
International Journal of Computer Applications (0975 – 8887)

Volume 34– No.9, November 2011

49

A Tool for Visualizing ARTIS Agents Specification

Toufik MARIR
Oum El Bouaghi University

Oum El Bouaghi
Algeria

Farid MOKHATI
Oum El Bouaghi University

Oum El Bouaghi
Algeria

Zina MECIBAH
Oum El Bouaghi University

Oum El Bouaghi
Algeria

ABSTRACT

Real-time agent based systems are characterized by their

complexity in which several skills are required in all devel-
opment process stages. Specially, the communication between
the different development groups is a vital task. The graphical
specifications play an interesting role in understanding system
aspects. In this paper we propose the transformation of XML
based ARTIS agent specifications to graphical representa-
tions. Using our approach we can visualize the ARTIS agent
specifications in informal graphical representation designed
for all kinds of users or in based object UML diagram de-

signed for specialist users. Moreover, a tool is developed to
support the visualization process.

General Terms

System Understanding, Graphical Visualization.

Keywords

Real Time Agents, ARTIS Model, MAS Understanding, Ob-
ject UML Diagram, XML.

1. INTRODUCTION
Real-time agents represent an ideal solution for developing
complex systems in which real time aspects play a primordial
role. Providing important perspectives [01], real-time agents
are used to develop a wide range of applications such as avio-
nics, adaptive control, robotic and computer vision [02].
However, the applied methodologies for developing real-time
agents still immature [03]. Even though formal methods are

suggested to develop critical systems, the use of formal me-
thods requires more time and effort [04]. For this purpose,
graphical specifications can be shown as a complement to
formal methods. In fact, graphical specifications provide,
among others advantages, an ideal basis to assist the commu-
nication activity among the stakeholders in a better and faster
way [05, 06]. In this paper we aim to transform XML specifi-
cation of ARTIS agents to graphical representations that

makes its understanding and its exploitation easier.

In order to make agent respect real-time constraints, several
models are proposed like: RT1 [07], ANYMAS [08], ARTIS
[09] and SIMBA [10]. In order to visualize the structural
aspects of given systems, the proposed approach should target
known model of real-time agent. Our approach is based upon
ARTIS architecture which is one of the well-known real-time
agent models. In fact, ARTIS model is composed of two le-
vels of agents: an ARTIS agent and a set of internal agents

(called in-agent) [09]. Among other features, ARTIS agent
guarantees all the critical time requirements of reflex level by
means of off-line scheduling. Moreover, this model has strong
methodologies basis consisting in the: RT-MESSAGE [11]
methodology which is a methodology to develop based AR-
TIS real-time multi-agent systems, InSIDE tool which is a
tool to designing and debugging ARTIS agent [12] and sever-
al attempts to formalize ARTIS agent [13, 14].

Despite all these features, the existence of several internal
agents within the ARTIS agent that are made in turns by
several knowledge sources that make this agent model too
complex. Hence, the graphical specification of ARTIS based
systems is more than necessary. In our approach we transform

ARTIS based systems written in XML language to visual
graphical specifications. XML language is a standard to inte-
roperability inter applications allowing exchange and integra-
tion data [15]. The target visual representation is either
informal graphical representation for non-specialist users or
an object diagram of UML for more specialist users.

The remainder of this paper is organized as follow: In section
2, we give a brief overview of related works. Section 3
presents the ARTIS agent model followed by the description

of XML language (in section 4). In section 5, we explain the
visualization process. The developed tool is presented in sec-
tion 6. Finally, we give a conclusion and some future works in
section 7.

2. RELATED WORK
Software products become more and more complex and the
time devoted to their development process increases signifi-
cantly with the software complexity. Making the representa-
tion of software easy can help in the development of this lat-

ter. In fact, the appropriate graphical representation provides a
basis for understanding the software in better and faster way.
By appropriate graphical representation we mean a representa-
tion that takes into account the perception and cognitive fac-

tors of human. Several tools are proposed to visualize differ-
ent software products at different levels (requirements, design
and code).

