
International Journal of Computer Applications (0975 – 8887)

Volume 34– No.8, November 2011

37

Technique for Template Generation for Simultaneous
Testing of Multiple Identical Functional Units in

Super-scalar Architecture

Rahul Raj Choudhary
Govt. Engineering College,

Bikaner (Raj) India

Gayaprasad Sinsinwar
Govt. Engineering College,

Bikaner (Raj) India

Aditi Kajala
MITS Laxmangarh

(Raj) India

Pooja Bhardwaj
Govt. Engineering College,

Bikaner (Raj) India

ABSTRACT
At-speed testing has emerged as dominant test requirement in the

era of high speed microprocessors. Since the conventional testing

techniques prove to be incompetent, Instruction-Based Self-

Testing (IBST) has been proposed as an effective alternate to those

conventional techniques for at-speed testing of high performance

microprocessors. The Superscalar architectures, with vast

functionality and exceptionally high speed have become the central

integral part of modern high speed digital systems. However,

testing superscalar microprocessors using this approach faces

serious challenges, due to the out-of-order execution with multiple

functional units and in-order commit behaviour. This paper

discusses the test program generation procedure (template based)

for multiple identical functional units in a superscalar architecture.

Procedures for delay fault testing, which make sure that generated

test vectors are applied in the correct order to test each testable

path, are developed. The preliminary work has been presented in

EWDTS[1]

1. INTRODUCTION
The exponential acceleration can be seen in the chip technology

and such rapid advances in VLSI technology and aggressive design

methodologies are resulting into development of extremely dense

and complex devices. The extensive performance, vast

functionality and high order of reliability have become the prime

expectations of consumers. Modern computer systems and

systems-on-a-chip (SOCs) are built around very high-speed

processors, in order to meet the increasing consumer demand of

high performance and rich functionality with quick turnaround

time. Modern high performance microprocessors use superscalar

architecture; they are designed for very high frequency operations,

and are implemented in nano-technology. Design reuse is being

proved as the only way that allows designers to keep pace with the

pace of technological developments. Though it reduces time to

market and design effort but, on other hand, it introduces test

difficulties. The conventional stuck-at faults are have lost their

relevance and instead of this delay faults and crosstalk faults are

becoming increasingly important to keep pace with the rapid

increase in the speed of modern digital circuits. External tester is

absolutely incapable and infeasible for At-Speed testing because of

its inherent inaccuracy and cost. The built-in self-test (BIST),

which is widely used self-testing technique, is a structural testing

methodology. BIST provides a good quality test but, due to the

need of design change, possibility of excessive power consumption

that may result into burn out of chips, and unacceptable

performance loss and area overhead, it is also not a feasible

alternate for testing high-performance and excessively dense

processor cores. Further, it may be unacceptable to use hardware

BIST for testing an optimized high-performance, low-power core,

embedded deep inside an SoC due to its poor and limited

accessibility and its inability to deal with design changes.

The newer concept for testing, program-based self-testing (also

known as software-based self-testing) can alleviate the problems of

both external tester and structural BIST. It bridges instruction-level

test with the low level fault model. Program-based self-testing

(IBST) uses processor instructions to deliver the test patterns and

collect the test responses and provide the facility to apply tests in

functional mode. Thus, being this technique inherently non-

intrusive, it does not contribute for area and performance

overheads and it is well suited test methodology for the testing of

processor cores embedded deep inside an SoC. Additionally, the

test programs developed for this method can also be used for

online periodic testing to improve the processor reliability and

provide the facility for testing in the field.

Our paper concentrates on the test issues related with the

superscalar processors and faced by IBST. Further program

generation technique has been developed and depicted for

instruction-based self-testing of superscalar processors. The

superscalar processor uses out of order execution, and extensive

use of design reuse in order to achieve higher performance, this

makes the instruction-based testing (IBST) difficult. The paper has

been organized on following discussions:

 Discussion of superscalar concept along with the emergence of

the test challenges for the instruction-based testing of

superscalar architecture

 Test procedures are developed which compel the processor

scheduler to make sure that generated test vectors are applied in

correct and desired order to the various multiple identical

functional units.

The Section 2 describes the previous work made in the area of

instruction-based self-testing. Section 3 discusses the test

challenges and explains basic overview of superscalar architecture.

Section 4 discusses various examples to develop template

generation procedures. Finally, we conclude with section 5.

