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ABSTRACT 
At-speed testing has emerged as dominant test requirement in the 

era of high speed microprocessors. Since the conventional testing 

techniques prove to be incompetent, Instruction-Based Self-

Testing (IBST) has been proposed as an effective alternate to those 

conventional techniques for at-speed testing of high performance 

microprocessors. The Superscalar architectures, with vast 

functionality and exceptionally high speed have become the central 

integral part of modern high speed digital systems. However, 

testing superscalar microprocessors using this approach faces 

serious challenges, due to the out-of-order execution with multiple 

functional units and in-order commit behaviour. This paper 

discusses the test program generation procedure (template based) 

for multiple identical functional units in a superscalar architecture. 

Procedures for delay fault testing, which make sure that generated 

test vectors are applied in the correct order to test each testable 

path, are developed. The preliminary work has been presented in 

EWDTS[1] 

 

1. INTRODUCTION 
The exponential acceleration can be seen in the chip technology 

and such rapid advances in VLSI technology and aggressive design 

methodologies are resulting into development of extremely dense 

and complex devices. The extensive performance, vast 

functionality and high order of reliability have become the prime 

expectations of consumers. Modern computer systems and 

systems-on-a-chip (SOCs) are built around very high-speed 

processors, in order to meet the increasing consumer demand of 

high performance and rich functionality with quick turnaround 

time. Modern high performance microprocessors use superscalar 

architecture; they are designed for very high frequency operations, 

and are implemented in nano-technology. Design reuse is being 

proved as the only way that allows designers to keep pace with the 

pace of technological developments. Though it reduces time to 

market and design effort but, on other hand, it introduces test 

difficulties. The conventional stuck-at faults are have lost their 

relevance and instead of this delay faults and crosstalk faults are 

becoming increasingly important to keep pace with the rapid 

increase in the speed of modern digital circuits. External tester is 

absolutely incapable and infeasible for At-Speed testing because of 

its inherent inaccuracy and cost. The built-in self-test (BIST), 

which is  widely used self-testing technique, is a structural testing 

methodology. BIST provides a good quality test but, due to the 

need of design change, possibility of excessive power consumption 

that may result into burn out of chips, and unacceptable 

performance loss and area overhead, it is also not a feasible 

alternate for testing high-performance and excessively dense 

processor cores. Further, it may be unacceptable to use hardware 

BIST for testing an optimized high-performance, low-power core, 

embedded deep inside an SoC due to its poor and limited 

accessibility and its inability to deal with design changes. 

 

The newer concept for testing, program-based self-testing (also 

known as software-based self-testing) can alleviate the problems of 

both external tester and structural BIST. It bridges instruction-level 

test with the low level fault model. Program-based self-testing 

(IBST) uses processor instructions to deliver the test patterns and 

collect the test responses and provide the facility to apply tests in 

functional mode. Thus, being this technique inherently non-

intrusive, it does not contribute for area and performance 

overheads and it is well suited test methodology for the testing of 

processor cores embedded deep inside an SoC. Additionally, the 

test programs developed for this method can also be used for 

online periodic testing to improve the processor reliability and 

provide the facility for testing in the field. 

 

Our paper concentrates on the test issues related with the 

superscalar processors and faced by IBST. Further program 

generation technique has been developed and depicted for 

instruction-based self-testing of superscalar processors. The 

superscalar processor uses out of order execution, and extensive 

use of design reuse in order to achieve higher performance, this 

makes the instruction-based testing (IBST) difficult. The paper has 

been organized on following discussions: 

 

 Discussion of superscalar concept along with the emergence of 

the test challenges for the instruction-based testing of 

superscalar architecture 

 

 Test procedures are developed which compel the processor 

scheduler to make sure that generated test vectors are applied in 

correct and desired order to the various multiple identical 

functional units. 

 

The Section 2 describes the previous work made in the area of 

instruction-based self-testing. Section 3 discusses the test 

challenges and explains basic overview of superscalar architecture. 

