oi , vj);

39. If (server_num[vj] ≠ server_num[oi]) then {

40. Connected[vj] ≠Connected[oi] = true; }}}}}

41. Get max_par , min_par then check optimization reach

42. Move avatars

43. Move objects

44. End

5. WORKING UNDER

HETEROGENEOUS ENVIRONMENT

The previous work assumed that the system components are

homogenous in both server and network link speed. In real life,

this is almost impossible. Thus, an extension of the balancing

equations should be made to improve the allocation algorithms

performance that aims to achieve the balance of the system

components.

In this section we will extend the above work to include the

heterogeneity of the system. First, we will assume that the P

servers are different in speed. This assumption will affect the

distribution of avatars and objects to the servers. High speed

servers can be assigned larger number of avatars and objects

than the lower speed servers without violating the partition

workload balance’s condition.

To illustrate how this heterogeneity will affect the distribution of

avatar and objects to the servers, let's assume that we have 30

avatars and 3 identical servers (as assumed in [2,10]). The

average distribution of avatars workload to the servers is

computed using the equation:

 𝑅𝑣𝑖 = ω a𝑖 + Ψ a𝑖 − 𝑅𝜔∗|a𝑖=V𝐽
 𝑃

𝐽=1 (6)

Where:

 𝑅𝑣𝑖 : represents relative avatar’s average.

𝑅𝜔∗: : represents relative serveri speed and is computed as:

𝑅𝜔∗ = (ω a𝑖 + Ψ a𝑖

n

i=1

∗
𝑠𝑝𝑒𝑒𝑑𝑖

 𝑠𝑝𝑒𝑒𝑑
𝑝
𝑗 =1 𝑗

)

Where 𝑠𝑝𝑒𝑒𝑑𝑖 represents serveri speed and 𝑠𝑝𝑒𝑒𝑑𝑗
𝑝
𝑗 =1

represents the sum of servers’ speeds.

Thus, the average number of avatars in identical servers case

computed as in Eq. (1) = 30/3 = 10 avatars.

When the servers are not identical in speed and their relative

speeds are: 1, 2 and 3 for S1, S2 and S3 respectively, the previous

average computation will not be correct as the computation time

of handling 10 avatars on the first server is 3 times the

computation time of handling them on the third server.

According to this new assumption, the average number of

avatars computed by the following equation is not correct:

CP
W

= (ω a𝑖 + Ψ a𝑖 − ω∗|)a𝑖=V𝐽
 P

J=1

Where ω∗ = ω a𝑖 + Ψ a𝑖
n
i=1 /p is the computational

workload per server under the perfectly balanced workload

partition strategy.

It should be modified to include the variation in the relative

speed as follows:

𝑅𝑣𝑖 = ω a𝑖 + Ψ a𝑖 − 𝑅𝜔∗|a𝑖=V𝐽
 𝑃

𝐽=1 (7)

𝑅𝜔∗ = (ω a𝑖 + Ψ a𝑖
n
i=1 ∗

𝑠𝑝𝑒𝑒𝑑 𝑖

 𝑠𝑝𝑒𝑒𝑑
𝑝
𝑗=1 𝑗

) (8)

So, the workload cost is computed using the following equation:

CP
W

= (ω a𝑖 + Ψ a𝑖 − 𝑅𝑣𝑖|)a𝑖=V𝐽
 P

J=1 (9)

Where 𝑅𝑣𝑖 = ω a𝑖 + Ψ a𝑖 − 𝑅𝜔∗|a𝑖=V𝐽
 𝑃

𝐽=1

is the computational workload per server under the perfectly

balanced workload partition strategy.

Thus if we partitioned the 30 avatars on the above three servers

considering the variation in their speed as 5, 10 and 15 avatars

for the three servers respectively, the variance in workload will

be 0 which is the optimal case. This is computed as follows:

𝐶𝑃
𝑊

 = 10*{|(5–30)*1/6|+ |(10 – 30)*2/6| + |(15 – 30(*3/6|

 = 10*{|5 – 5| + |10 -10| + |15 – 15|}

 = 10 * {0 + 0 + 0} = 10 * 0 = 0

5.1 Illustrating Example

We perform the same steps of the O-RBP on the environment

described above in Fig. 3 assuming that the servers are

heterogeneous and the relative servers’ speed is 3:2:1 (rather

than equal in the previous sections).

