
International Journal of Computer Applications (0975 – 8887)
Volume 34– No.10, November 2011

56

Software Automated Testing: A Solution to Cover
Maximum Test Plan and to Increase Software Quality

 G.Srikanth R.Venkata Ramana Chary

ABSTRACT
Software plays an important role in complex systems,
especially for complex applications such as Video
surveillance application, transportation, financial
management, communication, biomedical applications and
so on. For these systems, tester needs to concentrate on
performances such as efficient operation, fault tolerance,
safety and security. The basic problem is the complexity of
the task, which has to be performed on a software
application. Unlike hardware, software cannot break or
wear out, but can fail during its life cycle [1].Software
problems, essentially, have to be solved with quality
assurance tools such as testing procedures, quality data
reporting.

In this context, the paper proposes a new approach to
automate software testing process to cover maximum test
plan time and also to increase software quality. In this
paper a method explained to cover each module without
missing any test scenario and guarantees software with high
quality and decrease testing life cycle time by establishing
automation life cycle to develop scripts.

Keywords
PTZ: Pan Tilde Zoom, NTP: Network Time protocol,
DDNS: Dynamic DNS, DNS: Domain Name System

1. INTRODUCTION
A software system is often subjected to conflicting
requirements; in fact it has to be reliable in its application
and, at the same time, has to follow the needs of the market
with competitive costs [1, 2]. In this context the test
process, through quantitative planning, tracking and
automation, covers a fundamental role. Software reliability
testing Combines the use of quantitative reliability aims
with operational profiles (profiles of system use), that guide
developers in the testing implementation. An important
innovation would be the introduction of the automated test
in order to reduce both time and cost of development
without inducing, in the system, different Failures from the
ones which we want to analyze. Inadequate and ineffective
testing is responsible for many problems regarding software
reliability faced by computer users. On the other hand, the
complexity of modern software packages makes exhaustive
testing difficult. Nevertheless, automated testing can help to
improve efficiency of the testing process in order to
identify areas of a program that are prone to failure.
Automated testing can be applied in large portions of many
applications, with reduction of the workload on
overburdened testers. Until a few years ago, developers
considered software testing as a secondary activity, if

compared with the development phase, Nowadays the test
represents, in many fields of application, the starting point
for the development of the product and its cost is often
comparable with the cost of the product development. In
fact, it has been estimated that software testing, able to
detect errors in source code, involves more than 50% of
software development [4]. Time and cost can be
significantly reduced through the use of automated test
generators [4].Among the activities that allow the detection
of nonconformity and potential failures in different phases
of the software product, implementation software
Verification and Validation (V&V) plays a fundamental
role. To this aim, some standards and guidelines have been
issued about software as a key component which
contributes to system behavior and performance; some
examples are represented by the International Standard
ISO/IEC 9126 [5], which defines a quality model for a
software product, in order to satisfy the customer
optimizing the product and IEEE Standard 1012 [6] for
Software Verification and Validation, which attempts to
establish a common framework for all activities and tasks
in support of software life cycle steps. In particular,
amongst the different steps, the efforts on improving
quality are concerned with V&V phases; these activities
determine whether products of a given activity conform to
the requirements and whether the software satisfies its
intended use and customer needs. Verification and
Validation is the activity in software production that allows
production costs to be decreased and, at the same time, to
increase software reliability [3, 7]. Verification is the
process of evaluating software to determine whether the
products of a given development phase satisfy the
conditions imposed at the start of that phase. Validation is
the process of checking in order to ensure compliance with
software requirements [6]. V&V activities carry out the
integration test that exposes defects in the interfaces and
interaction between integrated components (modules);
progressively larger groups of tested software components
corresponding to elements of the architectural design are
integrated and tested until the software will work as a
system. Consider an example of complex application.
Video surveillance is an electronic security system which is
used to monitor, capture and store video data to be used for
analysis. The system consists of analog and IP cameras,
Recorders. Video surveillance software application enables
customers to remotely manage the full suite Digital Video
Recorders under one seamless graphical user interface. It
supports more Digital video records. This software
application supports to view live video, Playback video
from device hard disk, record notifications from different
devices, perform PTZ operations, configure devices, export
video etc.

Configuration module of this application enables the user to
specify

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 34– No.10, November 2011

57

Camera settings like display title, brightness, contrast,
camera tampering, camera title.

System settings like system information, RS485, RS232.

Network settings like enable NTP, DDNS, DNS.

Notification settings like notify IP address, notify port,
notification type.

Recording settings like overwrite, camera number, record
settings, compression settings.

Alarms settings like alarm title, sensor type, alarm events,
full screen, send Email.