In a recent study, Caserta and Zendra [06] classified the soft-
ware’s aspects which can be tackled by the visualization tech-
niques in three kinds: static aspects, dynamic aspects and
evolution aspects of software. The authors give a survey on
the visualization techniques of the static aspects of the soft-

ware and its evolution. The remarkable lack of studies that
address the agent based software in this survey is justified, in
our opinion, by the rarity of works which attempt the visuali-
zation of multi-agent systems.

The multi-agent paradigm is a powerful one to develop com-
plex systems. Hence, the visualization of the system’s beha-
vior in its macroscopic level can help in understanding and
defining the system under development. Abdelaziz and al [16]
used Use Case Maps (UCMs) to visualize a high level view of

multi-agent medical diagnosis system. UCMs are a high-level
visual representation of activities that ignore the implementa-
tion details.

Adopting the based-model architecture to develop multi-agent
systems, Anna Perini and Angelo Susi [05] have developed a
tool for agent-oriented visual modeling. Using based-model
approach, developers need tools for specifying both structural
and dynamic properties; also they need tools for transforming

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.9, November 2011

50

the specification through development steps. Therefore, the
authors provide a complete environment which allows: the
informal specification in Tropos [17] methodology, the auto-
matic transformation of the informal specification into formal
specification, the verification of the formal specification using

model checking technique and finally the results of the model
checker execution can be visualized in Tropos notation.

According to the classification given by Caserta and Zendra
[06], our work is in line with the visualization of the static
aspects of real-time multi-agent systems. In fact, the visuali-
zation of the formal specifications of real-time multi-agent
systems is, in our knowledge, almost inexistent.

Ignoring real-time aspect of ARTIS agent, we can compare

our work with previous works of the formalization of ordinary
agent. Thus, the visualization of ARTIS agent shares the same
objective with all previous studies. In this paper, we prefer to
begin with visualizing ARTIS agents’ static aspects. Compar-
ing our approach with the one proposed by Tawfig Abdelaziz
and al [16], our approach is more generic. They chose a spe-
cific application domain (medical diagnosis system) and a
specific notation (Use Case Maps) which can limit the use of

their approach. In contrast, our study can be applied in any
based ARTIS application and by any kind of users (from non-
specialist to more specialist users).

Conversely to the tool presented in [05] which transform the
informal specification to formal one and vice versa, our tool
allows only the visualization of formal specification of ARTIS
models. This restriction is justified by the existence of several
studies for the use of formal techniques in ARTIS agent con-

text [13, 14, 18]. Moreover, the tool presented in [05] cannot
support the real-time aspect of real-time agent. In fact, our
study is motivated by the lack of methodologies and tools
addressed the real-time agent development.

3. ARTIS AGENT
ARTIS agent is an extension of blackboard architecture de-

signed to operate in hard real-time environment [09]. It has
two levels of agents: ARTIS agent (AA) and set of internal
agents (called in-agents). As it is presented in figure 01, AR-
TIS model consists of: set of sensors and effectors to interact
with the environment, set of internal agents to model the AR-
TIS behavior, set of beliefs organized in based frame black-
board and control module that is responsible of real-time ex-
ecution of in-agents.

Two kinds of in-agents can exist belong ARTIS agent: critical
and not-critical in-agents. The critical in-agents consist of

reflex level (that provides a bounded time answer with mini-
mum quality) and cognitive level (for providing more quality
answer). On the other hand the not-critical in-agents have only
cognitive level.

An internal agent is implemented using knowledge sources as

main stones [12]. In fact, the perception and cognitive layers
of in-agent is composed of several ordered knowledge sources
list (called multi-level knowledge source or MKS) used to
implement the anytime algorithm or multiple methods. Each
MKS provides several solutions to the same problem with
different levels of quality. The action layer is composed of set
of knowledge sources.

The choice of ARTIS architecture as a basis of our work is

motivated by many reasons:

1. It guarantees all hard real-time constraints by means

of off-line scheduling,

2. It is organized on several levels of abstraction (from

simple knowledge source to complex ARTIS agent),

3. It uses both well-known techniques of real-time ar-

tificial intelligence (anytime algorithm and multiple

methods),

4. It is a model in full evolution taking into account its

several extensions like SIMBA [10] and RT-

MESSAGE [11].