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.8, November 2011

38

2. PREVIOUS WORK

At extremely high frequencies, the delay test model and crosstalk

fault models have proved their better applicability in comparison

with stuck-at faults. The importance of at-speed testing and power

consumption issues have given instruction based self testing a

significant edge over other techniques like BIST and external tester

based testing. The number of built in self testing methodologies

[4,5,6,7,8] have been proposed in literature. But these approaches

target stuck-at faults for simple non-pipelined processors. For

example the approaches proposed by Shen et al. [4] and Batcher et

al. [5] are based on the instruction randomization method. Batcher

et al. [5] proposed built-in self test method which combines the

execution of microprocessor instructions with a small amount of

on-chip test hardware which is used to randomize those

instructions. The drawback of IRST is that the amount of time

spent by IRST in a functional mode is much higher. Also,

processors are more amenable to random-instruction tests than to

random-pattern tests. It is difficult to target structural faults by

applying random instructions at the processor level. Chen et al. [6]

uses a software tester, embedded in the processor memory as a

vehicle for applying structural tests. Chen et al. [6], Krantis et al.

[7], and Kambe et al. [8] generate the structural tests for functional

modules under constraints. The method proposed by Kambe [8],

also generates multiple templates in effective order to detect faults,

which may cover different input spaces, and therefore, different

detectable fault sets. Approaches have also been proposed for

pipelined processors targeting stuck-at faults [9,10,11]. Chen [9]

proposed a template-based approach, which proposes RTL

simulation-based techniques, for template reading and selection,

and techniques based on the theory of statistical regression for

extraction of input-output mapping functions whereas Kranitis

[10] and Paschalis [11] proposed approaches based on

deterministic test of functional modules. Paschalis [11] proposed to

detect both types of permanent and intermittent faults by a small

embedded test program with test execution time much less than a

quantum time cycle.

Unlike stuck-at fault testing, delay testing is closely tied to the test

application strategy. Only a few software-based self-testing

approaches [12,13,14,15,16] targeting delay faults have been

proposed in literature for simple non-pipelined processors. Lai [13]

proposes method to self-test a processor core, by running an

automatically synthesized test program which can achieve high

path delay fault coverage. The two key features of this

methodology are: (1) Path Classification Algorithm to find the

functionally testable paths and (2) Constraint Extraction to allow

the use of constrained ATPG to generate test vectors for

functionally testable paths and test program synthesis. The

methodology proposed by Lai [12,13,14], extracts constraints by

exhaustively searching instructions and instruction pairs, which

can be applied in functional mode. The data path logic and the

controller of the microprocessor are considered to identify the

functionally testable paths in a microprocessor in [12].

Singh et al. [15] proposed a systematic approach for the delay fault

testing of processor core, using its instruction set for this purpose.

They [15,16] proposed an efficient graph theoretical model to

model a simple processor by an Instruction Execution Graph (IE

graph), which is then used for constraints extraction to generate

test vectors. These generated vectors can then be applied as

instructions to test a processor. They also extended their approach

to include testing of pipelined and superscalar processors [17,18].

They [17] introduced first work towards modelling of pipeline

behaviour for testing of a microprocessor in functional mode. The

methodology develops a systematic approach to test delay fault of

such processor cores by utilising the instruction set of the

processor itself. The graph model and the associated methodology

proposed in [17,18], models the static pipeline behaviour, where

instructions progress in lock step fashion. Hence, it is not suited for

the modelling and testing of a dynamic pipelined architecture such

as a superscalar processor. Superscalar processors use buffers and

queues to support out-of-order execution. Indeed, as pointed out in

this paper, the test application strategy plays a key role for the

testing of superscalar processors. Hatzimihail et al. [20] used

performance counters to detect erroneous cache misses. The

methodology investigates the effects of performance faults in

speculative execution units and proposes a generic, software-based

test methodology, which utilizes available processor resources -

hardware performance monitors and processor exceptions, to

detect these faults in a systematic way. Theodorou et al. [21] have

used special performance instructions and performance monitoring

mechanism to overcome cache tag testability problem. The

methodology considers new realistic fault models, on the basis of

Fault Primitives (FPs). It applies March Write Operations in a low

cost way by taking advantage of the cache pre-fetching mechanism

that modern microprocessors and embedded processors include. I.

