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ABSTRACT 

This paper mainly analyzes the applications of the Generator 

matrices in a Continuous Time Markov Chain (CTMC). Hidden 

Markov models [HMMs] together with related probabilistic 

models such as Stochastic Context-Free Grammars [SCFGs] are 

the basis of many algorithms for the analysis of biological 

sequences. Combined with the continuous-time Markov chain 

theory of likelihood based phylogeny, stochastic grammar 

approaches are finding broad application in comparative 

sequence analysis, in particular the annotation of multiple 

alignments, simultaneous alignment. It was originally used to 

annotate individual sequences, then in later stages stochastic 

grammars were soon also combined with phylogenetic models to 

annotate the alignments. Thus, trees have been combined with 

HMMs to predict genes and conserved regions in DNA 

sequences, secondary structures and transmembrane topologies 

in protein sequences and base pairing structures in RNA 

sequences. The importance of Generator matrix is analysed in 

deriving the various properties of continuous time Markov chins 

with examples from the phylogenetic tree. 
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1. INTRODUCTION 
A Markov process can have three important properties such as 

homogeneity, stationary and reversibility.  A homogeneous 

process has an equilibrium distribution which is the limiting 

distribution when time approaches infinity.  When a continuous 

time Markov chain is time homogenous then it satisfies the 

condition Pij (t, s) = Pij(s) for all t  0. 

 

Since the set of states is discrete and the time parameter is 

continuous it is clearly not possible for the sample paths Xt (w) 

to be continuous functions of„t‟.  At random times  

T0 = 0, T1, T2 … are called jump times (or transitions times) the 

process will change to a new state and the sequence of states 

constituting a discrete time process Y0, Y1…  The jump time is 

given by 
tΔ

t)(ΔP
limq

ij

0tΔ
ij


  and the exit rate from state „i‟ is 

given by .
tΔ

1t)(ΔP
limqq

ij

0tΔ
ij

ijii







  Hence a CTMC is a 

stochastic process {X(t) | t ≥0, t  lR} such that for all t0,...,tn-

1,tn, where t   lR, 0 ≤ t0 <…< tn-1 <tn < t , for all n lN. 

Alternatively it is defined as  P(X(t + s) = y / X(s) = x; X(tn) = 

xn,……..X(t1) = x1) = p(y; x; t).The  Markov property and time 

homogeneity imply that if at time t the process is in state j, the 

time remaining in state j is independent of the time [13]. The 

time spent in state j is called as Sojourn times which are 

exponentially distributed. An amino acid substitution model 

which is discussed in this paper using the generator matrix can 

be used for the Likelihood calculation which is the simplest 

applications of Phylo-grammers [3] , [7].The aim is to find the 

maximum likelihood estimate of the various arm lengths in the 

tree, given some continuous-time evolutionary model. This is 

done by writing down the likelihood of the data in terms of these 

lengths as parameters and then maximizing this likelihood with 

respect to these lengths [18]. 

 

2. Q MATRICES AND THEIR 

EXPONENTIALS 
The generator matrix is also called as an intensity matrix, rate 

matrix or „Q” matrix of the Markov chain and is used to describe 

the process completely.  It is also used to obtain the state 

transition probability matrix at discrete intervals of time.  A 

regular discrete time Markov chain is called as an Embedded 

Markov Chain (EMC) or a jump process [11] Every element of 

the one step transition probability matrix of the EMC can be 

obtained from the Q matrix and hence the stationary 

probabilities are also calculated.  The Ergodicity of the Markov 

chain can also be tested using the Q matrix. 

 

Let the Q matrix of a continuous time Markov chain on a 

countable set I be defined as Q = (qij) for i, j  I has the 

following properties: 

 

(i) 0  qii <       i 

(ii) qij  0               i  j 

(iii) 0q

Ij

ij 


         i. 

Thus in each row of Q the off-diagonal entries are to be any 

non-negative real numbers subject only to the constraint that the 

off-diagonal row sum is finite. 

.qq

ij

iji 


 

The diagonal entry qii is defined as qi, making the row sum as 

zero. 