Several works attempt to profit from the recent advances of
formal methods in the development of ARTIS based applica-
tion [13, 14, 18]. However, the complexity of formal methods
is still a real obstacle for non-expert users. For this reason, we
think that a visual representation of ARTIS agent can be a
complement to formal methods in order to benefit from both
advantages formal and graphical notations.

4. XML LANGUAGE
XML language (eXtensible Markup Language) is based mar-
kup language designed mainly to allow the change of infor-
mation [19]. In fact, the XML documents consist, simply, of
sequence of nested tagged elements. In contrast with HTML
language, XML can be considered as self defining tags. In this
way, the users can define an element using start tag (e.g <Ex-

ample>) and end tag (e.g </Example>). The structure of the
document and the constraints of its elements can be defined in

the form of DTD (Document-Type Definition) or XML sche-

Percep-

tion Ac-

tion

Control

Module
Blackboard

Set of Internal Agents

R
eflex

L
ev

el

Cognitive

Level

Fig 1: ARTIS agent architecture [09].

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.9, November 2011

51

ma. We characterized XML document as valid if this latter
respect its DTD document [20].

Considering XML as a standard to exchange the information,
this language becomes quite popular. In fact, the XML is con-
sidered now as a meta-language in which we can define and
represent other languages [21]. Moreover, the XML language
is easy, extendable and portable language.

In the multi-agent context, XML language is used for several
purposes. First of all, we can cite the XABSL language [22]
(Extensible Agent Behavior Specification Language) which is

a based XML language for designing agent behavior. Korzyk
[23] proposed the use of XML as a secure intelligent agent
communication language. In their e-learning system, Garro
and Palpoli proposed a based XML multi-agent system [24].

In this work, we chose the use of XML as a language for the
specification of ARTIS agent. Thus, we can integrate our tool
with other based XML tools. Moreover, the specification of
ARTIS on XML language can be considered as unified
framework in which we can represent all previous formaliza-
tion of ARTIS agent.

5. VISUALIZATION PROCESS
This section is devoted to the visualization process we pro-
pose in which the XML specifications of ARTIS based sys-
tems are transformed in graphical representation. However,
we should begin with the presentation of XML specification
of ARTIS agent.

5.1 XML based specification of ARTIS

agent
As we noted above, ARTIS agent can be specified in several
methods and language like RT-MESSAGE [11], RT-Maude
[14] and extension of RTCTL [13]. Considered as meta-
language, XML can represent all these languages. Moreover,
the XML language allows the exchange of information be-
tween different applications. For this reason we chose to spe-
cify based ARTIS agent systems in XML language.

First of all, we translate the ARTIS agent model in a DTD
code (for Document Type Definition) to ensure the conformi-

ty of the specifications to the structure of ARTIS and its con-
straints. For paper size limitation, we present in figure 2 only
a portion of this DTD model. Hence, an ARTIS agent is com-
posed of a blackboard and a list of internal agents (Line [1])
and it has three attributes: its Identifier (Line [2]), its Timer
(Line [3]) and the priority of the current activated in-agent
(Line [4]). The blackboard can be either empty or includes
one or more frames (Line [5]). The frame is defined by sever-

al attributes: its Identifier (Line [6]), its type which can be
Timed or General (Line [7]), its apparition date (Line [8]) and
its validating duration (Line [9]). The in-agent list can be
either empty or includes one or more in-agent (Line [10]).

Respecting the above DTD, we can specify based ARTIS
systems in XML language as is presented in figure 3. In fact,
this portion of XML code represents the specification of an
ARTIS agent (called “ARTIS_Agent”) which is composed of
two internal agents (called “In_Agent1” and “In_Agent2”)
and its blackboard contains only one frame (called “Frame1”).
For paper size limitation, the in-agents specifications cannot
be presented in this figure.