Pomeranz and Reddy [22] have proposed a state variable selection

algorithm to eliminate the requirements, for golden response

storage. This extends the output response comparison scheme for

identical sequential circuits, in order to increase the fault coverage

and reduce the fault latency of an unknown input sequence. The

extension is based on using state variables, in addition to primary

outputs as part of the output response comparison scheme. A

recent study by Sinsinwar et al. [1] proposed the the conceptual

methodology for testing multiple copies of identical functional

units in superscalar architectures whereas Aditi et al. [2] proposed

output response comparison scheme for identical sequential

circuits for delay test using static transition probability which

allows to make selection independent of the input sequence.

This paper presents a specific mechanism to test identical Floating

Point units available in multiple copies in superscalar processors.

This facilitates testing such multiple units in functional mode of

operation targeting delay faults, which is not addressed in the

literature as per best of our knowledge.

3. SUPERSCALAR ARCHITECTURE AND

TEST CHALLENGES
Our work is focused at delay fault testing of superscalar processors

having the features of out of order execution and design reuse. The

objective is to generate test sequences that can be applied in the

functional mode of operation for multiple identical functional

units, using path delay path model [19]. Singh et al. [18] presented

the preliminary work in this sequence. They modeled the

superscalar (dynamic pipeline) behaviour for the purposes of

testing of a superscalar processor. This work describes some of the

important issues that are relevant to testing superscalar

architectures, highlighting some of the differences between simple

pipelined and superscalar architectures. The superscalar and

pipelined architectures are discussed in brief

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.8, November 2011

39

3.1 Pipeline Vs Superscalar Processors
Pipeline concept was introduced to increase throughput and

achieving instruction level parallelism. The scalar pipelines are

characterized by a single instruction pipeline of k stages. All

instructions traverse through the same set of pipeline stages,

regardless of their different types. At any one point of time only

one instruction resides in each of the pipeline stages and the

instructions advance through lock step fashion. On the other hand,

superscalar processors go beyond just a single-instruction pipeline

by being able to simultaneously advance multiple instructions

through the pipeline stages and further achieve exceptional speed

of execution. Greater concurrency of processing multiple

instructions for higher instruction execution throughput is achieved

by incorporating multiple functional units, often quantified as

instructions per cycle (IPC). Another fundamental character of the

superscalar processors is their ability to execute instructions in an

order different from the order specified by the original program

which is termed as „out of order execution‟.
Various superscalar organizations have been proposed.

Typically the superscalar organization consists of instruction fetch

and branch prediction unit, decode and register renaming unit,

instruction issue unit, execution unit, re-ordering and commit unit.

 For this work the simple organization of a superscalar

processor which uses distributed reservation station for each

functional unit. Re-order buffer (ROB) is used to re-order the

instructions. Figure 1 shows the organization of such superscalar

processor. This particular organization is used to explain the

various concepts, to keep discussion simple. Further these concepts

can easily be generalized to other organizations.

We have implemented superscalar above shown processor to

demonstrate the concept. This implemented organization uses a

branch history table with 2 history bits to predict branch. It fetches

two instructions and commit two instructions per cycle. Execution

unit has 7 functional units (2 ALU, 1 Multiplier, 1 Branch unit, 2

FPU and 1 Load Store unit). Every unit has its own reservation

station with 2 entries. Re-Order Buffer (ROB) is implemented as a

circular queue with 16 entries. In order to demonstrate the concepts,

we assume the fetch width of the processor as 4 instructions.

3.2 Superscalar Test Challenges
The designs reuse and out of order are the prominent characters

which extend various facility as well as challenges for testing. In a

superscalar processor, the instructions in the sequence may be

executed on a different functional unit and possibly in different

order of instructions. Further, superscalar architecture uses buffers

and queue, which makes it a challenging task to ensure that a given

instruction resides at a given location in the buffer or queue with

appropriate data at a given time. This leads to a situation where the

application of test at desired functional unit becomes very difficult.

4. PROPOSED METHODOLOGY
The methodology has been proposed in EWDTS [1] and further in

this section first this has been discussed with development of

program generation for identical floating point units. The same

examples [1] have been used and subsequently the new program

generation for floating point units has been developed. In this

section we consider the paths that transfer the data between

architectural registers, data and address part of the pipeline

registers, buffers and queues. We proposed test program generation

for the delay fault testing of the processor. We use the SIE graph to

generate the test templates. We assume that any instruction can

follow any other instruction. Data forwarding take place through

the multiplexers. So, the data that can be received by forwarding

path can also be received by the normal paths. As discussed earlier

that due to multiple identical functional units any test cannot be

applied to the systems. Therefore we developed templates that can

make sure that the test can be applied in functional mode. He we

are focused on the template generation. The data for the template

can be generated by using an constraint ATPG under the functional

constraint or random data can be used [1].

