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ABSTRACT 
Clustering is a splitting up of data into groups of similar objects 
called clusters. The objects in a cluster are  similar  between  
themselves  and  dissimilar  compared  to  objects  of  other  
clusters.  This paper is intended to study and compare different 
data clustering algorithms.  The algorithms in investigation are: 
hierarchical agglomerative clustering algorithms: Parameter 
Free Minimum Spanning Tree (MST) clustering algorithm and 
single link, complete link and average link clustering algorithms. 
K-means partitional clustering algorithm is used in the results as 
a reference. Our  experimental evaluation shows that Parameter 
Free Minimum Spanning Tree algorithms are lead to better 
clustering results than hierarchical agglomerative algorithms, 
which suggests that Parameter Free Minimum Spanning Tree 
clustering algorithms are well-suited for clustering.   
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1. INTRODUCTION 
Clustering is a division of data into groups of similar objects, 
called clusters. The objects in a cluster are  similar  between  
themselves  and  dissimilar  compared  to  objects  of  other  
clusters. Clustering methods are broadly classified as 
hierarchical and partitioning clustering. Hierarchical clustering 
views each data point as a node and at each iterative step merges 
two neighboring nodes to form a new node. A tree is constructed 
in a bottom up fashion after n − 1 steps, where n is the number 
of data points. For merging two nodes different linkage methods 
can be used which decide the neighboring pair of nodes to 
merge. Single linkage computes shortest distance of pairwise 
points from the two nodes. Complete linkage computes largest 
distance of pair-wise points from the two nodes. Average 
linkage computes average distance of pair-wise points from the 
two nodes. The problem with hierarchical clustering is that it 
decides the nodes to be merged locally on the basis of some 
form of linkages without taking a global objective into 
consideration and once nodes are merged they cannot be 
separated in later steps [1].  

In contrast to the hierarchical clustering algorithm, partitional 
clustering find a single partition of the patterns instead of a 
clustering structure. It usually generates clusters by evaluating a 
criterion function which is defined locally or globally and 

attempts to recover the natural clusters present in the patterns. 
The advantage of partitional clustering methods is that they are 
especially appropriate in the analysis of large data sets, wherever 
a dendrogram based hierarchical clustering method is 
computationally expensive and is impractical with more than a 
few hundreds patterns [2,3]. The problem with partitional 
algorithm is the setting of parameter for the number of desired 
output clusters. The graph-theoretic clustering is one of the 
partitional clustering techniques to partition the given dataset. 
The well-known graph-theoretic clustering algorithm is based on 
building of the minimal spanning tree (MST) of the data [4], and 
then deleting longer edges from the MST to generate clusters.  

In cluster analysis, one of the most important issues is the 
measure used to evaluate the quality of the clustering results that 
are produced. This measure can then be used to compare the 
solutions from different algorithms. This paper is intended to 
study and compare agglomerative hierarchical clustering with 
three linkages and Partitional clustering algorithm based on 
Minimum Spanning Tree. The results are to be compared on the 
basis of validity ratio [5] as a measure of cluster analysis. As a 
reference K-Means Algorithm is also presented in the 
evaluation.  

2. TERMINOLOGY 
2.1  Hierarchical Agglomerative Clustering 
Algorithm 
A hierarchical clustering is a nested sequence of partitions [6]. 
This technique works on both bottom-up and top-down 
approaches. Based on the approach hierarchical clustering is 
further subdivided into agglomerative and divisive [6]. The 
agglomerative hierarchical technique follows bottom up 
approach whereas divisive follows top-down approaches. 
Hierarchical clustering uses different linkage criteria, which 
specifies the dissimilarity in the sets as a function of the pair-
wise distances of observations in that sets. The linkage criteria 
could be of single linkage, average linkage and complete linkage 
[6]. In this paper, agglomerative clustering algorithm with all the 
three linkages is implemented for comparison. The advantages 
of hierarchical clustering algorithms are the reason for selecting 
this category for discussion. The advantages are flexibility, 
popularity and these algorithms are more versatile [7].  

For n samples, agglomerative algorithms [8] begin with n 
clusters and each cluster contains a single sample or a point. 
Then two clusters will merge so that the similarity between them 
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is the closest until the number of clusters becomes one or as 
given by the user [9,10],  

1. Start with n clusters, and a single sample 
indicates one cluster. 

2. Find the most similar clusters Ci and Cj then 
merge them into one cluster. 

3. Repeat step 2 until the number of cluster becomes 
one or as specified by the user. 

The distances between each pair of clusters are computed to 
choose two clusters that have more opportunity to merge. There 
are different methods to calculate the distances between the 
clusters Ci and Cj.  

