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ABSTRACT 

Memristive System is a class on non-linear systems with very 

interesting properties. It is considered to be the fourth basic 

circuit element like Resistors, Capacitors and Inductors. Till date 

most of the works on memristive systems concentrated on its 

applications in the field of designing super dense non volatile 

memory, crossbar latches, neural networks, modeling of neural 

synapses, nonlinear oscillators and filters. Much less work has 

been done in its use in the field of control theory. This paper 

presents groundwork in the field of using Memristive Systems 

for control purposes. 
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1. INTRODUCTION 
The existence of memristor was proposed by Leon Chua [1] 

around four decades back. His argument was build on the fact 

that since there are four very fundamental variables of 

electromagnetism v, i, q and Φ there should be six relations 

relating one variable to another but only five of them were 

known. Among the five relationships two of them followed 

directly while the other three was given by the three circuit 

elements Resistors (R), Capacitors (C) and Inductors (L). He 

argued that there should be a fourth basic circuit element.  

                                                                                                                                                                                       
Fig 1: Relations between the four fundamental variables of 

electromagnetism: Flux Φ, Voltage v, Charge q and Current 

i. Among them five of the relationship were well known but 

the relationship between Flux Φ and Charge q was missing. 

Based on symmetry he argued the existence of memristor 

(M) which relates these two variables. 

 

Not much importance was given to his work until 2008 when a 

group of four researchers from HP Labs headed by Stanley 

Williams [2] physically realized memristor. From then a lot of 

research has taken in the field of modeling and application of 

memristor [3, 4, 5, 6, 7]. The application was mainly 

concentrated in the field of non volatile memory, crossbar 

latches, neural networks and filters. Except [8,9] almost no work 

has been done in the field of using memristors in the field of 

control engineering. In this paper we lay the groundwork of 

using memristors or in more general memristive systems as a 

controller.  

2. THE MEMRISTOR 
According to Chua the flux Φ and the charge q should be related 

by a function f such that, 
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Differentiating (1) on both the sides we get, 
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Using Lenz’s Law we get, 
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So memristor behaves as a resistor of resistance )(qM which 

vary with the amount of charge that passes through it. )(qM is 

called the memristance of the memristor. The memristor 

synthesized by the HP Labs consist is a thin film 5 nm thick. 

According to the simplest model [4], the linear drift model, the 

memristance )(qM of this memristor can be given by the 

following relationship: 
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where, 

Q
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
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In practice,
ONOFF RR  . The symbol of a memristor is shown 

in Figure. 2. It is a general convention that when the current 

enters the memristor from the terminal which is marked in bold 
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(terminal A) the resistance of the memristor decreases while if 

the current enters from the other terminal (terminal B) its 

resistance increases.                          

                                   
Fig 2: Memristor Symbol 

3. PROBLEM DEFINATION 
The work in hand consists of making a memristive controller for 

a linear plant. Consider a time-invariant linear plant given by the 

state equation: 
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We consider a 
thn  order, SISO system. Hence, 

1**1* ,,)( nnnnt RBRARx  and n*1
RC . )(tu and )(ty  

are scalars since we are dealing with a SISO system. The idea is 

to design a memristive controller to control the output )(ty  of 

the system. 

The organization of the paper from here on is as follows. In 

Section 4 we summarize the controller architecture and derive 

the controller input output equation. Section 5 deals with 

stability analysis while section 6 gives a qualitative overview of 

the time domain performance aspects of the memristive 

controller. Section  7 provide simulation studies. 

4. MEMRISTIVE CONTROLLER 
Feedback control scheme has been chosen to control the linear 

plant for its widespread popularity. A feedback control loop with 

a memristive controller is shown in Figure. 3. 

  

Fig 3: Linear Plant with a memristive controller in a 

feedback loop. r(t) is the setpoint, y(t) is the plants output or 

the process variable, e(t) is the error signal or the difference 

between plant output and the desired setpoint, u(t) is the 

input to the plant or the manipulated variable and x(t) are 

the internal states of the plant. 