Section 4 discusses various examples to develop template 

generation procedures. Finally, we conclude with section 5. 
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2. PREVIOUS WORK 

At extremely high frequencies, the delay test model and crosstalk 

fault models have proved their better applicability in comparison 

with stuck-at faults. The importance of at-speed testing and power 

consumption issues have given instruction based self testing a 

significant edge over other techniques like BIST and external tester 

based testing. The number of built in self testing methodologies 

[4,5,6,7,8] have been proposed in literature. But these approaches 

target stuck-at faults for simple non-pipelined processors. For 

example the approaches proposed  by Shen et al. [4] and Batcher et 

al. [5] are based on the instruction randomization method. Batcher 

et al. [5] proposed built-in self test method which combines the 

execution of microprocessor instructions with a small amount of 

on-chip test hardware which is used to randomize those 

instructions. The drawback of IRST is that the amount of time 

spent by IRST in a functional mode is much higher. Also, 

processors are more amenable to random-instruction tests than to 

random-pattern tests. It is difficult to target structural faults by 

applying random instructions at the processor level. Chen et al. [6] 

uses a software tester, embedded in the processor memory as a 

vehicle for applying structural tests. Chen et al. [6], Krantis et al. 

[7], and Kambe et al. [8] generate the structural tests for functional 

modules under constraints. The method proposed by Kambe [8], 

also generates multiple templates in effective order to detect faults, 

which may cover different input spaces, and therefore, different 

detectable fault sets. Approaches have also been proposed for 

pipelined processors targeting stuck-at faults [9,10,11]. Chen [9] 

proposed a template-based approach, which proposes RTL 

simulation-based techniques, for template reading and selection, 

and techniques based on the theory of statistical regression for 

extraction of input-output mapping functions  whereas Kranitis 

[10] and Paschalis [11] proposed approaches based on 

deterministic test of functional modules. Paschalis [11] proposed to 

detect both types of permanent and intermittent faults by a small 

embedded test program with test execution time much less than a 

quantum time cycle.  

Unlike stuck-at fault testing, delay testing is closely tied to the test 

application strategy. Only a few software-based self-testing 

approaches [12,13,14,15,16] targeting delay faults have been 

proposed in literature for simple non-pipelined processors. Lai [13] 

proposes method to self-test a processor core, by running an 

automatically synthesized test program which can achieve high 

path delay fault coverage. The two key features of this 

methodology are: (1) Path Classification Algorithm to find the 

functionally testable paths and (2) Constraint Extraction to allow 

the use of constrained ATPG to generate test vectors for 

functionally testable paths and test program synthesis. The 

methodology proposed by Lai [12,13,14], extracts constraints by 

exhaustively searching instructions and instruction pairs, which 

can be applied in functional mode. The data path logic and the 

controller of the microprocessor are considered to identify the 

functionally testable paths in a microprocessor in [12]. 

Singh et al. [15] proposed a systematic approach for the delay fault 

testing of processor core, using its instruction set for this purpose. 

They [15,16]   proposed an efficient graph theoretical model to 

model a simple processor by an Instruction Execution Graph (IE 

graph), which is then used for constraints extraction to generate 

test vectors. These generated vectors can then be applied as 

instructions to test a processor.  They also extended their approach 

to include testing of pipelined and superscalar processors [17,18]. 

They [17] introduced first work towards modelling of pipeline 

behaviour for testing of a microprocessor in functional mode. The 

methodology develops a systematic approach to test delay fault of 

such processor cores by utilising the instruction set of the 

processor itself. The graph model and the associated methodology 

proposed in [17,18], models the static pipeline behaviour, where 

instructions progress in lock step fashion. Hence, it is not suited for 

the modelling and testing of a dynamic pipelined architecture such 

as a superscalar processor. Superscalar processors use buffers and 

queues to support out-of-order execution. Indeed, as pointed out in 

this paper, the test application strategy plays a key role for the 

testing of superscalar processors.  Hatzimihail et al. [20] used 

performance counters to detect erroneous cache misses. The 

methodology investigates the effects of performance faults in 

speculative execution units and proposes a generic, software-based 

test methodology, which utilizes available processor resources - 

hardware performance monitors and processor exceptions, to 

detect these faults in a systematic way. Theodorou et al. [21] have 

used special performance instructions and performance monitoring 

mechanism to overcome cache tag testability problem. The 

methodology considers new realistic fault models, on the basis of 

Fault Primitives (FPs). It applies March Write Operations in a low 

cost way by taking advantage of the cache pre-fetching mechanism 

that modern microprocessors and embedded processors include. I. 