Consider a Q matrix as     
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From the above Q matrix the continuous time Markov chain can 

be represented by the following diagram as 

 

 

 

 

 

 

 

 

 

 

Fig 1: Markov Graph for the given Q matrix 

 

Thus each off-diagonal entry qij assumes the value attached to 

the (i, j) arrow on the diagram which is the rate of going from i 

to j.  The numbers qi are called the rate of leaving i which are 

not shown in the diagram. For any matrix Q = (qij, i, j  I) the 

series 


0K

K

!K

Q
 converges to eQ then let P (t) = etQ.  Then P(t) is 

the unique solution to the forward equation 

.1P(0)withP(t)Q,P(t)
dt

d
  

Also it is the unique solution of the backward equation as 
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Let P is a Stochastic Matrix of the form eQ then define a process 

indexed by {n | m : n = 0, 1, 2, …} as 
m

nn/m XX   then 
m

nX  be 

the discrete time Markov process.  Thus discrete time Markov 

chains with arbitrarily fine grids {n | m: n = 0, 1 …} as time 

parameter sets give rise to Markov processes when sampled at 

integer time [4]. 

2.1 Calculation of P from Q Matrix 
Consider a Q matrix defined by  
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The characteristic equation of the above matrix is det (Qx) = 

   042  xxx  Hence the eigen values are 0, 2, 4.  

Let Pij (t) = a + be2t + ce4t for some constants a, b and c with i, 

j = 1, 2, 3, t  0. 

These constants then obey the following equations as 

a + b + c = ij with P (0) = 1. 

b (2) + c (4) = qij   as   QP(0)
dt

d
  

b (2)2 + c (4)2 = 
(2)
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Where U is an invertible matrix used to diagonalise Q.  The 

constants can also be determined by 

 P11(0)  = 1 = a + b + c       (1) 

 (0)P11
 = q11 =  2 =  2b  4c     (2) 

 
(2)
1111 q(0)P   = 7 = 4b + 16c      (3) 

(2)    23/242b   

      4b  3 =  4 

                        4b =  4 + 3 =  1 
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    = 3/8 

 P11 (t) = 3/8 + 1/4 e2t + 3/8 e4t. For any time„t‟ the values of 

pij can be calculated after evaluating the constants a, b, c.  

2.2 Applications of Q Matrix 
The stationary distribution π is a normalized (meaning that the 

sum of its entries is 1) left eigenvector of the transition matrix 

associated with the eigenvalue 1 [9].  The Kolmogorov 

differential equation can also be defined using the Q matrix as 

π(t)Q.π(t)
dt

d
   If π(t)lim

t 
 exists then taking the limit of the 

Kolmogorov differential equation[14]. The steady state 

probabilities can be obtained as Q = 0 and e = 1 with  j = 1.  

Also  






ji

iijjjjj (t)πq(t)πq(t)π
dt

d
 (j = 1, 2 …) 

          (t)πq(t)π
dt

d
0000    (j = 0) 

These above equations can be written as f(t)βf(t)
dt

d
  where  

is called the decaying rate if ( < 0) or growth rate (if  > 0) of 

the entity that f (t) represents. Also the state transition 

probabilities for discrete continuous-time Markov chains be 

expressed as Pij = P [xK+1 = j | Xk= i] are correlated to the Q 

matrix as 

ii

ii
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2.3 Numerical Example 
Evolutionary analyses of sequences are conducted on a wide 

variety of time scales. A subset of the class of phylo-grammars 

is the class of homogeneous substitution models, where the 

mutation rate is not a function of position but it  is identical for 

every site. Such models can be represented as a single-state 

phylo - HMM  [6].Thus, it is convenient to express these models 

in terms of the instantaneous rates of change between different 

states [18]. Given a starting (ancestral) state at one position, and 

1 
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a branch length expressing the expected number of changes to 

have occurred since the ancestor, then we can derive the 

probability of the descendant sequence having each of the four 

states. By expressing models in terms of the instantaneous rates 

of change we can avoid estimating a large numbers of 

parameters for each branch on a phylogenetic tree (or each 

comparison if the analysis involves many pair wise sequence 

comparisons). Branch lengths (and path lengths) in phylogenetic 

analyses are usually expressed in the expected number of 

changes per site. The path length is the product of the duration 

of the path in time and the mean rate of substitutions.  