As video surveillance software supports many devices,
manual validation of configuration module for all these
devices is very cumbersome and time consuming task. It
takes more time for validating Configuration module. By
automating this module the validation time can be reduced

2. PROPOSED TEST METHODOLOGY
Several well-known methodologies for testing general
purpose software exist in literature [8, 9]. Such techniques
follow a structural or a functional approach, also identified
as the white-box and the black-box approach respectively.
The proposed methodology can be classified as a black-box
approach, where the software under test has to be verified
with a suitable studied set of inputs whose expected outputs
are known only on the basis of the functional specifications.
In addition to the black-box approach, we propose a test
method with test sets well representative of the field
behavior of the system, according to the block diagram
shown in Fig. 1.

Fig1. Block diagram of the test method.

 One can observe that “test parameters” are inputs, “final
results” are outputs. The “software under test” is the object
of the analysis and “test cases generation”, “test cases
execution” is activities. The proposed methodology takes
advantage of pseudo randomization voted to increase the
number of test sequences and, at the same time, to simulate
better the possible real conditions; it allows the test
sequences to be modified without changing the
programming code, for its high flexibility performances
[10–11]. Test case generator creates quite unlimited
sequences that can be iterated on the software under test.
Both the inputs are Excel file where we give different
inputs and the outputs is txt file where the result will be
save. The test results, represented by the output of the
software under test, are compared with the expected results

obtained from the test cases, at the end of the testing phase;
final results allow information to be deduced about the
quality in use of the software under test and new data for
dynamic test case generation [12–14]. Detailed steps
concerning the comparison between obtained and expected
results are shown in Fig. 2. If no differences between
obtained and expected values are present, the test is
stopped; vice versa, a fault has to be tracked and the
software has to come back to the development team in
order to be analyses and correct the bug; successively the
test has to be carried out again. There is also the possibility
of locating unclear values, such as ambiguities that have to
be solved manually by repeating ambiguous sequences as
video surveillance software supports many devices, manual
validation of configuration module for all these devices is
very cumbersome and time consuming task. It takes more
time for validating Configuration module.

Fig 2. Automated software testing process

By automating this module the validation time can be
reduced .To automate the Configuration module, a
framework designed which gave more flexibility for further
enhancement of scripts. Scripts were developed which run
in un-attended mode. Automation life cycle defined to
achieve good result.

3. AUTOMATION DEVELOPMENT
LIFECYCLE
Most of the companies today were concentrating to
automate everything for that companies were purchasing
tools and providing training to automation team but by the
end they were not achieving the goals reason is nothing but
lack of planning to solve this problem before starting
automation team should develop one lifecycle . Example
here I developed one lifecycle to automate video
application by this I completed the automation within the

Automated Test

Input Data Elaboration

Test
Results

Expected
Results

Results
Comparison

Manually repeat for ambiguous
Sequence

End Test

Faults Tracking

Software
Development

Yes

No
Not

Correct

Correct

TEST
PARAMETERS

TEST CASES
GENERATION

TEST CASES
EXECUTION

SOFTWARE
UNDER TEST

FINAL
RESULT

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 34– No.10, November 2011

58

time and achieved the goal. Fig3 explain the automation
development lifecycle.

Fig3. Automation development lifecycle

In this initial product is release to automation team. Then
automation team will do feasible study that which tool is
suitable and how many days were need to automate , what
is business benefit by automating ,How many automatable
test cases are there , number of resources needed to
automate . All these come under automation infrastructure
and then team will develop automation framework which is
reusable structure then automation team develop scripts
with in time and these test scripts will give to Hand-offs
person who don’t have knowledge on scripting will execute
the scripts and when next build release to QA team they
will run the developed scripts on the application if any
changes were in UI they will change the script else continue
executing the scripts by following above lifecycle we can
achieve good results.

4. USING FREEWARE TO AUTOMATE
APPLICATIONS
Most of the companies were concentrating to improve the
quality of the product and at the same time trying to reduce
the cost of the testing efforts.

By using commercial tools like QTP , Load Runner they
can automate the application but it is more cost .To reduce
the cost and improve the quality of the product best solution
to use open sources or freeware like Auto It ,WATIR etc.
By that quality of the product increases and cost of the test
life cycle decreases.

5. VALIDATION OF THE
METHODOLOGY
The validity of the proposed approach is verified by
considering an industrial application, constituted by a
multifunction video surveillance system application as
represented in Fig. 4. For this application the software suite
covers a fundamental role in all the activities involved in
the managing of different type of DVR’s

Fig 4.Typical components of a video surveillance

application

6. RESULTS BY DOING
AUTOMATION VIDEO APPLICATION
Below formula explain how much time we reduced by
doing automation in terms of days

Say No: of devices = 27

Manual time taken for each device = 4 hrs

Automation time taken for each device = 1 hr

Total time taken to test manually for all devices TM = (No.
of devices) *(Manual time taken for each device) hrs

Percentage of time saved = (1- (No. of devices /
TM))*(100)

 Percentage of time saved = (1-(27/ (27*4)))*(100) =
75%

Total time taken to test manually for all devices TM = (No.
of devices) *(Manual time taken for each device) hrs