<!ELEMENT ARTIS_AGENT (InAgent_List, Black-

Board)> <!--01-->

<!ATTLIST ARTIS_AGENT ARTIS_id ID #REQUIRED >

<!--02-->

<!ATTLIST ARTIS_AGENT Timer_Is CDATA #RE-

QUIRED > <!--03-->

<!ATTLIST ARTIS_AGENT Current_Priority CDATA

#REQUIRED > <!--04-->

<!ELEMENT BlackBoard (EmptyBlackBoard |

Frame+) > <!--05-->

<!ATTLIST Frame Frame_id ID #REQUIRED >

<!--06-->

<!ATTLIST Frame Frame_Type (Timed | General)

#REQUIRED > <!--07-->

<!ATTLIST Frame Apparition_Date_Is CDATA #RE-

QUIRED > <!--08-->

<!ATTLIST Frame Validiting_Time_Is CDATA #IM-

PLIED > <!--09-->

<!ELEMENT InAgent_List (EmptyInAgent | In-

Agent+) > <!--10-->

 Fig 2: Portion of ARTIS structure in DTD code

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.9, November 2011

52

5.2 Visualization of ARTIS specification
The visualization process passes through three steps (Figure

4): the control of validity step, the pre-processing step and the
visualization step. The first step consists in the verification of
the compliance of the XML documents with the structure of
ARTIS agent defined in DTD document. For this purpose, we
use one of XML editors like OXYGEN to verify the validity
of the XML documents. Naturally, any attempts to transform
an invalid XML documents can generate catastrophic errors.

The second step of the visualization process called pre-
processing step. It consists in the generation of an interme-
diate representation of the specified system. We chose the
oriented object paradigm to represent the specified system

because of the conceptual similarity between agents and ob-
jects [25]. Thus, an ARTIS agent can be represented as an
object of the class ARTIS with the following attributes: iden-
tifier, timer, list of internal agents and a blackboard
represented as list of frames. An internal agent can be consi-
dered as an object of the in-agent class with, mainly, the fol-
lowing attributes: identifier, list of its abilities (perception,
cognitive and action abilities), list of its scheduled knowledge
sources, its state (activated, suspended or waiting), the cur-

rent execution knowledge source and its timer. In the same
way, knowledge sources can be derived from a specific class
which contains the following attributes: identifier, the execu-
tion time and the remainder execution time. Moreover, the
blackboard of ARTIS agent is a list of frames in which each
one is an object. The main components of the intermediate
representation are presented in the following meta-model
(figure 5).

The last step of the visualization process is about the genera-
tion of the graphical representation of the specified system. In
fact, the visualization process can generate two kinds of
graphical representation: Informal representation and UML
Object diagram-based representation.

Validity’s Control

Pre-Processing

The Visualization

Validity’s

Errors

XML Specifica-

tion of ARTIS
A Valid Specifi-

cation

Intermediate Re-

presentation

Graphical Repre-

sentation

Fig 4: Visualization process of ARTIS specification.

<!----ARTIS Agent Specification---->

<ARTIS_AGENT ARTIS_id="ARTIS_Agent" Ti-

mer_Is="15" Current_Priority="0">

<InAgent_List>

<!—-In-Agent 01 Specification-->

<InAgent InAgent_id = "In_Agent1" In-

Agent_Kind = "Critical" Priority_Is =

"0" Current_State = "Activated" Dead-

line_Is = "100" Period_Is = "150" Ti-

mer_Is = "46">

<!-- The remainder structure of In_Agent1-->

</InAgent>

<!—-In-Agent 02 Specification-->

<InAgent InAgent_id = "InAgent_2" In-

Agent_Kind = "Critical" Priority_Is =

"1" Current_State = "Wait" Deadline_Is

= "100" Period_Is = "150" Timer_Is =

"20">

<!-- The remainder structure of In_Agent2-->

</InAgent>

</InAgent_List>

<BlackBoard>

<!-- Frame 01 Specification -->

<Frame Frame_id = "Frame1" Frame_Type

= "Timed" Apparition_Date_Is = "5" Va-

liditing_Time_Is = "10"/>

</BlackBoard>

</ARTIS_AGENT>

Fig 3: Example of ARTIS specification in XML.

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.9, November 2011

53

5.2.1 The Informal graphical representation
By informal representation we mean a representation that is
not based upon known notation and languages of software
engineering. In fact, it is common to visualize the software
products using metaphors and non-technical notation [06].

Adopting this approach allow to non-specialist users to under-
stand the specified systems.