After distributing the avatars and objects to the three

heterogeneous servers, the minimum cost was found to be =59

(where the first server contains 19 avatars and objects, the

second server contains 9 avatars and objects and the last server

contains 5 avatars and objects) as shown in Fig. 15.

Fig. 15: System containing three servers

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.10, December 2011

33

When we apply the O-LP algorithm, we can move two avatars

from the first server to the second server to reduce the workload

cost by two steps as shown in Fig. 16.

Fig. 16: Assigning the avatar which moves to the second

server

The total system cost is computed to be:

𝐶𝑃 = 𝑊1 ∗ 𝐶𝑃
𝑊 + 𝑊2 * 𝐶𝑃

𝐿

CP
W

= (ω a𝑖 + Ψ a𝑖 − ω∗|)a𝑖=V𝐽
 P

J=1

CP
W

= 10*(|(17-33)*3/6|+|(11-33)*2/6|+|(5-33)*1/6| = 10

𝐶𝑃
𝐿

 = 𝐶12 + 𝐶21 + 𝐶13 + 𝐶31 + 𝐶23 + 𝐶32

 =(3+4+6+5+2)+(5+4+6+8+3)+(4)+(4)+(3+4)+(3+5) = 69

𝐶𝑃= 0.5 * 10 + 0.5 * 69 = 39.5

After moving the avatar, the system partitioning is shown in Fig.

17. We can also move another avatar to reduce the workload

cost even more. After we move another avatar, we calculate the

total cost of the system again. 𝐶𝑃 = 38.

Fig. 17: Moving another avatar to the second server

This is the final partitioning on the three server generated by O-

RBP and O-LP algorithms. When we apply O-CRP, the same

system is produced as most of avatars and objects communicate

in the same server larger than they communicate with other

avatars and objects in other servers.

We note that the third server now has fewer cells while the first

server has more cells than produced when the speeds were equal

as the third server speed now i1 1/3 of the first server. However,

this does not violate the balance of the system as each server

will handle a number of avatars and objects proportional to its

speed.

5.2 Link Speed Heterogeneity

The second parameter to consider in order to generalize the

partitioning cost equations is the network link speed. Equation

(2) that was used to compute the communication cost between

partition Vl and Vm (for l≠ m), denoted as Clm [5], can now be

expressed as:

𝐶𝑙𝑚 =

 {𝜙𝑆𝑙 ,𝑆𝑚𝑎𝑗 ∈𝑉𝑚𝑎𝑖∈𝑉𝑙

(ɀ 𝑎𝑖 ,𝑎𝑗)

𝐿𝑆𝑙 ,𝑚
} +

 {𝜙𝑆𝑚 ,𝑆𝑙𝑎𝑖∈𝑉𝑙𝑎𝑗 ∈𝑉𝑚

(ɀ 𝑎𝑗 ,𝑎𝑖)

𝐿𝑆𝑚 ,𝑙
} +

 {𝜙𝑆𝑙 ,𝑆𝑚o𝑗 ∈V𝑚a𝑖∈V𝑙
(

z(ai ,o j)

𝐿𝑆𝑙 ,𝑚
)} (10)

The first term of the above equation expresses the

communication cost for transmitting information updates from

partition Vl to Vm between two avatars on a link with speed

LSl,m. The second term expresses the communication cost for

transmitting information updates from partition Vm to Vl

between two avatars on a link with speed LSm,l and the third

term expresses the communication cost for transmitting

information updates from partition Vm to Vl from avatar to

object on a link with speed LSl,m.

 Let 𝐶𝑃
𝐿

 be the communication cost of a given partition strategy

P, where 𝐶𝑃
𝐿

 is computed as:

𝐶𝑃
𝐿 = 𝐶𝑙𝑚

𝑃
𝑚>𝑙

𝑃
𝑙=1 (11)

Therefore, 𝐶𝑃
𝐿

 represents the total server-to-server

communication cost of a given partition P. This assumption can

be easily relaxed and can be included in the total cost CP. The

overall cost of the partition strategy P, denoted by CP, can be

expressed as

 CP = W1CP
W + W2𝐶𝑃

𝐿

5.3 Experimental Results

In this section, the performance of the proposed algorithms is

compared to the performance of the previous partitioning

algorithms in [2]. We will investigate the effect of the number of

objects on the cost of the system and the effect of number of

avatars on the execution time of the partitioning algorithm under

the different distribution scheme of the avatars and objects in the

environment.