Notation: 

X1, X2, ... , Xk =Observations from cluster 1 

Y1, Y2, ... , Yk = Observations from cluster 2 

d( x, y) = Distance between a subject with observation vector x 
and a subject with observation vector y.  

The methods for calculating distance between clusters are called 
linkage methods [11] and are as shown below:  

Single Linkage: The distance between the two closest members 
of two clusters is, 

),(min
12 jiij YXdd =      (1) 

Complete Linkage: The distance between the two farthest 
members of two clusters is, 

),(max
12 jiij YXdd =      (2) 

Average Linkage: This method involves looking at the distances 
between all pairs and averages all of these distances. 
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Several more complicated agglomerative clustering algorithms 
[11], including group average linkage, median linkage, centroid 
linkage, and Ward’s method, can also be constructed by 
selecting appropriate coefficients in the formula. Single linkage, 
complete linkage and average linkage consider all points of a 
pair of clusters, while calculating their inter-cluster distance, and 
are also called graph methods. In recent years, with the 
requirement for handling large-scale data sets in data mining and 
other fields, many new Hierarchical Clustering techniques have 
emerged and greatly improved the clustering performance. 
Typical examples include CURE [12], ROCK [13], Chameleon 
[14], and BIRCH [15]. 

2.2 Partitional Graph Theoretic Clustering 
In graph based clustering methods, objects or their 
representatives are considered as vertices of the graph, and 
edges represent the relationships between them. The graph may 
also be a weighted or a non-weighted graph. In the graph based 
clustering methods, if the graph is a weighted graph, the labels 
of the edges are mostly derived from the corresponding 
similarity or distance measures of the objects. The main aim of 

the graph based clustering process is to determine and to 
eliminate those edges, which connect less similar objects. Such 
edges are called inconsistent edges. The elimination of the 
inconsistent edges leads to a clustering result, where the 
disconnected subgraphs yield the resulted clusters. 

Minimum Spanning Tree (MST) of a graph is a tree which has 
all the vertices of the graph as nodes such that the total edge 
weight of the tree is minimum. This approach utilizes graph 
theory to find clusters. It views data points as nodes and defines 
a distance measure (like Euclidean distance [4]) between nodes 
as weight of an edge between nodes that is connecting the two 
nodes. A minimum spanning tree is constructed, now in order to 
get k clusters the tree has to be k-partitioned by removing k−1 
edges [16]. There can be various criteria for removing k − 1 
edges like picking the longest k − 1 edges or partition with a 
global objective of minimizing the total distance between the 
center of each cluster and its data points.  

Using a minimal spanning tree for clustering was initially 
proposed by Zahn [4]. A minimal spanning tree can be 
efficiently computed in O(n2) time using either Prim’s [17] or 
Kruskal’s [18] algorithm. Clustering by minimal spanning tree 
can be viewed as a hierarchical clustering algorithm which 
follows the divisive approach. Using this method first a linked 
structure of the objects is constructed, and then the clusters are 
recursively divided into subclusters. In this paper the Parameter 
Free Minimum Spanning Tree clustering algorithm that is used 
is based on two phase process [19] with minimum user 
intervention; splitting the initial MST to get rough clustering and 
then fine tuning is done through merging the neighboring 
clusters. The algorithm is as shown below.   

The MST Algorithm: 

Input : S the point set. 
Output : number of clusters and validity index 
 
Let e1 be an edge in the MST constructed from S 
Let W be the weight of el 
Let σ be the standard deviation of the edge weights in MST 
Let ST be the set of disjoint subtrees of MST 
Let nc be the number of clusters 
 
1. Construct an MST from S 
2. Compute the average weight of Ŵ of all the Edges from        
MST 
3. Compute standard deviation σ of the edges MST 
4. ST = ø; nc = 1; C = ø; validity ratio=Inf; 
5. Repeat 
6.    For each el Є MST 
7.      If (We > Ŵ + σ)  
8.        Remove el from MST 
9.        ST = ST U { T’ } // T’’ is new disjoint 
               Subtree (regions) 
10.       nc = nc+1 
11.       Compute the center Ci of Ti  
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12.     End 
13.         Compute Validity Index 
14. Until (all the edges whose length We > Ŵ + σ are   removed) 
15. While (Validity index decreasing )  
16.     Compute the center Ci of each Ti  Є ST 
17.     Merge the two clusters whose distance between   their  

centers  is minimum. 
18.     nc = nc-1 
19.   Compute Validity Index 
20. End  
21. nc = nc+1 
22. Return nc , Validity Index values. 