Pomeranz and Reddy [22] have proposed a state variable selection 

algorithm to eliminate the requirements, for golden response 

storage. This extends the output response comparison scheme for 

identical sequential circuits, in order to increase the fault coverage 

and reduce the fault latency of an unknown input sequence. The 

extension is based on using state variables, in addition to primary 

outputs as part of the output response comparison scheme. A 

recent study by Sinsinwar et al. [1] proposed the the conceptual 

methodology for testing multiple copies of identical functional 

units in superscalar architectures whereas Aditi et al. [2] proposed 

output response comparison scheme for identical sequential 

circuits for delay test using static transition probability which 

allows to make selection independent of the input sequence.  

 

This paper presents a specific mechanism to test identical Floating 

Point units available in multiple copies in superscalar processors. 

This facilitates testing such multiple units in functional mode of 

operation targeting delay faults, which is not addressed in the 

literature as per best of our knowledge. 

 

3. SUPERSCALAR ARCHITECTURE AND 

TEST CHALLENGES  
Our work is focused at delay fault testing of superscalar processors 

having the features of out of order execution and design reuse. The 

objective is to generate test sequences that can be applied in the 

functional mode of operation for multiple identical functional 

units, using path delay path model [19]. Singh et al. [18] presented 

the preliminary work in this sequence. They modeled the 

superscalar (dynamic pipeline) behaviour for the purposes of 

testing of a superscalar processor. This work describes some of the 

important issues that are relevant to testing superscalar 

architectures, highlighting some of the differences between simple 

pipelined and superscalar architectures. The superscalar and 

pipelined architectures are discussed in brief 
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3.1 Pipeline Vs Superscalar Processors 
Pipeline concept was introduced to increase throughput and 

achieving instruction level parallelism. The scalar pipelines are 

characterized by a single instruction pipeline of k stages. All 

instructions traverse through the same set of pipeline stages, 

regardless of their different types. At any one point of time only 

one instruction resides in each of the pipeline stages and the 

instructions advance through lock step fashion. On the other hand, 

superscalar processors go beyond just a single-instruction pipeline 

by being able to simultaneously advance multiple instructions 

through the pipeline stages and further achieve exceptional speed 

of execution. Greater concurrency of processing multiple 

instructions for higher instruction execution throughput is achieved 

by incorporating multiple functional units, often quantified as 

instructions per cycle (IPC). Another fundamental character of the 

superscalar processors is their ability to execute instructions in an 

order different from the order specified by the original program 

which is termed as „out of order execution‟. 
Various superscalar organizations have been proposed. 

Typically the superscalar organization consists of instruction fetch 

and branch prediction unit, decode and register renaming unit, 

instruction issue unit, execution unit, re-ordering and commit unit.

 For this work the simple organization of a superscalar 

processor which uses distributed reservation station for each 

functional unit. Re-order buffer (ROB) is used to re-order the 

instructions. Figure 1 shows the organization of such superscalar 

processor. This particular organization is used to explain the 

various concepts, to keep discussion simple. Further these concepts 

can easily be generalized to other organizations. 

 

 
 

 

 

We have implemented superscalar above shown processor to 

demonstrate the concept. This implemented organization uses a 

branch history table with 2 history bits to predict branch. It fetches 

two instructions and commit two instructions per cycle. Execution 

unit has 7 functional units (2 ALU, 1 Multiplier, 1 Branch unit, 2 

FPU and 1 Load Store unit). Every unit has its own reservation 

station with 2 entries. Re-Order Buffer (ROB) is implemented as a 

circular queue with 16 entries. In order to demonstrate the concepts, 

we assume the fetch width of the processor as 4 instructions.  

 

 

3.2 Superscalar Test Challenges 
The designs reuse and out of order are the prominent characters 

which extend various facility as well as challenges for testing. In a 

superscalar processor, the instructions in the sequence may be 

executed on a different functional unit and possibly in different 

order of instructions. Further, superscalar architecture uses buffers 

and queue, which makes it a challenging task to ensure that a given 

instruction resides at a given location in the buffer or queue with 

appropriate data at a given time. This leads to a situation where the 

application of test at desired functional unit becomes very difficult. 

 

4. PROPOSED METHODOLOGY 
The methodology has been proposed in EWDTS [1] and further in 

this section first this has been discussed with development of 

program generation for identical floating point units. The same 

examples [1] have been used and subsequently the new program 

generation for floating point units has been developed. In this 

section we consider the paths that transfer the data between 

architectural registers, data and address part of the pipeline 

registers, buffers and queues. We proposed test program generation 

for the delay fault testing of the processor. We use the SIE graph to 

generate the test templates. We assume that any instruction can 

follow any other instruction. Data forwarding take place through 

the multiplexers. So, the data that can be received by forwarding 

path can also be received by the normal paths.  As discussed earlier 

that due to multiple identical functional units any test cannot be 

applied to the systems. Therefore we developed templates that can 

make sure that the test can be applied in functional mode. He we 

are focused on the template generation. The data for the template 

can be generated by using an constraint ATPG under the functional 

constraint or random data can be used [1]. 