We will use three different methods to generate the position of

each avatar in the virtual world. These methods are a) Uniform

Distribution, b) Skewed Distribution, c) Clustered Distribution

[2] as shown in Fig. 18.

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.10, December 2011

34

Fig. 18 a) Uniform Distribution, b) Skewed Distribution, c)

Clustered Distribution

We have developed a simulation tool (written in c# 2008 express

edition), intel@ coreTM 2 Duo processor T6400 (2.0 GHZ)

,320GB (5400RPM) hard Drive , and 4096MB DDR2 SDRAM

(2 Dimm).

5.4 Effect of number of objects on the system

cost

A virtual world with a dimension of 4 * 4 units is used in this

experiment. The total number of avatars in this virtual world is

equal to 100 and the number of servers P is equal to three. The

workload weighting (W1), and the communication cost

weighting (W2) are set to 0.5. The diameter of the AOI of each

avatar is equal to 30. We change the number of objects from 0 to

100 to show the effect of neglecting the objects on the cost.

Fig. 19: System cost (CP) under variable number of objects

using uniform distribution

We compare the proposed algorithms that consider the objects to

the previous algorithm that neglects the objects [2]. Figures 19,

20 and 21 show the experimental results under the uniform,

skewed, and clustered location distributions, respectively.

Fig. 20: System cost (CP) under variable number of objects

using skewed distribution

Fig. 21: System cost (CP) under variable number of objects

using cluster distribution

These figures show that the total cost of the system decreases for

any number of objects using the proposed algorithms than the

cost if we did not consider the objects during the partitioning

(using Lui and Chan algorithms in [2]) at the different types of

distributions of objects. However, the system cost of the uniform

distribution is less than the skewed and clustered distribution as

the other two distributions concentrate the objects at certain cells

making the workload high for the server handling them.

5.5 Effect of Number of Avatars on Execution

Time
A virtual world with dimension 4 * 4 units is used in this

experiment. The number of avatars is changed between 50 and

500 and the number of servers P is three. Both the workload

weight W1, and the communication cost weight W2 equal 0.5.

The diameter of the AOI of each avatar equals 30. In this

experiments we study the effect of using the modified O-LP

(MO-LP) on the execution time required for the partitioning

process compared to the time required using the previous LP

algorithm developed by [2].

Figures 22, 23 and 24 illustrate the execution time required for

the partitioning process under the uniform, skewed, and

clustered objects location distributions, respectively using the

modified layering algorithm and the old layering algorithm by

Lui and Chan.

Fig. 22: Execution time under variable number of avatars

using uniform distribution

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10 11

to
ta

l s
ys

te
m

 c
o

st

number of objects

not cosidering
object

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 1011

to
ta

l s
ys

te
m

 c
o

st

number of objects

not considering object

considering object

0
500

1000
1500
2000
2500
3000
3500

1 2 3 4 5 6 7 8 9 1011

to
ta

l s
ys

te
m

 c
o

st

number of objects

not considering object

considering object

0

100

200

300

400

500

600

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

e
xe

cu
ti

o
n

 t
im

e

number of avatars

time(Lui &Chan)

time(modified
algorithm)

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.10, December 2011

35

Fig. 23: Execution time under variable number of avatars

using skewed distribution

Fig. 24: Execution time under variable number of avatars

using cluster distribution

The above figures show that the execution time using the MO-

LP algorithm is less than the execution time of Lui and Chan

algorithm (about 40%) for all cases of objects distribution. This

is due that we only consider the boarder avatars and objects

when moving an avatar or an object which reduces the execution

time of movement. These figures also show that the algorithm

takes less execution time in uniform distribution of objects and

avatars than in skewed and clustered distributions

6. CONCLUSIONS
This paper discussed the partitioning problem in DVE. To build

a scalable DVE system, we use multiple servers DVE

architecture. Under the MSDVE architecture, there is a necessity

to balance the computational workload and, at the same time,

reduce the communication cost of a DVE system. The proposed

algorithms that consider the objects for solving the partitioning

problem in distributed virtual environments were presented. The

performance results extracted from the experiments conducted

for testing the efficiency of the algorithms show the importance

of considering the objects when allocating the virtual

environment to the servers. We also proposed a modified object

layering algorithm to reduce the execution time of the

partitioning process. The results show that the proposed

algorithms reduce considerably the total system cost while

achieving the balance among the servers.