The above algorithm does not require the user to specify the 
parameters to terminate the algorithm. The splitting Phase of the 
algorithm (lines 6-13) terminates when the condition We > Ŵ + 
σ, is not satisfied. The second phase of the algorithm i.e. 
merging (lines 16-19) continues as long as the validity ratio is 
decreasing. In this algorithm the user intervention is minimized. 
The final number of clusters and validity index of clustering are 
returned at line 22. The block diagram of our method is as 
shown in the Fig. 1. 

Data set S

Weight Matrix

Kruskal’s Algorithm to find MST 
of given data set

Find the Euclidean Distance 
between the data points in S

wT

Split the MST into subtrees by 
removing inconsistent edges

nc, Optimal no. of clusters

Merge the clusters whose distance 
between their centers is minimum

Zi

Data set S

Weight Matrix

Kruskal’s Algorithm to find MST 
of given data set

Find the Euclidean Distance 
between the data points in S

wT

Split the MST into subtrees by 
removing inconsistent edges

nc, Optimal no. of clusters

Merge the clusters whose distance 
between their centers is minimum

Zi

 
Fig 1: Block Diagram showing the MST Algorithm 

2.3 Hierarchical vs Graph Theoretic 
Algorithms 
Clustering techniques based on hierarchical and graph theoretic 
approaches are shown to be related in certain ways [2]. For 
example, Single-link clusters are subgraphs of the minimum 
spanning tree of the data [20] and as well as are the connected 
components [21]. The Complete-link clusters are maximal 
complete subgraphs, and are linked to the node colorability of 
graphs [22]. The maximal complete subgraph was considered 
the stringent definition of a cluster in [23] [24]. A graph-
oriented approach for non-hierarchical structures and 
overlapping clusters is presented in [25]. The Delaunay graph 
(DG) is obtained by connecting all the pairs of points that are 
Voronoi neighbors. The DG contains all the neighborhood 
information contained in the MST and the relative neighborhood 

graph (RNG) [26]. More inter-cluster distance measures, based 
on mean, were introduced by Yager [27], with additional 
discussion on their possible effect to control the hierarchical 
clustering process. 

Graph theory can also be applied for nonhierarchical clusters. 
Zahn’s clustering algorithm try to find connected components as 
clusters by detecting and discarding inconsistent edges in the 
minimum spanning tree [4]. Hartuv and Shamir treated clusters 
as highly connected subgraphs (HCS), where highly connected 
means the connectivity (the minimum number of edges needed 
to disconnect a graph) of the subgraph is at least half as great as 
the number of the vertices [28]. A minimum cut (mincut) 
procedure, which aims to separate a graph with a minimum 
number of edges, is used to find these HCSs recursively. 

The difference between partitional and hierarchical approaches 
is that partitional method divides the data into pre-defined 
number of partions where as hierarchical method generates a 
tree structure of nested partitions. The hierarchical approach 
does not demand for the number of clusters in advance. The time 
and space complexities of the partitional algorithms are lower 
than that of the hierarchical algorithms [29]. The single-link 
clustering algorithm works well on data sets containing non-
isotropic clusters whereas typical partitional algorithm works 
well only on data sets containing isotropic clusters [30]. The 
construction of hybrid algorithms that exploit the good features 
of both categories is shown in [31]. 

Table 1 lists the time and space complexities of several well-
known algorithms, where, n is the number of patterns to be 
clustered, k is the number of clusters, and l is the number of 
iterations. 

Table 1. Complexity of clustering algorithms 

Clustering 
Algorithm 

Time 
Complexicity 

Space 
Complexicity 

k-Means O(nkl) O(k) 

Single-link O(n2logn) O(n2) 
Complete-

Link O(n2logn) O(n2) 

MST O(n2) O(n) 

3. VALIDITY INDEX 
Validity index is generally used to evaluate the clustering results 
quantitatively. In this paper the validity index, which is based on 
compactness and isolation is used. Compactness measures the 
internal cohesion among the data elements whereas isolation 
measures separation between the clusters. The compactness is 
measured by Intra-cluster distance and separation is measured 
by Inter-cluster distance [32], which is defined as follows. 

 Intra-cluster distance: This is the average distance of all the 
points within a cluster from the cluster centre. This measure is : 
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Where N is the number of data items in the dataset, K is the 
number of clusters, and Zi is the cluster centre of cluster Ci.  