Total time taken to test all the devices using automation
scripts TA = (No. of devices) *(automation time taken for
each device) hrs

In days saved = (TM/24)-(TA/24) Days

 = 4.5 - 1.125 days

 = 3.375 days

By automating configuration part of video surveillance
software application .The quality of the product increases
and manual test effort were decreases .Fig 5 explains how
quality of the product increases and days of effort decreases
by doing automation

DVR

Network

Computer

DVR

Analog & IP
Cameras

Initial Product
Release

UI
Changes

Design Framework
&

Develop Scripts
Run Scripts

Automation Infrastructure
Feasible

Study and
Automation

Automation
Plan

New Product
Version

Run Scripts

Hand-offs

Final Release
No

Yes

Update
Script

1. Infrastructure (Tools & Processes).
2. Run Scripts (Environment, Scheduling,

Results).
3. Hand-offs means the internal release of

automation packages within the teams.

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 34– No.10, November 2011

59

0

20

40

60

80

100

Manual Automation

Days

Quality

Fig 5. No. of Days Vs Quality

7. CONCLUSIONS
Paper proposes a new approach to automate software
testing process to cover maximum test plan time and also to
increase software quality. In this paper a method explained
to cover each module without missing any test scenario and
guarantee software with high quality level, decrease of the
testing time. Establishing automation life cycle to develop
scripts with in time and benefits of using freeware language
like Auto IT to developing automation scripts. Application
will be tested by using test scripts and produce results with
in less time .Moreover the research wishes to define some
parameters of the software life cycle to show the generality
of the proposed technique.

8. REFERENCES
[1] G. Betta, D. Capriglione, A. Pietrosanto, P. Sommella,

A statistical approach for improving the performance
of a testing methodology for measurement software,
IEEE Transactions on Instrumentation and
Measurement 57 (6) (June 2008) 1118–1126.

[2] A.Birolini, Reliability Engineering — Theory and
Practice, Springer-Verlag3-540-40287-X, 2004.

[3] D. Galin, Software Quality Assurance: From Theory
to Implementation, Pearson Addison Wesley, Harlow,
England, 2004.

[4] E. Diaz, J. Tuya, R. Blanco, Automated software
testing using a metaheuristic technique based on tabu
search, Proceedings of 18th IEEE International
Conference on Automated Software Engineering,
2003, pp. 310–313.

[5] Burnstein, Practical software testing: a process-
oriented approach, Springer- Verlag, New York, 2003,
ISBN:0-387-95131-8.

[6] H. Freeman, Software testing, IEEE Instrumentation &
Measurement Magazine 5 (3) (September 2002) 48–
50.

[7] ISO/IEC 9126: Information technology — software
product evaluation — quality characteristics and
guidelines for their use, 2001.

[8] S.C. Ntafos, on comparisons of random, partition, and
proportional partition testing, IEEE Transactions on
Software Engineering 27 (10) (October 2001) 949–
960.

[9] S. Stoica, Robust test methods applied to functional
design verification, Proceedings of IEEE International
Test Conference, September 1999, pp. 848–857.

[10] ANSI / IEEE St. 829, Standard for software test
documentation, , 1998.

[11] J.D.Musa, Introduction to software reliability
engineering and testing, Proceedings of the 8th
nternational Symposium on Software Reliability
Engineering, 1997.

[12] Reliability Analysis Center, Introduction to Software
Reliability: A State of the Art Review, Reliability
Analysis Center (RAC), 1996.

[13] M.A. Bailey, T.E. Moyers, S. Ntafos, An application
of random software testing, IEEE MILCOM, Conf.
Rec., vol. 3, November 1995, pp. 1098–1202.

[14] S.M. Phadke, Quality Engineering Using Robust
Design, Prentice-Hall, Englewood Cliffs,
NJ0137451679, 1989.

[15] ANSI / IEEE Std. 1012, IEEE Standard for Software
Verification and Validation Plans, 1986.

9. AUTHORS PROFILE
G.Srikanth received Masters Degree in Software
Engineering from the University of JNTU, India and
Bachelor degree in Computer Science & Engineering from
the University of JNTU, India. From 2008 to 2009, he has
been with the Department of Computer Science &
Engineering; at VITS Engineering College as an Assistant
Professor .His current research interests include
Automation of new applications and reduce test life cycle
and manual efforts, reliability evaluation test, fault
detection and diagnosis, quality control, where his
publications are focused.

R.Venkata Ramana Chary received Masters Degree in
information technology; presently pursuing his PhD from
GITAM University AP, India. And working as an Associate
Professor, at Padmasri Dr.BV Raju Institute of Technology
AP, India. His current research interests include fault
detection and diagnosis, quality control, performance
measurements, algorithms analysis and programming
Techniques.

http://www.ijcaonline.org/�

	PTZ: Pan Tilde Zoom, NTP: Network Time protocol, DDNS: Dynamic DNS, DNS: Domain Name System
	8. REFERENCES