The real challenge in the visualization methods is reducing

software complexity by taking into account the human percep-
tion and cognitive factors. Composed of several internal ele-
ments, ARTIS agent is complex software. In order to manage
this complexity we choose to apply the Shneiderman principal
(“Overview, Zoom-in and details on demand” [26]) in exploit-
ing the hierarchical organization of ARTIS model. Hence, the
system generates an overview of the specified system in the
first time that contains the most important elements (Figure

06). Then, users can change the granularity level to focus
through only one internal agent. In the same manner, the users
can focus on the internal structure of an in-agent.

As presented in Figure 06, the top level granularity presenta-

tion of an ARTIS agent is composed of its foremost elements:

I. The ARTIS agent’s essential information (its iden-
tifier, its current priority and the value of its ti-
mer),

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.9, November 2011

54

II. The internal agents which exist within the ARTIS
agent,

III. The list of frames which exist in the blackboard
structure.

In our approach we are trying to visualize the ARTIS agent in
simple and useful graphical representation. A simple represen-
tation can be obtained by exploiting the known metaphors. By

useful representation we mean the representation that includes
the most of information. Hence, the top level graphical repre-
sentation includes the following information:

 Each of in-agent or frame is represented by a
square in which we found its identifier (Figure 06,
for example, show three in-agents and two frames),

 The current state of given in-agent is represented
by expressive colors of the outline of the in-agent

representation. Known that the in-agent can be in
one of the three states (Activated, Suspended and
Wait); we choose the green color to represent acti-
vated in-agent, the red color to represent suspended
in-agent and orange color to represent the wait in-
agent (In figure 06, for example, the in-agent In-

Agent1 is in Activated state),

 The critical nature of given in-agent is represented

by a red point in its top left corner (In figure 06, for
example, the in-agent In-Agent1 is critical). The
lack of this point means not critical in-agent (for

example In-Agent2 and In-Agent3 in figure 06),

 The in-agent’s timer represents the remainder time
in the current state. Hence, the timer of an activated

or suspended in-agent is the remainder time com-
pared by the deadline value. In contrast, the timer of
a wait in-agent is the remainder time compared by
the period value. For this reason, we choose to
represent the timer of each in-agent by hourglass
because it represents the remainder and the used
time in the current state.

 The frame’s nature is represented by hourglass. In

fact, given frame can be from timed nature (with
bounded validating time) or from general nature

(without bounded validating time). Hence, the hour-
glass represents the remainder validating time for
the indicate frame (like the frame Frame1 in the
figure 06). The void hourglass represents a general
frame (like the frame Frame2 in the figure 06).

We can change the granularity level to focus on the structure
of an in-agent in order to visualize its perception, cognition
and action abilities. Moreover, we can focus on one know-
ledge source from these abilities to show its internal structure.

5.2.2 The UML object diagram based representa-

tion
Remembering that we translate the specification in an inter-
mediate representation that consists of a set of objects, this

step consists in the visualization of the specification using
UML object diagram. Allowing the modeling of the systems
structure at a specific time, the UML object diagram is fully
conform to our need in the visualization of ARTIS based on
specification structure. Moreover, object diagram is part of
Unified Modeling Language which is one of well-known
modeling language in software engineering. Hence, the visua-
lization of ARTIS agent in object diagram can provide both

advantages: the popularity of UML and its technical precision
notation.

Figure 07 shows a representation of a simple based ARTIS
system using object diagram. This system is composed of a
blackboard and two in-agents. Like the informal representa-
tion, we apply here the above Shneiderman principal [26].
Hence we can focus through blackboard or one in-agent to

show its structure. In fact, this principal allows simplifying
the eventual complex representations.

6. TOOL SUPPORTING OUR AP-

PROACH
We developed, along this work, a tool supporting the pro-
posed visualization process. This tool allows to users to intro-
duce and update XML specification of ARTIS based systems
and the visualization of this latter.

In the first step, the users should create an XML specification

or open existing specification (Figure 8). In our case study we
chose to visualize the specification of the mobile robot in-
spired from [12]. The mobile robot is an ARTIS agent with
five internal agents. The figure 8 shows a portion of the speci-
fication in which the information of the ARTIS agent (iden-
tifier is “Mobil_Robot”, timer is “50” and currant priority is
“0”) and the information of the first in-agent (identifier is
“Avoid_Obstacle”, timer is “19”, deadline is “20”, period is
“100”, priority is “0”, kind is “Critical” and state is “Acti-
vated”) appeared.