In order to support high IPC and out of order execution,

superscalar processors are implemented with reservation stations

(buffers) and re-order buffer (queue). These allow a processor to

run instructions out of order while maintaining the program order.

Instruction based testing faces serious challenges due to the out of

order execution with multiple functional units and in-order commit

behavior, because it is the processor scheduler who decides the

order of instruction execution, on the fly, and not the program that

executes on the processor. This means that even if we have a test

vector sequence generated under architectural constraints, when we

apply such a sequence, there is no guarantee that the sequence will

indeed be executed by the same functional unit for which it was

meant to be. In fact, in a superscalar processor, the instructions in

the sequence may be executed on a different functional unit and

possibly in different order of instructions. He we can use the fact

that the processor has identical functional units, hence, we can

compare the response of the two functional units. Therefore we

need not to store the golden response. Further, superscalar

architecture uses buffers and queue, which makes it a challenging

task to ensure that a given instruction resides at a given location in

the buffer or queue with appropriate data at a given time. We

explain this in the following example.

Example1: Consider a 4 instruction wide fetch superscalar

implemented with 2 ALU, 1 Multiplier, 1 Shifter, 2 FPU, 1 Load, 1

Store and 1 Branch Unit, where every unit has individual

reservation station with 2 entries, and ROB has 32 entries.

Processor instructions are represented as (I Rd, Rs1, Rs2) where I

specifies operation, Rd is the destination, and Rs1 and Rs2 are the

Fig 1: Organization of Superscalar Processor

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.8, November 2011

40

two source operands. Let a path through ALU be tested by an

instruction sequence ADD followed by SUB. This path is from the

reservation station to the reorder buffer. Let the desired operands

be placed in the registers R2 and R3 for the ADD instruction and

in registers R6 and R7 for the SUB instruction. Since we have two

identical ALU, we can test those together and can compare the

result. Conventionally, we apply the test vectors in the following

sequence:

I1: ADD R1, R2, R3 -- processor schedules this instruction to

ALU1

I2: SUB R5, R6, R7 -- processor schedules this

instruction to ALU2

I3: ADD R8, R9, R10 -- processor schedules this instruction to

ALU1

I4: SUB R11, R12, R13-- processor schedules this instruction to

ALU2

I5: SUB R14, R5, R11 -- processor compare the two results

I6: BNEQ R14, Fault -- processor notifies fault

The processor may schedule instructions I1 and I2 to two

different ALUs. Therefore, this sequence will not apply the desired

test to any of the ALUs. We will get the correct result after

execution of instruction I5 in spite of having a faulty path, because

the fault is not excited. One possible partial solution to this

problem is concurrent testing of two ALU‟s by the following

program segment.

I1: ADD R1, R2, R3 -- processor schedules this instr. to ALU1

I2: ADD R21, R2, R3 -- processor schedules this instr.

to ALU2

I3: SUB R5, R6, R7 -- processor schedules this instr.

to ALU1

I4: SUB R25, R6, R7 -- processor schedules this instr.

to ALU2

I5: SUB R11, R5, R25, -- processor compares the two results

I6: BNEQ R11, Fault -- processor notifies fault

This can apply the test sequence to both of the ALUs

provided that these instructions are aligned, i.e., all these 4

instructions are fetched simultaneously. We can achieve this by

having branch instruction before this set. Now, these instructions

can be applied in our desired order. But, reservation station has

two entries and first two instructions will be placed in the first

entries of respective reservation stations and next two instructions

will be placed in the second entries of the corresponding

reservation stations. Therefore, the transition cannot be launched

and path remains untested. A possible partial solution of this

problem is to insert two instructions between I2 and I3 which are

being scheduled to some other functional units. Therefore, the

partial solution which can test the path from the first entry of

reservation station to ROB is:

I1 JUMP 2000H

I2: 2000H ADD R1, R2, R3 -- processor schedules it for ALU1

(stay at 1st position in RS)

I3 ADD R21, R2, R3 -- processor schedules it for ALU2

(stay at 1st position in RS)

I4: MULT R10, R11, R12 -- processor schedules it for

Multiplier (Filler instr.)