The heterogeneity of the system was the third issue handled in

this paper. Previous work assumed homogeneity of the servers

and network link speeds. Neglecting this heterogeneity was

proven to lead to imbalance of the system components. System

balancing equations were modified to be suitable for

heterogeneous system. This extension enables the allocation

algorithms to be used on heterogeneous systems by modifying

balancing equations and conditions used in the algorithms.

7. REFERENCES
[1] Dalgarno, B. and J. W. Lee, M. (2011) hat are the learning

affordances of 3-D virtual environments?. British Journal

of Educational Technology, 41:1, 10–32.

[2] Lui, J.C. and Chan M. (2002) An Efficient Partitioning

Algorithm for Distributed Virtual Environment Systems.

IEEE Trans. Parallel and Distributed Systems, 13:3, 193-

211.

[3] Morillo, P., Ordun J.M., Ferna´ndez, M. and Duato, J.

(2005) Improving the Performance of Distributed Virtual

Environment Systems. IEEE Trans. Parallel and Distributed

Systems, 16:7, 637-649.

[4] Wang, L., Laszewski, G., Kunze, M., Tao, J., and Dayal, J.

(2010) Provide Virtual Distributed Environments for Grid

computing on demand. Advances in Engineering Software,

41:2, 213-219.

[5] Morillo, P., Rueda, PS., PJ. Ordun J.M., and Duato, J.

(2007) A latency-aware partitioning method for distributed

virtual environment systems. IEEE Trans. Parallel and

Distributed Systems, 18:9, 1215–1226.

[6] Zhou, S., Cai, W., Lee, B., and Turner, S., (2004) Time-

space consistency in large-scale distributed virtual

environments. ACM Transactions on Modeling and

Computer Simulation (TOMACS), 14: 1.

[7] Morillo, P., Rueda, S., Orduña, J.M. , and Duato, J. (2010)

Ensuring the performance and scalability of peer-to-peer

distributed virtual environments. Future Generation

Computer Systems, 26:7, 905-915.

[8] Huang, J., Du, Y. and Wang, C. (2003) Design of the

Server Cluster to Support Avatar Migration. IEEE

Computer Society, 1087-1092.

[9] De Grande, R.E., Boukerche, A. and Ramadan,

H.M.S. (2011) Decreasing Communication Latency

through Dynamic Measurement, Analysis, and Partitioning

for Distributed Virtual Simulation. IEEE Transactions on

Instrumentation and Measurement, 60:1, 81 – 92.

[10] Bouras, C., Giannaka, E. and Tsiatsos, T. (2007) An Object

Driven Partitioning Approach for Distributed Virtual

Environments. IEEE computer society, 0-7695-3049-4.

[11] Morillo, P. and Ferna´ndez, M. (2003) A GRASP-Based

Algorithm for Solving DVE Partitioning Problem.

Proceedings of 2003 Int’l Parallel and Distributed

Processing Symp. (IPDPS 2003), April.

0

500

1000

1500

2000

2500

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

e
xe

cu
ti

o
n

 t
im

e

number of avatars

time(Lui & Chan)

0

2000

4000

6000

8000

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

e
xe

cu
ti

o
n

 t
im

e

number of avatars

time(Lui & Chan)

time(modified
algorithm)

http://onlinelibrary.wiley.com/doi/10.1111/bjet.2010.41.issue-1/issuetoc
http://www.sciencedirect.com/science/journal/09659978
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S0965997809X00116&_cid=271418&_pubType=JL&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=948bdcb8fae6c855a5b5a3aa6e3e76b9
http://dl.acm.org/author_page.cfm?id=81328491256&coll=DL&dl=ACM&trk=0&cfid=71818172&cftoken=54484771
http://dl.acm.org/author_page.cfm?id=81100430813&coll=DL&dl=ACM&trk=0&cfid=71818172&cftoken=54484771
http://dl.acm.org/author_page.cfm?id=81100386451&coll=DL&dl=ACM&trk=0&cfid=71818172&cftoken=54484771
http://dl.acm.org/author_page.cfm?id=81100229634&coll=DL&dl=ACM&trk=0&cfid=71818172&cftoken=54484771
http://www.sciencedirect.com/science/journal/0167739X
http://www.sciencedirect.com/science/journal/0167739X
http://www.sciencedirect.com/science/journal/0167739X
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S0167739X10X00048&_cid=271521&_pubType=JL&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=6bb5cbb13b7b306d0713b0c8456fb248
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=19