Blackboard ARTIS1: ARTIS

Timer: 10

Priority: 02

In-Agent1: In-Agent

Timer: 14

Deadline: 25
Period: 20

State: Activated

Kind: Critical

In-Agent2: In-Agent

Timer: 20

Deadline: 20
Period: 50

State: Wait
Kind: Critical

1

1 1

Fig 7: The top level granularity of an ARTIS Agent

structure in object diagram.

Fig 8: A portion from the case study specification.

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.9, November 2011

55

Using our tool, we can call an XML editor (like OXYGEN
tool) to validate the XML specification according to DTD
(Figure 9). This step is more important in order to generate a
valid graphical representation of the specified system.

Fig 9: The validation of the case study specification.

The last step consists in the generation of the graphical repre-
sentation. In the first case (Figure 10) we show a representa-
tion conform to the figure 6 in which appeared the mobile
robot ARTIS agent with its five critical in-agents and three
frames. As presented in the specification (figure 8) the
Avoid_Obstacle in-agent is in activated state and its hourglass
is almost full because its timer is almost equal to deadline.

In the second case we can show an UML object diagram for

the same specified system (figure 11). In this object diagram
we show a mobile robot object composed of a blackboard and
five in-agents.

Naturally, we can focus through the composed elements in the
specification (like in-agent or blackboard) by a simple click to
visualize more details. However, the paper size limitation
prevents the representation of more figures.

Fig 10: The top level granularity informal representation

of the case study specification.

Fig 11: The top level granularity based upon object dia-

gram representation of the case study specification.

7. CONCLUSION AND FUTURE

WORKS
The visualization of formal specification play important role
in the understanding of the specified systems in which formal
methods are consuming time and effort. In this work we pre-
sented the visualization of ARTIS based specification. This
latter is specified in XML language. Using our tool we can

generate informal graphical representation based upon known
metaphors for non-technical stakeholders or generate UML
object diagram based representation for software engineering
specialists.

Our work supports only the visualization of static aspect of
the specification. We will extend this work to support both
dynamic and evolutionary aspect of systems specifications.
Also, we will extend this tool to support the visualization of
social aspect of real-time multi-agent systems.

8. REFERENCES
[1] L. C. DiPippo , V. Fay-Wolf, L. Nair, E. Hodays and O.

Uvarov, “A Real-Time Multi Agent System Architecture
for E-Commerce Applications”, Proc. of the fifth Inter-
national Symposium on Autonomous Decentralized Sys-
tems, 2001.

[2] P. Pedreiras and L. Almeida, “The Flexible Time-
Triggered (FTT) Paradigm: An Approach to QoS Man-
agement in Distributed Real-Time Systems”, Proceed-
ings of the 17th International Symposium on Parallel and

Distributed Processing. Nice, France 2003.

[3] L. Zhang, ”Development Method for Multi-Agent Real-
Time Systems”, International Journal Of Information
Technology, Vol. 12, No. 5, 19-28, 2006.

[4] I. Sommerville, “Software Engineering”, China Machine
Press, 2006.

[5] A. Perini and A. Susi, “Developing Tools for Agent-
Oriented Visual Modeling”, G. Lindemann et al. (Eds.):

MATES 2004, LNAI3187, pp. 169–182, 2004.

[6] P. Caserta and O. Zendra, “Visualization of the Static
aspects of Software: a survey”, IEEE transactions on vi-
sualization and computer graphics, Vol. 99, 2010.

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.9, November 2011

56

[7] R. Dodhiawala, N. S. Sridharan, P. Raulefs and C. Picker-
ing, “Real-Time AI Systems: A Definition and An Archi-
tecture”, Proc. IJCAI, 1990.

[8] C. Duvallet and B. Sadeg, “Des systèmes multi-agents
anytime pour la conception des systèmes d'aide à la déci-

sion”, Technique et Science Informatiques 22(8): 997-
1024, 2004.