Classical PID controllers have been the favourite choice for 

controlling any process in a feedback loop. We propose two 

different architectures of the memristive controller which is 

merely a simple modification of the existing classical PID 

controllers. 

 

4.1 Architecture-1 (Memristor as Feedback 

Resistor)                                      

 
The relation between )(te and )(tv for the above architecture is 

given by, 
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4.2 Architecture-2 (Memristor as Input 

Resistor) 

   
In this configuration the current )(ti through the memristor 

entering from terminal A is given by, 
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For this configuration the variation memristance as a function of 

time has been derived in [5] and is given by, 
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Substituting (8) in (7) we get, 
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The relation between e(t) and v(t) in this architecture is given 

by, 
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For both the above architecture the input-output relationship of 

the classical PID is given by, 
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where,
IK and

DK are integral and derivative time constant 

respectively. 

Since the same performance can be achieved by using any of the 

above architecture just by altering the controller parameters (

oR , ONR , OFFR , iR , ), we will prefer using architecture-I 

for its simplicity of input-output relationship. 

5. STABILITY ANALYSIS 

5.1 Describing Function Analysis for Limit 

Cycle Prediction 
Describing function has been the most wildly used tool for 

understanding the existence of limit cycle in a feedback loop. A. 

Delgado [8] derived the describing function of the memristor 

considering its non-linearity to be static. Though the work is 

appreciable but approximation of the input-output relation as 

static nonlinearity is not acceptable as the input-output relation 

vary significantly with the frequency of the input signal proving 

that the non-linearity is dynamic not static. The following input 

output relation (pinched-hysteresis loop) adapted from [4] 

validates our conclusion. 

             
Fig 4: The pinched-hysteresis loop exhibited by a typical 

memristor for various frequencies of the input sinosodial 

signal. 

We will first derive the describing function ),( waN of the 

memristive controller without the classical PID and then merge 

it with the magnitude and phase relation of the classical PID to 

get the final result ),( wa . 

Consider, 
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In this case the memristor never goes in the saturation zone and 

the output )(tv  is given by: 
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Substituting equation (15) in (12) and evaluating it using 

Mathematica 4.1 gives,    
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In such cases the memristor will reach saturation at a time ot  

and come back to non-saturation zone at a time given by 
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w


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The output )(tv is given by, 
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By substituting ot from equation (18) into equation (19) and 

solving it yields, 
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Substituting equation (20) in (12) and evaluating it using 

Mathematica 4.1 gives,    
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Hence equation (16) and (21) are the describing functions of the 

memristive controller for two different conditions.  
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Fig 5: A plot showing variation of N(A,w) with amplitude A 

and frequency w.In this plot Ron=0.5,Roff=5,Ri=0.5, =4.5 

The transfer function )(sG  of the PID described by equation 

(11) is, 
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The describing function ),( wa  of the memristive controller 

with the classical PID is given by, 

            )(*),(),( jwGwaNwa                        (24) 

The closed loop transfer function )(sGc  of the system shown 

in Figure. 3 is, 
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where, )(sGp
is the transfer function of the linear plant. 

The limit cycles and hence the stability conditions for the 

closed loop can be derived from the characteristic 

equation, 

                         0)(),(1  sGwa p                 (26) 

5.2 Stability around and equilibrium point 
Memristive controller proposed is basically a nonlinear PID. A 

lot of work has been done in the past three decades to study 

stability of nonlinear PIDs around an equilibrium point mostly 

using Lyapunov stability analysis. Some notable ones are by 

Arimoto [10], Kelly[11], Seraji[12]. Other recent works on 

nonlinear PID can be found in [13], [14], [15]. 

