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ABSTRACT 
With the development of databases in general and data 
warehouses in particular, it is now of a great importance to 
reduce the administration tasks of data warehouses. The 
materialization of views is one of the most important 
optimization techniques. The construction of a configuration of 
views optimizing the data warehouse is an NP-hard problem. On 
the other hand, the algorithm called extremal optimization is 
used to solve complex problems. In this paper, we propose a 
new adapted extremal optimization (AEO) for the materialized 
views selection problem. 
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1. INTRODUCTION 
The variety of data sources that we can find in the same context 
(subject) calls the concept of data warehousing. Data 
warehouses collect the data from different sources, organize and 
store them in order to help the management of their data. It is 
clear that these DW are giant, which implies auto-administration 
tasks to optimize them. Among the technique of optimizing DW, 
we have the materialization of views. Our problem consists of 
constructing a set of materialized views optimizing the workload 
assigned to the data warehouse. 
 
During the past few decades, studies on the combination of 
statistical mechanics or physics with computational complexity 
in term of analyzing and solving them have been the interest of 
researchers in both physics and computer sciences. Extremal 
Optimization (EO) is the makes the link between statistical 
physics and computer sciences; it is based on the principle of 
Bak-Sneppen model of evolution. EO has proved its 
performance in diverse domains, which encourages us to apply 
it on the problem of materialized views selection, especially 
because it is an NP-hard problem. 
The rest of the paper is organized as follows; the second section 
represents a state art study, the third is the conception of our 
approach and the last is the conclusion and the perspective. 

2. ART STATE 
In this section we represent an art state study about the Bak-
sneppen model, the extremal optimization algorithm, the AND-
OR view graph and the materialized view selection. 
2.1 Bak-Sneppen Model 
The Bak-Sneppen model [1] is a model of evolution between 
species. Its major characteristic is that it considers the whole 
ecosystem and the co-evolution of many different species rather 
than focusing on single species. 
 
A “fitness” value between 0 and 1 associated to the species 
which are located on the sites of a lattice (or graph. At each time 
or step (iteration), the one species with the worst fitness (poorest 
degree of adaptation) is selected to be updated randomly, having 
its fitness replaced by a new random value drawn from a flat 
distribution on the interval [0, 1]. This corresponds to the natural 
process of species’ development or where a species is replaced 
by another one. In food chain for instance, the no species lives 
alone but depends on its successors and predecessors. Bak and 
Sneppen consider this by arranging the species in a one 
dimensional line. If one species is mutated, the fitness values of 
its successors and predecessors in that line are also set to 
random values [1]. 
 
Therefore, all of the species connected to the “weakest” have 
their fitness affected (replaced by new random numbers as well). 
After a sufficient number of iterations, the system reaches a 
highly correlated state known as self-organized criticality (SOC) 
[2]. Almost all species have reached fitness above a certain 
threshold. These species possess punctuated equilibrium [3]: 
only one’s weakened neighbor can weaken one’s own fitness. 
 

2.2 Extremal Optimization  
EO is an evolutionary meta-heuristic oriented local search 
proposed by Boecher and percus [4], [5], [6], [7] inspired from 
statistical physiques and the model of co-evolution between 
species in order to find high quality solutions for hard problems. 
 
As in Bak-Sneppen model, EO merely updates those variables 
having an extremal (worst) arrangement in the current 
configuration, replacing them by random values without any 
improvement of their performance. Large fluctuations allow 
escaping from local optima. 
 
In order to make EO easier and more understandable, we will 
compare it with another well-known method such as the genetic 
algorithms (GA) [8]. First, a GA has a set of parameters to be 
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tuned like the size of population, probabilities of reproduction 
and number of generations; however, in EO there is only one 
parameter to be tuned. Second, in EO the fitness value is not 
calculated for each structure that represents a solution 
(individual or chromosome) as in a GA but for each component 
of the structure which is represented by a species; each species 
is evaluated according to its contribution in obtaining the best 
solution. Third, EO works with a single solution instead of a 
population of solutions as in GA. Last, EO replaces the worst 
components for the next iteration; in contrast, GA promotes a 
group of elite solutions. 
 
As it is mentioned above, EO has only one species parameter 
that is often referred to as 𝜏𝜏 [9]. This parameter is used 
probabilistically to choose the component value to be mutated at 
each iteration of the algorithm. The algorithm ranks the 
components and assigns to them a number from 1 to n   using 
the fitness of each one (where n is the number of components). 
Therefore, the fitness must be sorted from the worst to the best. 
The probability is calculated as follows: 
 

Pi = 𝑖𝑖−𝜏𝜏    ∀i 1≤  i ≤ n  𝜏𝜏 ≥ 0                             (1) 
 
Where: 
n is the total number of components evaluated and ranked, and 
Pi is the probability that the ith component is chosen. 
 