Inter-cluster distance: This is the minimum of the pair wise 
distance between any two cluster centers given by 
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In the evaluation of the clustering algorithms, the validity index 
used is that proposed by Ray and Turi [5] as follows 

Inter
Intravalidity =     (6) 

These equations are in conformance of the definitions of Intra 
and Inter cluster distances that the separation increases in its 
value and compactness decreases as with the increase in the 
number of clusters. This is useful in estimating the optimal 
number of clusters. 

4. EXPERIMENTAL RESULTS 
Please use In this section a series of experiments are conducted 
on both synthetic and real datasets to demonstrate the validity. 
The reason for choosing the synthetic datasets is that they are 
easy to control and can be designed to contain a certain number 
of clusters. Three synthetic datasets were generated. The MST 
algorithm is tested on 2D datasets and compared with 
Hierarchical agglomerative and k-means algorithm. The 2D 
datasets used are Dataset1, Dataset2, and Dataset3 as show in 
the Fig. 2. The details of these datasets are presented in table 2. 

Dataset1 (Fig.2 (a)) and Dataset2 (Fig. 2 (b)) have 3 and 2 well 
separated clusters respectively. Dataset3 has three clusters with 
some outliers (Fig. 2 (c). Moreover the sizes of the clusters are 
different. Experiments were also conducted on real world data 
sets: Iris, Soybean and Breast tissue data sets. The description of 
all these data sets is given in UCI machine learning repository 
[33]. The details are presented in the table II. The raw data sets 
are used in the experiments, for getting the accurate results 
while solving clustering problems. If the data is normalized, 
although it is usual to get the better clustering results, the 
clustering results not only depend on clustering methods, but 
also depend on normalization methods. Therefore, we decided 
not to normalize the data in order to ensure that the clustering 
results absolutely depend on the accuracy of clustering methods. 

The results of the above datasets are depicted in table 3. The 
validity ratio based on MST clustering for Dataset3 is 0.1209, 
where as for K-Means this ratio is 0.2163. In presence of 
outliers, MST based clustering algorithm shows better results 
than K-Means algorithm. The validity ratio for Dataset1 and 
Dataset2 is same irrespective of the algorithm used as the 
clusters are very well defined.  

 

Table 2. Datasets 

Name No. of 
attributes 

Data 
Size 

No. of 
Clusters  

DataSet1 2 60 3 
DataSet2 2 40 2 
DataSet3 2 163 3 

Iris 4 150 3 
Soybean 35 47 4 
Breast 
Tissue 9 106 6 

  

Three real datasets from UCI Machine Learning Repository are 
employed to test the validity of algorithms. The datasets are Iris, 
soybean and Breast Tissue. The performance of different 
clustering algorithms on these datasets is shown in the table III.  
For the Iris dataset, of the three hierarchical clustering 
procedures the single-link and average link procedures showed 
the minimum validity ratio of 0.1488. The MST clustering 
algorithm given a value of 0.2373. The MST based partitional 
algorithm is better than standard k-Means algorithm for Iris 
dataset. The clustering performance of MST based clustering is 
better than the other algorithms under consideration for Soybean 
dataset. The k-means performed poorly for Breast Tissue 
dataset. The above results show that the performance of MST 
based clustering algorithm is better than the standard K-means 
algorithm for all the datasets used in this paper. 

5. CONCLUSIONS 
The clustering aims at recognizing and digs out significant 
groups in underlying data. Thus based on a clustering criterion 
the data are grouped so that data points in a cluster are more 
similar to each other than points in different clusters. Since 
clustering is applied in many fields, a number of clustering 
techniques and algorithms have been proposed. In this paper we 
discussed and compared different categories in which algorithms 
can be classified (i.e., partitional, hierarchical and grid-based 
clustering) and we presented representative algorithms of each 
category. We concluded the discussion on clustering algorithms 
by a comparative presentation using the validity ratio that MST 
clustering algorithm performs better than the classical K-means 
partitional algorithm. The experimental results also showed that 
the hierarchical trees produced by partitional algorithms are 
better than those produced by agglomerative hierarchical 
clustering algorithms. This paper demonstrated that MST based 
clustering algorithm outperforms other clustering algorithms, 
including Hirarchial and k-means on most of the benchmark 
data sets from the UCI repository. We intend to further look at 
the potentials of MST based clustering algorithm in various data 
mining domains where cluster boundaries are inherently 
irregular. We will continue to study the rich properties of the  
MST clustering techniques and identify new challenges of 
applying those techniques in practice. 
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