Throughout the rest of the paper we use the notation )(Am and

)(AM  to indicate smallest and largest eigenvalues of a matrix

A . The norm of a matrix A  is defined as )(|||| AAA T

M

and that of a vector x  is given by xxx T|||| . The notation

)Re( y means the real part of a variable y . To analyze the 

stability around an equilibrium point we approach the problem 

in a rather indirect way by analyzing the region of attraction for 

a given set of controller parameters. The method used to 

calculate the region of attraction is similar to the one used by 

Khalil [16].    

To simplify the work further presented in the paper we make 

certain assumptions: 

Assumption-1: 

The linear plant described by equation (5) is asymptotically 

stable.  Mathematically speaking, the real part of the eignvalues 

of matrix A  are negative or 0))(Re( AM . In other words 

the matrix A is Hurwitz. The differential equation notation of 

the 
thn order linear plant as described by equation (5) is : 
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Assumption-2: 

We assume that 0MINq and QqMAX  . Hence, 

OFFo RR  .  

Assumption-3: 

It is to be understood that the closed loop system with the 

memristive controller is a switched nonlinear system. In order to 

avoid lyapunov analysis of a switched nonlinear system it will 

be worth approximating )(qM  by a single function. It can be 

shown that the function as described by equation (4) can be 

approximated by the following function: 
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Fig 6: A typical least square fit of equation (28) and 

equation (4). In this plot Ron=0.5, Roff=5 and Q=1. 

 

To find the region of attraction of the closed loop system we 

proceed in the following way. First we derive the output of the 
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memristive controller with the classical PID. Then we represent 

the closed loop system using differential equation and state 

space notation. It is followed by deriving conditions for local 

stabilization of the closed loop system and then the region of 

attraction for a given set of controller parameter. 

 

5.2.1 Output of Memristive PID Controller 
 

From hereon a variable x which is a function of time, i.e. )(tx
will just be represented as x . If otherwise the independent 

variable will be explicitly mentioned in parenthesis. The 
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Hence the final output u of the controller is, 
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Solving equation (31) we get, 
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5.2.2 Closed Loop Dynamics 
 

Substituting equation (32) in equation (27) we get the 

differential equation governing the closed loop dynamics, 
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We consider the set-point tracking problem with desired position
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At equilibrium,  
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The state equation of the closed loop system is, 
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 It is trivial to note that the equilibrium point of the above 

system is )1(*10  nTX R . 

 

5.2.3 Local Stability 
 

To study the local stability of the system around its equilibrium 

point we have to linearize the non-linear system, 
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As given in Khalil[16], a system described by equation (39) is 

asymptotically stable if and only if, 

 All eignvalues
i of B  satisfy )Re( i . 

                           OR 

 There are positive definite matrix P  and Q such that 

the lyapunov equation QPBPB T

is satisfied. 

We can use any of the above two conditions to prove local 

stability of the system. Also correctness of one of the above 

condition verifies the correctness of the other. Here we prove the 

first condition. 

For the system described by state equation (37), B is given by 

the following matrix, 
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where, 

id RzfC /)(  . We declare without proof (due to space 

limitation) that
ONd Rzf )(  

System described by equation (39) with B as given above can 

also be represented by the following differential equation, 
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
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
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 dt
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)()( 
        (41) 

The above differential equation is that of a linear plant described 

by equation (39) being controlled by a PID controller with 

transfer function 
)(sGC given by, 

                         








 D

I

i

ON
C sK

s

K

R

R
sG 1)(                      (42) 

It is well known from root locus analysis that for a stable linear 

plant as assumed we will always have a set of PID parameters 

such that the closed loop system is stable. So there will always 

be a combination of 
iONDI RRKK ,,, such that the closed loop 

system is stable (or all the eignvalues of B have negative real 

parts). Ziegler-Nichols Closed Loop method is conventionally 

used to find these parameters. The ultimate gain
uK and the 

corresponding oscillation period
uT needed for Ziegler-Nichols 

Closed Loop method can be theoretically calculated using 

Nyquist Stability Criteria or Routh-Hurwitz Criteria. 