Phylogenetic methods, particularly for molecular sequence data, 

have become the primary tool for the determination of 

evolutionary relationships. These tools have been used to 

confirm expected relationships such as the chimpanzees are the 

closest living relative to humans. Phylogenetic trees have been 

used  for  various instances to provide evidence about the likely 

transmission of HIV. Phylogenetics is being used increasingly in 

comparative genomics and study of gene function. By 

comparing exact sequences, the amount of sequence divergence 

can be determined. This measurement of divergence provides 

information about the number of changes that have occurred 

along the path separating the sequences. The simple count of 

differences between sequences will often underestimate the 

number of substitution because of multiple hits. Since it is very 

much difficult to estimate the exact number of changes that have 

occurred, branch lengths (and path lengths) in phylogenetic 

analyses are usually expressed in the expected number of 

changes per site. The path length is the product of the duration 

of the path in time and the mean rate of substitutions. While 

their product can be estimated, the rate and time are not 

identifiable from sequence divergence. The phylo-grammar 

approaches that have been used to day have often used 

approximate  and inefficient versions of EM to estimate 

parameters [10],[ 15], or have been limited to particular 

subclasses of model, e.g. reversible or otherwise constrained 

models [2],[5] also showed how to apply the EM algorithm to 

estimate substitution  rates in a phylogenetic reversible 

continuous-time Markov chain model.  

The descriptions of rate matrices reflect the relative magnitude 

of different substitutions.  The scaling of these matrices can be  

done by multiplying every element of the matrix by the same 

factor, or simply by scaling the branch lengths. If we use  β to 

denote the scaling factor, and ν to denote the branch length 

measured in the expected number of substitutions(changes) per 

site then βν is used the transition probability formulae below in 

place of μt. Note that ν is a parameter to be estimated from data, 

and is referred to as the branch length, while β is simply a 

number that can be calculated from the rate matrix (it is not a 

separate free parameter). 

Phylogenies are usually estimated from aligned DNA sequence 

data. In phylogenetics, sequences are often obtained by finding a 

nucleotide or protein sequence alignment, and then taking the 

bases or amino acids at corresponding positions in the alignment 

as the characters. Sequences achieved by this might look like 

AGCGGAGCTTA and GTAGACGC. Commonly used models 

of molecular evolution treat sites as independent. These 

common models just need to describe the substitutions among 

four bases A, C, G, and T at a single site over the time. This 

substitution process is modeled as a continuous-time Markov 

chain. 

Let X (t) represents the base at time t. Hence   X (t) {A, C, G, 

T} for DNA. The variables used in the model are obtained from 

the results of the phase one phylogenetic analysis. Time t and s 

are the observed sampling times for an inferred 

ancestor/descendant transition. States i and j represent the 

ancestor and descendant genotypes. The number of transitions 

from i to j were aggregated for all such ancestor/descendant 

relationships among all trees and are represented by N (i,j). [1] 

presented parameter estimates for a continuous time Markov 

process that are analogous to estimates for a discrete time 

Markov chain. Let P(t) be the transition probability matrix for a 

continuous Markov model. In a time interval t, the system 

undergoes a change of state (or stays in the same state, a 

repetition) according to a set of probabilities associated with the 

state. P(t) can be expressed in the form [12]  

n

n

tQ

n

tQ
IlimeP(t) 
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
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

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where Q is the infinitesimal 

generator of the continuous Markov process is an m×m matrix 

encoding the time independent transition rates for a set of „m‟ 

states. 

 

Consider the Rate matrix 

Q = {qij} = 





























4.13.09.02.0

2.09.03.04.0

6.03.01.12.0

2.06.03.01.1

    then  

The time to the next transition is ~ e (qi), Where qi = -qii .The 

transition is to state j with probability   


ik

ik

ij

q

q
.  Let the 

beginning is at A, change to G at time 0.3, change to C at time 

0.8, and then no more changes before time t = 1. 

2.4 Transition Probability Matrices 

The transition matrix is P(t) =
tQe .The matrix Q can be 

factored as A D A−1 where D is a diagonal matrix of the Eigen 

values and A is the matrix whose columns are corresponding 

Eigen vectors. All rate matrices Q will have an Eigen value 0 

with an eigenvector of all 1s as the rows sum to 0 by 

construction.  For the example rate matrix Q has Eigen values 0, 

−1, −1.5, and −2. 