[9] V. Botti, C. Carrascosa, V. Julian and J. Soler, “The AR-
TIS Agent Architecture: Modeling Agents in Hard Real-
Time Environments”, In MAAMAW’99 proceedings,
LNAI1647, pp 63-76, Springer-Verlag, 1999.

[10] V. Julian, C. Carrascosa, M. Robello, J. Soler and V.
Botti, “SIMBA: an approach for real time multi agents

systems”, In Proc. of V Conferncia Catalana
d’Intel.ligncia Artificial, Castell. Springer-Verlag, 2002.

[11] V. Julian, J. Soler, M. C. Moncho and V. Botti, “Real-
Time Multi-Agent System Development and Implemen-
tation”, CCIA, 2004.

[12] J. Soler, V. Julian, C. Carrascosa and V. Botti: Applying
the ARTIS Architecture to Mobile Robot Control, IBE-
RAMIA’ 2000, Atibaia, Sao Paulo, Brasil, volume I, pp

359-368. Springer-Verlag, 2000.

[13] R.P. Miguel, V Botti, E. Onaindia, “Formal Modeling Of
Dynamic Environments For Real-Time Agents”. Multi-
agent systems and applications III, CEEMAS 2003, Pra-
gue , TCHEQUE REPUBLIQUE, Vol 2591, pp. 475-
484, 2003.

[14] T. Marir, F. Mokhati, H. Seridi, “Formalizing ARTIS
Agent Model Using RT-Maude”, L. Braubach et al.

(Eds.): MATES 2009, LNAI 5774, pp. 226–231, 2009.

[15] J. Cardoso, “The Syntactic and the Semantic Web”, Se-
mantic Web services: theory, tools and application, J.
Cardoso (Ed), Information Science Reference, 2007.

[16] T. Abdelaziz, M. Elammari, and R. Unland, “Visualizing
a Multiagent-Based Medical Diagnosis System Using a
Methodology Based on Use Case Maps”, G. Lindemann
et al. (Eds.): MATES 2004, LNAI 3187, pp. 198–212,
2004.

[17] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos,
and A. Perini. Tropos: An Agent-Oriented Software De-
velopment Methodology. Journal of Autonomous Agent
and Multi-Agent Systems, 8(3):203 – 236, May 2004.

[18] T. Marir, F. Mokhati, H. Seridi. Applying Model Check-

ing to ARTIS Model Verification, In Proc. 11th Interna-
tional Conference on Science and Techniques of Auto-
matic control & computer engineering STA’2010, De-
cember 19-21, 2010, Tunisia.

[19] B. Leuf, The Semantic Web: Crafting Infrastructure For
Agency; John Wiley & Sons, 2006

[20] G. Guerrini, M. Mesiti and I. Sanz, An Overview of
Similarity Measures for Clustering XML Documents,

Web data management practices: emerging techniques
and technologies, A.Vakali and G. Pallis (Eds), 2007.

[21] A. Vakali, G. Pallis, L. Angelis, “Clustering Web Infor-
mation Sources”, Web data management practices:
emerging techniques and technologies, A.Vakali and G.
Pallis (Eds), 2007.

[22] M. Lotzsch J. Bach, H. Burkhard and M. Jüngel, “ De-
signing Agent Behavior with the Extensible Agent Beha-

vior Specification Language XABSL”. RoboCup 2003:
114-124, 2003

[23] Alexander D. Korzyk, Sr, “Towards XML As A Secure
Intelligent Agent Communication Language”, 23rd Na-
tional Information Systems Security Conference
(NISSC), 2000.

[24] A. Garro and L. Palopoli “An XML multi-agent System
for E-learning and skill Management “, Agent technolo-

gies, infrastructures, Tools, and applications, for E-
services, Octobre 2002.

[25] M. Wooldridge, “An introduction to multi agent sys-
tems”, John Wiley & Sons Ltd, 2002.

[26] B. Shneiderman and C. Plaisant, Designing the user inter-
face, Strategies for effective human-computer interac-
tion, 4th Edition. Addison Wesley, 2005.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Burkhard:Hans=Dieter.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/J=uuml=ngel:Matthias.html
http://www.informatik.uni-trier.de/~ley/db/conf/robocup/robocup2003.html#LotzschBBJ03