I5: SRA R13, R14, R15 -- processor schedules it for

Shifter (Filler instruction)

I6: SUB R5, R6, R7-- processor schedules it for

ALU1 (stay at 1st position in RS)

I7: SUB R25, R6, R7-- processor schedules it

for ALU2 (stay at 1st position in RS)

I8: SUB R11, R5, R25, -- processor compares

the two results

I9: BNEQ R11, Fault -- processor notifies fault

This way, we can make sure that the transition will be created and

can be propagated. This simple example demonstrates how to

develop a test sequence and its importance. The situation becomes

even more complex when we consider feedback paths in the out of

order execution engine.

4.1 Test of Forwarding Logic paths:
The forwarding logic paths are responsible to forward data to the

instructions residing in the RS without going through commit

stage. These paths dominate the normal paths, i.e, a test for the

forwarding paths can also test the normal paths. Hence, normal

paths can be tested along with forwarding paths by using

observation sequence for normal paths. An instruction sequence

(Iv1, Iv2, Iv3) can test a path from RS (ith entry) to the same RS (jth

entry) if it is applied in the following manner. This instruction

sequence will test both normal paths and forwarding paths.

Example 4: Let a processor has two ALU units with 2 entry

reservation station and the fetch width is 4. Assume, ADD

instruction followed by SUB instruction is a test instruction pair.

Paths from the 1st entry in RS to the 2nd entry in RS can be tested

by the following sequence.

I1: J 2000H -- instruction for the alignment

I2: 2000H ADD R1, R2, R3 -- Instruction IV1

I3: ADD R21, R2, R3 -- Instruction IV1

I4: SW R1, 100(R9) – Filler instruction

I5: SW R21, 104(R14) – Filler instruction

I6: SUB R4, R5, R6 – Instruction IV2

I7: SUB R24, R5, R6 – Instruction IV2

I8: ORA R7, R4, R8 – Instruction IV3

I9: ORA R17, R24, R8 – Instruction IV3

I9: SUB R11, R7, R17 – Comparison of results

I9: BNEQ R11, Fault – Notifies fault

4.2 Testing Identical Floating Point Units:
As the method above illustrated, the sequence of instructions can

be generated for other functional units. Assuming two floating

units, we propose the following program for simultaneous testing

of these identical units.

I1: J 2000H -- instruction for the alignment

I2: 2000H ADDF F1, F2, F3 -- Instruction IV1

I3: ADDF F21, F2, F3 -- Instruction IV1

I4: SW F1, 100(F9) – Filler instruction

I5: SW F21, 104(F14) – Filler instruction

I6: SUBF F4, F5, F6 – Instruction IV2

I7: SUBF F24, F5, F6 – Instruction IV2

I8: ORA F7, F4, F8 – Instruction IV3

I9: ORA F17, F24, F8 – Instruction IV3

I9: SUB F11, F7, F17 – Comparison of results

I9: BNEQ F11, Fault – Notifies fault

The templates can be generated for different combinations of the

instructions. Since this is a manual process, and for generation of

generalized scheme, applicable for other processors, the

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.8, November 2011

41

development of automated facility is intended. Further automation

is aimed as our future work.

5. CONCLUSION
This paper highlighted the issues that are pertinent to testing of

identical functional units in a superscalar architecture in the

functional mode of operation. Since the application of test at

desired functional unit is a big issue, we have developed the test

templates that can force the processor scheduler to execute

program in our desired order. Hence, these procedures can apply

test vectors in the functional mode of operation. As it is applicable

in the functional mode of operation, it can be used for online

testing and need not to save the golden response or standard

response of test. This work is the ongoing work and the evaluation

of the methodology and automation of the methodology are the

future directions. The different programs aimed at test of different

type of functional units, have been developed and this may further

lead to an integration of these techniques in order to have a

complete test procedure.

6. ACKNOWLEDGEMENT
The authors acknowledge the valuable inputs from Dr Virendra

Singh, Super Computer Education and Research Centre, Indian

Institute of Science, Bangalore, India.

7. REFERENCES
[1] Gayaprasad Sinsinwar, Rahul Raj Choudhary, Aditi Kajala,

Virendra Singh,“Test Program Generation for Simultaneous

Testing of Multiple Identical Functional Units in Super-scalar

Architecture”, IEEE East-West Design and Test Symposium

(EWDTS) 2010, St. Petersburg, Russia, Sep 2010, pp. 195-

199.

[2] Aditi Kajala, Gayaprasad Sinsinwar, Rahul Raj Choudhary,

Jaynarayan Tudu, Virendra Singh, “On Selection of State

Variables for Delay Test of Identical Functional Units”, IEEE

East-West Design and Test Symposium (EWDTS) 2010, St.

Petersburg, Russia, Sep 2010, pp. 200-203.