 

5.2.4 Region of Attraction 
 

According to Khalil[16], if 0X is the equilibrium of a 

nonlinear system defined by equation (38), where 
nDF R: is locally lipschitz and 

nD R is a domain 

containing the origin. Let ),( Xt be the solution of equation 

(38) that starts at initial state X at time 0t . The region of 

attraction of the origin, denoted by AR is defined by, 

            0),(|{  XX tDRA
 as }t  

In other words, if 0X  is an asymptotically stable 

equilibrium point for )(
.

XX F  , then its region of attraction 

AR is an open, connected, invariant set whose boundary are 

formed by trajectories. 

It is almost impossible to find the exact region of attraction. 

There are numerous works done to find almost a sharp estimate 

of the region of attraction but these methods are computationally 

extensive. In this paper we provide a very rough estimate of the 

region of attraction. The method used to estimate the region of 

attraction draws a part of its motivation from the method used 

by Khalil[16]. 

Let the lyapunov candidate be, PXXX
TV )( where P the 

matrix as encountered in the discussion of local stability is. 

Since the closed loop system was proven to be locally stable it 

follows that there will definitely be a positive definite matrix P
and Q to satisfy the lyapunov equation. We assume IQ 

and solve the lyapunov equation to get P . If, 

                             )()(
.

XBXXX GF                          (43) 

Then,  

                           )(2)(
.

XPXQXXX GV TT                    (44) 

As adopted by Khalil[16] an estimate of AR is the largest 

domain 
C defined by CV )(X such that 

.

)(XV is negative 

definite. 

We know that there is a ball RBR  |||| X such that 0)(
.

XV

in RB . Let C be contained in RB by choosing 

)(min
||||

X
X

VC
R

 . 

Now, 

                      22 ||||)()(||||)( XXX PVP mM           (45) 

Hence choose, 2)( RPC m . 

                        2
.

2 ||||)()(||||)( XXX QVQ mM             (46) 

If )(XG is locally lipschitz than for any 0 there will exist 

an 0R such that, 

                        ||,||||)(|| XX G R |||| X                    (47) 

Now using inequality (45), (46) and (47) we can arrive at the 

following conservative form of equation (44), 

    ,||||)](2)([)( 2
.

XPQX MmV   R |||| X     (48) 

Now 0)(
.

XV when, 

                                    
)(*2

)(

P

Q

M

m




                              (49) 

Since IQ  , 1)( Qm . 

Now,  known as the lipschitz constant is a function of R

given by ).(R  To find the largest ball RB over which 

0)(
.

XV we need to equate, 

                                   
)(*2

1
)(

PM

R


                       (50) 

Then the region of attraction as defined in Khalil[18] is given 

by, 

                                     
2)( RPm

T PXX                   (51) 

The next work is to determine )(R . Now )(R is determined 

by )(XG  where ]....,,,[)( 1321  n

T yyyyG X . 

Now,  

,0iy ni 1                                                            (52) 

2
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y dDdIdId
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         }],)}(()({ 321 xKxzxfzf Ddd  )1(  ni  

To find the lipschitz constant we take help of the following 

theorem as mentioned in Khalil[16], 

If mDbaf R ][: be continuous for some domain

.nD R Suppose 
x

f



 exists and is continuous on Dba  ][ . 