 

In order to support high IPC and out of order execution, 

superscalar processors are implemented with reservation stations 

(buffers) and re-order buffer (queue). These allow a processor to 

run instructions out of order while maintaining the program order. 

Instruction based testing faces serious challenges due to the out of 

order execution with multiple functional units and in-order commit 

behavior, because it is the processor scheduler who decides the 

order of instruction execution, on the fly, and not the program that 

executes on the processor. This means that even if we have a test 

vector sequence generated under architectural constraints, when we 

apply such a sequence, there is no guarantee that the sequence will 

indeed be executed by the same functional unit for which it was 

meant to be. In fact, in a superscalar processor, the instructions in 

the sequence may be executed on a different functional unit and 

possibly in different order of instructions. He we can use the fact 

that the processor has identical functional units, hence, we can 

compare the response of the two functional units. Therefore we 

need not to store the golden response.  Further, superscalar 

architecture uses buffers and queue, which makes it a challenging 

task to ensure that a given instruction resides at a given location in 

the buffer or queue with appropriate data at a given time. We 

explain this in the following example. 

 

Example1: Consider a 4 instruction wide fetch superscalar 

implemented with 2 ALU, 1 Multiplier, 1 Shifter, 2 FPU, 1 Load, 1 

Store and 1 Branch Unit, where every unit has individual 

reservation station with 2 entries, and ROB has 32 entries. 

Processor instructions are represented as (I Rd, Rs1, Rs2) where I 

specifies operation, Rd is the destination, and Rs1 and Rs2 are the 

Fig 1: Organization of Superscalar Processor 
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two source operands. Let a path through ALU be tested by an 

instruction sequence ADD followed by SUB. This path is from the 

reservation station to the reorder buffer. Let the desired operands 

be placed in the registers R2 and R3 for the ADD instruction and 

in registers R6 and R7 for the SUB instruction. Since we have two 

identical ALU, we can test those together and can compare the 

result. Conventionally, we apply the test vectors in the following 

sequence: 

I1: ADD R1, R2, R3 -- processor schedules this instruction to 

ALU1 

I2: SUB R5, R6, R7  -- processor schedules this                                

instruction  to  ALU2 

I3: ADD R8, R9, R10 -- processor schedules this   instruction  to 

ALU1 

I4: SUB R11, R12, R13-- processor schedules this    instruction  to 

ALU2 

I5: SUB R14, R5, R11        --  processor compare the two results 

I6: BNEQ R14, Fault           -- processor notifies fault 

 

The processor may schedule instructions I1 and I2 to two 

different ALUs. Therefore, this sequence will not apply the desired 

test to any of the ALUs. We will get the correct result after 

execution of instruction I5 in spite of having a faulty path, because 

the fault is not excited. One possible partial solution to this 

problem is concurrent testing of two ALU‟s by the following 

program segment. 

I1: ADD R1, R2, R3   -- processor schedules this instr. to ALU1 

I2: ADD R21, R2, R3 -- processor schedules this instr.  

to ALU2 

I3: SUB R5, R6, R7    -- processor schedules this instr.  

to ALU1 

I4: SUB R25, R6, R7  -- processor schedules this instr.  

to ALU2 

I5: SUB R11, R5, R25, -- processor compares the two results 

I6: BNEQ R11, Fault -- processor notifies fault 

 

This can apply the test sequence to both of the ALUs 

provided that these instructions are aligned, i.e., all these 4 

instructions are fetched simultaneously. We can achieve this by 

having branch instruction before this set. Now, these instructions 

can be applied in our desired order. But, reservation station has 

two entries and first two instructions will be placed in the first 

entries of respective reservation stations and next two instructions 

will be placed in the second entries of the corresponding 

reservation stations. Therefore, the transition cannot be launched 

and path remains untested. A possible partial solution of this 

problem is to insert two instructions between I2 and I3 which are 

being scheduled to some other functional units. Therefore, the 

partial solution which can test the path from the first entry of 

reservation station to ROB is: 

 

I1      JUMP   2000H 

I2: 2000H ADD R1, R2, R3 -- processor schedules it for ALU1 

(stay at 1st position in RS) 

I3            ADD R21, R2, R3 -- processor schedules it for ALU2 

(stay at 1st position in RS) 

I4:           MULT R10, R11, R12  -- processor schedules it for 

Multiplier (Filler instr.)  