[3] S.M. Thatte and J. Abraham, “Test generation for

Microprocessors”, IEEE Trans. on Computers, Vol. C-29, No.

6, June 1980, pp. 429-441.

[4] J. Shen and J.A. Abraham, “Native Mode Functional Test

Generation for Processors with Applications to Self-Test and

Design Validation”, Proc. of the International Test

Conference 1998, pp. 990-999.

[5] K. Batcher and C. Papachristou, “Instruction Randomization

Self Test for Processor Cores” Proc. of the VLSI Test

Symposium 1999, pp. 34-40.

[6] L. Chen, and S. Dey, “Software-Based Self-Testing

Methodology for Processor Cores”, IEEE Trans. on CAD of

Integrated Circuits and Systems, Vol. 20, No.3, March 2001,

pp. 369-380.

[7] N. Krantis, A. Paschalis, D. Gizopoulos, and Y. Zorian,

“Instruction-Based Self-Testing of Processor Cores”, Journal

of Electronic Testing: Theory and Application (JETTA) 19,

2003, pp 103-112.

[8] K.Kambe, M.Inoue, and H. Fujiwara, “Efficient Template

Generation for Instruction-Based Self-Test of Processor

Cores”, Proc. of Asian Test Symposium, 2004, pp. 152-157.

[9] L. Chen, S. Ravi, A. Raghunath, and S. Dey, “A Scalable

Software-Based Self-Test Methodology for Programmable

Processors”, Proc. of Design Automation Conference 2003,

pp. 548-553.

[10] N.Krantis, G.Xenoulis, A.Paschalis, D.Gizopolous, and

Y.Zorian, “Application and Analysis of RT-Level Software-

Based Self-Testing for Embedded Processor Cores”, Proc. of

International Test Conference, 2003, pp 431-440.

[11] Paschalis, and D. Gizopoulos, “ Effective Software-Based

Self-Test Strategies for On-Line periodic Testing of

Embedded Processors”, Proc. of Design and Test in Europe

2004, pp 578-583.

[12] W.-C. Lai, A. Krstic, and K.-T. Cheng, “On Testing the Path

Delay Faults of a Microprocessor Using its Instruction Set”,

Proc. of the VLSI Test Symposium 2000, pp. 15-20.

[13] W.-C. Lai, A. Krstic, and K.-T. Cheng, “Test Program

Synthesis for Path Delay Faults in Microprocessor Cores”,

Proc. of International Test Conference 2000, pp 1080-1089.

[14] W.-C. Lai, and K.-T. Cheng, “Instruction-Level DFT for

Testing Processor and IP Cores in System-on-a-Chip”, Proc.

of the Design Automation Conference 2001, ACM Press, NY,

2001, pp. 59-64.

[15]V. Singh, M. Inoue, K.K. Saluja, and H. Fujiwara,

“Instruction-Based Delay Fault Testing of Processor Cores”,

Proc. of the International Conference on VLSI Design 2004,

pp 933-938.

[16] V. Singh, M. Inoue, K.K. Saluja, and H. Fujiwara, “Delay

Fault Testing of Processor Cores in Functional Mode”, IEICE

Trans. on Information & Systems, Vol. E-88D, No. 3, March

2005, pp. 1-9.

[17] V. Singh, M. Inoue, K.K. Saluja, and H. Fujiwara,

“Instruction-Based Delay Fault Testing of Pipelined Processor

Cores”, Proc. of International Symposium on Circuits and

Systems 2005.

[18] V.Singh, M.Inoue, K.K.Saluja, and H.Fujiwara, “Program

Based Self-Testing of Superscalar Microprocessors”, Proc. of

North Atlantic Test Workshop (NATW), 2005.

[19] Krstic and K.-T. Cheng, Delay fault testing for VLSI circuits,

Kluwer Academic Publishers, 1998.

[20] M. Hatzimihail et al., A Methodology for Detecting

performance Faults in Microprocessor Speculative Execution

Units via Hardware Performance Monitoring”, in Proc. of

International Test Conference [ITC], 2007.

[21] G. Theodorou et al., “A Software Based Self-Test

Methodology for In-System Testing of Processor Cache tag

Arrays”, in Proc. of International On-Line Testing

Symposium (IOLTS) 2010

[22] Pomeranz and S.M. Reddy, “Selecting State Variables for

Improved On-line Testability Through Output Response

Comparison of Identical Circuits”, in Proc. of International

On-Line Testing Symposium (IOLTS) 2010.