If, for a convex subset DW  , there is a constant 0L such 

that, 

                                    Lxt
x

f





),(  

on Wba  ][ , then 

                yxLytfxtf  ||),(),(||  

for all ],,[ bat  ,Wx  and Wy . 
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It can be shown that, 
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where, 
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and, 
x

g
xg




)(,   

Suppose we are interested in calculating lipschitz constant over 

the convex set, 

              |{ 1 nW RX ,|| rxi  )}1(1  ni  

For )(xf as defined by equation (28) and (29) and assuming

ONd Rzf )( it can be shown that, 
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Consider that the largest value of 
),( X

X
t

G



  and hence the 

lipschitz constant L is given by, 
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An analytical argument (whose explanation we skip) shows that, 
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where, 1L and 2L is be obtained by substituting the following 

values of Ma , Mb , Mc in equation (56): 

For 1L substitute, 
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For 2L substitute, 
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It is easy to observe that if a function is lipschitz over the 

convex set W with lipschitz constant L it will be lipschitz over 

the convex set rB with lipschitz constant L. Hence,  

                              Lr  )(                               (59) 

To solve for the value of R which satisfies equation (50) we 

plot the curve )(r and the straight horizontal line 

representing the RHS of equation (50) on the same graph. The 

minimum value of r where the two graphs intersect is the 

required value of R .  

 

6. TIME DOMAIN PERFORMANCE 
The superiority in performance of memristive PID controller can 

be explained as follows. Consider a set point tracking problem. 

A unit step input is given at time 0t . Initially )(qM is 

high and hence the input )(tv to the classical PID is large. So a 

large )(tu  is produced driving the output quickly to the set 

point. But as time passes q increases and hence )(QM

decreases and saturates at a given value. Thereby )(tu
decreases and this prevents excessive overshoot. 

The following steps briefly describe the tuning procedure of a 

memristive controller: 

    1) Determine the ultimate gain uK and the corresponding 

oscillation period uT using Nyquist Stability Criteria or Routh-

Hurwitz Criteria for the linear plant ).(sGP  

     2) Use Ziegler-Nichols Closed Loop tuning method to find 

the initial values of 
IK and

DK . 

     3) Consider the open loop transfer function as 









 sK

s

K
sG D

I
P 1*)( and find the ultimate gain UK '

.  

     4) Set 1iR and UON KR '*5.0 . 

     5) Try setting 
OFFR and by trial and error method. A high

OFFR will drive the process variable rapidly towards set-point 

but will cause overshoot and sometimes cause instability. A high

 will saturate the gain of the controller to
ONR  faster and 

hence prevent the overshoot. 

     6) To get better performance repeat step 5) for various
ONR

keeping in mind UON KR ' . Higher value of
ONR will give 

under-damped performance and vice-versa. 

7. SIMULATION STUDIES 
The unit step response of various linear systems when controlled 

by a optimal memristive PI controller and a optimal 

conventional PI controller has been plotted in this section. The 

graph in blue and magenta represents the response of the process 

with a conventional PI controller and memristive PI controller 

respectively. 

Case-1 (Pitch dynamics of a passenger carrying Jet Aircraft)      
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The above transfer function relates the pitch angle of a typical 

passenger carrying jet aircraft to its elevator displacement e . 
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Fig 7: Conventional PI controller: Kp=2.45, Ki=0.211. 

Memristive PI Controller: Roff=100, Ron=1.2, Ri=1, 
=20000, Ki=0.0861. 

Case-2 (Hard-Disk head dynamics) 
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The above transfer function is a typical structure which relates 

the dynamics of the hard-disk head position Y with the input 

voltageU .Here 05.0TK , 001.01  , 05.02  , 03.0 , 

fwn 2 where 2000f . All the values are in SI unit. 

     
Fig 8: Conventional PI controller: Kp=400, Ki=0. 

Memristive PI Controller: Roff=2400, Ron=80, Ri=1, 
=180000, Ki=0. 

 

8. CONCLUSION 
In this paper two memristive controller architectures have been 

proposed. Stability analysis and performance aspects of one of 

the architecture have been studied. The performance of the 

memristive PI controller and conventional PI controller has been 

studied by carrying out simulation studies with two different 

kinds of processes. 

The emerging field of MEMS, Biomemetic Robotics etc. calls 

for controller in nano-scales. Since memristors are explicitly 

found in nano-scales the control architectures proposed in this 

paper can be used for used for control purposes in these fields. 
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