I5:              SRA  R13, R14, R15 -- processor schedules it for 

Shifter (Filler instruction) 

I6: SUB R5, R6, R7-- processor schedules it for  

ALU1 (stay at 1st position in RS) 

I7:  SUB R25, R6, R7-- processor schedules it  

for ALU2 (stay at 1st position in RS) 

I8: SUB R11, R5, R25, -- processor compares  

the two results 

I9:  BNEQ R11, Fault -- processor notifies fault 

 

This way, we can make sure that the transition will be created and 

can be propagated. This simple example demonstrates how to 

develop a test sequence and its importance. The situation becomes 

even more complex when we consider feedback paths in the out of 

order execution engine. 

 

4.1 Test of Forwarding Logic paths:  
The forwarding logic paths are responsible to forward data to the 

instructions residing in the RS without going through commit 

stage. These paths dominate the normal paths, i.e, a test for the 

forwarding paths can also test the normal paths. Hence, normal 

paths can be tested along with forwarding paths by using 

observation sequence for normal paths. An instruction sequence 

(Iv1, Iv2, Iv3) can test a path from RS (ith entry) to the same RS (jth 

entry) if it is applied in the following manner. This instruction 

sequence will test both normal paths and forwarding paths.  

Example 4:  Let a processor has two ALU units with 2 entry 

reservation station and the fetch width is 4. Assume, ADD 

instruction followed by SUB instruction is a test instruction pair. 

Paths from the 1st entry in RS to the 2nd entry in RS can be tested 

by the following sequence. 

 

I1:   J 2000H  -- instruction for  the alignment 

I2: 2000H  ADD R1, R2, R3  -- Instruction IV1 

I3:       ADD R21, R2, R3    -- Instruction IV1 

I4:       SW   R1, 100(R9)  – Filler instruction 

I5:       SW R21, 104(R14)   – Filler instruction 

I6:       SUB R4, R5, R6   – Instruction IV2 

I7:   SUB R24, R5, R6   – Instruction IV2 

I8:       ORA R7, R4, R8   – Instruction IV3 

I9:   ORA R17, R24, R8   – Instruction IV3 

I9:   SUB R11, R7, R17   – Comparison of results 

I9:   BNEQ R11, Fault  – Notifies fault 

 

4.2 Testing Identical Floating Point Units: 
As the method above illustrated, the sequence of instructions can 

be generated for other functional units. Assuming two floating 

units, we propose the following program for simultaneous testing 

of these identical units. 

 

I1:   J 2000H   -- instruction for the alignment 

I2: 2000H  ADDF F1, F2, F3   -- Instruction IV1 

I3:       ADDF F21, F2, F3   -- Instruction IV1 

I4:       SW   F1, 100(F9)   – Filler instruction 

I5:       SW F21, 104(F14)   – Filler instruction 

I6:       SUBF F4, F5, F6     – Instruction IV2 

I7:   SUBF F24, F5, F6    – Instruction IV2 

I8:       ORA F7, F4, F8     – Instruction IV3 

I9:   ORA F17, F24, F8   – Instruction IV3 

I9:   SUB F11, F7, F17    – Comparison of results 

I9:   BNEQ F11, Fault  – Notifies fault 

 

The templates can be generated for different combinations of the 

instructions. Since this is a manual process, and for generation of 

generalized scheme, applicable for other processors, the 
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development of automated facility is intended. Further automation 

is aimed as our future work. 

  

5. CONCLUSION 
This paper highlighted the issues that are pertinent to testing of 

identical functional units in a superscalar architecture in the 

functional mode of operation. Since the application of test at 

desired functional unit is a big issue, we have developed the test 

templates that can force the processor scheduler to execute 

program in our desired order. Hence, these procedures can apply 

test vectors in the functional mode of operation. As it is applicable 

in the functional mode of operation, it can be used for online 

testing and need not to save the golden response or standard 

response of test. This work is the ongoing work and the evaluation 

of the methodology and automation of the methodology are the 

future directions. The different programs aimed at test of different 

type of functional units, have been developed and this may further 

lead to an integration of these techniques in order to have a 

complete test procedure. 
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