 

Hence    

Q = 
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0.0    0.2-   0.0     0.2

0.2-    0.3    0.3-   0.2
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The probability transition matrix is of the form P (t) = A eDt A−1.  
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Let the stationary distribution be   =





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







. For finite-state-

space chains, irreducibility is sufficient. 

When the time t is large enough, the probability Pij(t) will be 

close to j for each j. 

Also the stationary distribution satisfies T Q = 0. 

i.e.  4321 
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
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
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 0000
 

 

i.e.         -1.1
1 +.2

2 +.4
3 +.2

4 = 0  

                .3
1 -1.1

2 +.3
3 +.9

4 = 0 

                  .6
1 +.3

2 -.9
3 +.3

4 = 0 

                .2
1 +.6

2 +.2
3 -1.4

4 = 0 

Also               
1 + 2 + 3 + 4 = 1.  

 

Solving the above System the Stationary Probabilities 

were  2.3.3.2. . 
 

If β denotes the scaling factor, the value of β can be found by 

forcing the expected rate of flux of states to 1. The diagonal 

entries of the rate-matrix (the Q matrix) represent -1 times the 

rate of leaving each state. Thus we can find the expected rate of 

change by calculating the sum of flux out of each state weighted 

by the proportion of sites that are expected to be in that class. 

Setting β to be the reciprocal of this sum will guarantee that 

scaled process has an expected flux of 1, i.e. 














 

i

iii 1 . For DNA substitution 

models, mainly mechanistic models (as described above) are 

employed. The small number of parameters to estimate makes 

this feasible, but also DNA is often highly optimized for specific 

purposes (e.g. fast expression or stability) depending on the 

organism and the type of gene, making it necessary to adjust the 

model to these circumstances. Unlike the DNA models, amino 

acid models traditionally are empirical models. To evaluate the 

statistical significance of the rate classes found by the 

exploratory CVA analyses, we use the following likelihood-

based approach.  The hidden-state model allows a variety of 

different substitution rate matrices to be used, depending on a 

hidden state variable that specifies the structural context of the 

site [8].  We assume initially that the substitution matrix at site i 

has the form miQ, where the rate matrix Q is common to each 

site, and mi   ≥ 0 specifies the relative rate at site i [ 16]. 

 

2.5 Comparative Study 
The inference of generators for Markov jump processes from 

discretely sampled time-series is a crucial problem in various 

field of science.In most practical cases of the embedding 

problem for Markov chains the generator of a particular 

transitional probability matrix does not exist.To find the 

transitional probability matrix the condition P(t) =
tQe  is used. 

The computation of Q proceeds by various methods such as 

Diagonal adjustment (DA), weighted adjustment (WA) and 

MCMC methods. In this paper the using the Diagonal 

Adjustment method the transition probability matrix along with 

the Stationary Probabilities were calculated.[19] described in the 

estimation of portfolio credit risk and pricing credit risk 

securities. They concluded  the method WA performs well by 

calculating the transitional probability matrix and comparing it 

with actual transitional probability matrix.[20] describes in 

credit risk management MCMC method gives the diffence in 

both transitional probability matrix is very less when compared 

with DA,WA but  the stationary distribution was not calculated. 

Hence when it is required to calculate the long run stationary 

distribution for many the inference problems the method 

discussed in this paper(DA) is Parsimonious. 

3. CONCLUSIONS 
Modeling in terms of the rate matrix is useful in various ways. 

For example, a hydrophobic ally-inclined generator matrix 

might be used for buried amino acids and a hydrophilic matrix 

for exposed amino acids. An extension to the hidden-state model 

allows the hidden state variable itself to change over time at 

some slow rate, modeling rare changes in structural context. An 

alternative extension allows correlations between hidden state 

variables at adjacent sites. In this paper a sequence of alignment 

of nucleotide from the Substitution model with four basics is 

expressed as a continuous time Markov Chain in terms of its 

generator matrix. Using the Generator matrix the Stationary 

probabilities and the Transition Probabilities  are calculated. The 

rate of leaving the state, the maximum likelihood of the rate 

classes can also be calculated using the generator matrix. 
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