Algorithm 1: Standard EO pseudo-code 

Generate an initial random solution X=(x1; x2;…; xn ) and set 
Xbest = X; 

For a preset number of iterations do 
1.Evaluate and rank fitness 𝜆𝜆i for each xi from worst to 
best; 
2.Generate the probabilities array P according to Equation 
1; 
3.j = Select component based on the probability of its rank 
Pi; 
4.xj = Generate a random appropriate value that is not equal 
to xj ; 
5.Eva(X) = Evaluate the new solution; 
6.if Eva(X) < Eva(Xbest) then Xbest = X; 

end for 
Return Xbest and Eva (Xbest); 

 
2.3 Materialized Views Selection 
 Materialized view selection has received extensive attention in 
the past few decades due to its wide application in many fields, 
such as speeding up query, update processing, data warehouses 
and decision support systems. Materialized views are especially 
attractive in data warehousing environments because of their 
query intensive nature. 
Data warehouse have been introduced and developed to 
overcome the weakness of traditional databases. 
A data warehouse is a very large database system that collects, 
summarizes, and stores data from multiple remote and 
heterogeneous information sources [10]. 
 
The problem of materialized views selection is the construction 
of a configuration of views in optimizing the execution cost of a 
data load. This optimization may be realized under certain 

constraints such as the storage space allocated for selected views 
or a superior boundary of the views maintenance cost [11]. We 
consider the first constraint by the rest of the paper. 
 
Let CV be a set of materialized views that are qualified to be 
candidates to reduce the execution cost of queries set Q, 
generally supposed to be representatives of the system load.   
Let S be the disc space allocated by the administrator of the data 
warehouse for the creation of views. The problem of MVS is to 
construct a configuration of views V ⊆CV minimizing the 
execution cost of Q, under the constraint of space. The problem 
can be formalized as follows:  
 
Cost (Q, V) = min (cost (Q, E)) ∀ E ⊆ VC;  

� taille(v) ≤  S 
v∈V

 

 
 
Many materialized view selection algorithms have been 
proposed to deal with this problem, such as greedy heuristic 
algorithm [12] and GA [13], but these algorithms have some 
limits. The greedy heuristic algorithm is highly problem 
dependent whereas in GA, it is hard to acquire good solutions in 
the beginning (first iterations).  
 

2.4 Graph AND-OR For MVS 
A graph G is called AND-OR view graph (figure1) for the views 
(or queries) v1,v2,…,vk , if for each vi there is a sub-graph Gi in 
G which is an expression AND-OR-direct acyclic graph(AO-
DAG) for vi [14] . 
 
Each node u in an AND-OR view graph has the following 
parameters associated with it:  
fu: frequency of the queries on u. 
Su: space occupied by u. 
gu: frequency of updates on u. 
 
Given set of queries q1, q2,..,qk to be supported at a data 
warehouse, the AND-OR view graph can be constructed in 
terms of the following steps: The first step is to construct the 
expression AO-DAG di for each query qi, then, we combine all 
the expressions AO-DAG d1,d 2, ,dk in order to obtain an AND-
OR view graph G for the set of queries.  

 
Each view is presented by a node of the graph in relation with a 
group of views it needs in order to be calculated; there is an 
AND relation between the views of the same group which is 
represented by the arc in figure1. The relation OR can be 
between two or more groups of views indicating that the views 
can be calculated from any group of them. For instance, in 
figure1 the view (a) can be calculated from the views (b, c and 
d) or (d, e and f).  
 
In short, given an AND-OR view graph G and an available 
space size quantity S provided by the data warehouse, the 
materialized view selection problem aims to select a set of views 
V (i.e., a subset of the nodes in G), which minimizes the sum of 
total query response time and total maintenance cost, under the 
constraint that total space occupied by V is less than S. 



International Journal of Computer Applications (0975 – 8887) 
Volume 34– No.5, November 2011 

 

32 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 1: example of expression AO-DAG 

 

3. ADAPTED EO FOR MATERIALIZED 
VIEW SELECTION 
 

Algorithm 2: AEO pseudo-code for materialized views 
selection. 

Generate an initial random solution V=(v1; v2;..; vn) where 
∑ 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠(𝑣𝑣𝑖𝑖)𝑛𝑛
𝑖𝑖=1  ≤ S 

Vbest  V; 
For a preset number of iterations do 

1. Evaluate and rank fitness 𝜆𝜆i for each vi from worst to 
best; 
2. Generate the probabilities array P according to Equation 
1; 
3. j = Select component based on the probability of its rank 
Pi; 
4. vj = Generate a random appropriate value that is not 
equal to vj ;where ∑ size(vi)n

i=1  ≤ S 
5. Eva(V) = Evaluate the new solution; 
6. if Eva(V) < Eva(Vbest) then Vbest = V; 

end for 
Return Vbest and Eva (Vbest); 

 
Since the materialized view selection problem has been proved 
to be NP-hard [15] it is impossible to resolve this problem by 
using the traditional algorithms. In this section, we propose a 
meta-heuristic algorithm called adapted extremal optimization 
(AEO) to deal with this problem using the extremal optimization 
(EO) method.  
 
 As it is mentioned above, the extremal optimization receives 
only one parameter τ, but since our problem is constrained we 
have to adapt the algorithm to make it receive our space 
constraint as a new parameter. 

 
 
The first step of our adapted algorithm is to generate a random 
solution composed of a certain number of species (views or 
queries); this number is limited by the disc space S. The relation 

between the views is materialized in a graph AND-OR, the view 
graph is encoded as a binary string, where the constant number 
is the number of candidate views in the AND-OR view graph, 
the bit 0 denotes the corresponding node (view/query) is not 
materialized in the warehouse, the bit 1 denotes the 
corresponding candidate node (view/query) in the AND-OR 
view graph is materialized. 
 
The second step is the calculation of fitness: The fitness is the 
contribution of each species (view or query) in the solution; we 
simulate our problem to the graph bi-partitioning problem where 
it is supposed to minimize the relation of the species with the 
partition’s neighborhood [5] but in our case, we need the 
opposite i.e. we need to maximize the number of relations 
between the selected species (views or queries) with the 
unselected ones. We say that v1 is in relation with v2 if v1 is 
used to calculate v2. If only v1 is used to calculate v2,then the 
relation is unique for example we can calculate (e) using only 
(k); the relation is direct if there is no intermediate views 
between v1 and v2; 

 
Each relation has its characteristics; each characteristic has its 
own coefficient. According to the relation’s characteristics 
(direct, unique with presence of mates or unique with absence of 
mates) we multiply the appropriate coefficients to each other: 
 

1. The coefficient is 1 if the relation is direct and unique. 
2. If the relation is indirect, the coefficient is  1

NIV +1
 ; 

where NIV is the number of intermediate views. 
3. If the relation is not unique, the coefficient is  1

 NVM +1
 ; 

where NVM is the number of view’s mates. 
4. If there is absence of some of the view’s mates 

(unmaterialized); the coefficient is  1
NAM +1

 ; where 
NAM is the number of absent mates. 

   
Example 1: in figure1, suppose that the colored nodes compose 
the initial solution. Table1 explains how to calculate the number 
of relation of each species according to their characteristics. 
 
Using the number of relations calculated as in table1, we 
calculate the fitness according to the equation 2: 
 
𝜆𝜆i=   𝑛𝑛𝑛𝑛 𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛  𝑜𝑜𝑜𝑜  𝑛𝑛𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢𝑠𝑠𝑛𝑛𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑠𝑠𝑠𝑠𝑢𝑢  𝑣𝑣𝑖𝑖𝑠𝑠𝑣𝑣𝑠𝑠
                                       (2) 

 
 
Example2:  𝜆𝜆b =

1/9
10

 = 0.011 
 
The third step is to rank the species according to their fitness 
from the worst to the best and replace the worst species (view) 
with a random one; 
 
The fourth step is to evaluate the new solution; if it is better than 
the best then it becomes the best; 
 
This process is repeated as desired i.e. according to a preset 
number of iterations (convergence). 

A 
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G H M L K J I 

AND 

 

AND 
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Table1: calculating the number of relations 

 
5. CONCLUSION AND FUTUR WORKS 
The selection of materialized views is one of the most important 
problems in the design of data warehouses. Its aim is to find the 
best configuration of queries where the analyzing cost has to be 
minimal.   

 
In the next step, we will prove the efficiency of our algorithm by 
creating a tool based on it and test it on a benchmark. 

 
Since multi-agents systems are favorable to interest the complex 
system, we will propose muti-agent architecture for our tool.  
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view Relation to direct unique Absence of mates multiplication increments number of relations 

B A yes no yes 1
NVM + 1 ∗

1
NAM + 1 

1/(3*3)=1/9 nbb=1/9 

H C yes no yes 1
NVM + 1 ∗

1
NAM + 1 

1/(2*2) =1/4 1/4+1/8 

=3/8 

nbh=3/8 
A no no yes 1

NIM + 1 ∗
1

NVM + 1

∗
1

NAM + 1 

1/(2*2*2)=1
/8 

J D yes yes no 1 1 nbj=1 
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