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ABSTRACT:  

Evidence Theory is an important tool of uncertainty modelling 

when both epistemic and aleatory uncertainties are present in 

the problem under consideration. In the absence of empirical 

data, experts in related fields provide necessary information. 

The fundamental objects of this theory of evidence are called 

focal elements, and the primitive function associated with it is 

called basic probability assignment (bpa). Focal elements are 

usually crisp subsets of some universal set. However in certain 

situations focal elements may also be represented by fuzzy 

numbers. In this paper we discuss Dempster-Shafer theory of 

evidence with fuzzy focal elements. We have considered two 

hypothetical case studies in risk analysis in this setting.  

Keywords: Fuzzy Focal elements, Dempster-Shafer 

theory of evidence, Generalized fuzzy number with height, 

Risk analysis. 

1. INTRODUCTION:  

Probability theory is a very strong and well established 

mathematical tool to deal with objective uncertainty (i.e., 

uncertainty arises from heterogeneity or the random character 

of natural processes). However, all uncertainties arising in 

different situations are not of objective type. Such problems 

cannot be handled by traditional probability theory. 

Uncertainty may arise  due to scarce or incomplete 

information or data, measurement error or data obtain from 

expert judgment or subjective interpretation of available data 

or information. These are of subjective nature. Traditional 

probability theory is inappropriate to represent subjective 

uncertainty (i.e., uncertainty arises from the partial character 

of our knowledge of the natural world). To overcome the 

limitation of probabilistic method, Dempster put forward a 

theory and now it is known as evidence theory or Dempster- 

Shafer theory (1976). This theory is nowadays widely used for 

the objective and subjective uncertainty analysis. The use of 

Dempster-Shafer theory in risk analysis has many advantages 

over the conventional probabilistic approach.  

Experts opinion are sought when encountering subjective 

uncertainty. This is usually done in situations like cost of 

technical difficulties involved; it is difficult/impossible to 

make enough observations to quantify the models with real 

data etc. Sometimes these are also use to refine the estimate 

obtained from real data as well. Generally in Dempster-Shafer 

theory of evidence, experts provide basic probability 

assignments (bpa) for interval focal elements. Presence of 

uncertainty data can be treated as triangular fuzzy number 

(TFN) because TFN encodes only most likely value (mode) 

and the spread (confidence interval). Thus we get an extended 

version of Dempster-Shafer theory of evidence. In this paper 

we consider modelling focal elements as fuzzy number. The 

use of fuzzy focal elements is found in ([8], [9], [10]). In these 

papers the basic framework of DST is used in medical 

diagnosis. Every disease is associated with a set of symptoms. 

The symptoms are usually of fuzzy nature (e.g., low blood 

pressure, high body temperature etc.) and they represent the 

fuzzy focal elements in DST.  Membership functions for these 

symptoms can be defined in consultation with an expert (a 

physician) or during training data investigation. Then bpas are 

assigned to the focal elements. In the calculation of belief and 

plausibility for the disease only those focal elements 

(symptoms) will take part for which the membership value 

corresponding to the observed value (laboratory test), exceeds 

some given threshold value.  [Bel(D), Pl(D)] determines the 

credibility of the diagnosis. In this paper we also consider 

DST with fuzzy focal elements but the calculation of Bel and 

Pl is fundamentally different from that in ([8], [9], [10]). 

2. BASIC CONCEPT OF FUZZY SET 

THEORY: 

To estimate the effects of environmental pollution on human, 

risk assessment is performed. However, environmental data 

tends to be vague and imprecise, so uncertainty is associated 

with any study related with risk assessment. Fuzzy set theory 

is a tool which is used to characterize imprecisely defined 

variables, as well as to define relationships between variables 

based on expert knowledge and use them to compute results. 

In this section, some necessary backgrounds and notions of 

fuzzy set theory that will be required in the sequel are 

reviewed ([1], [2]).  

Definition 2.1:  Let X be a universal set. Then the fuzzy 

subset A of X is defined by its membership function 

: [0,1]A X 
 

Which assign a real number ( )A x in the interval [0, 1], to 

each element x A , where the value of ( )A x  at x shows 

the grade of membership of x in A. 

Definition 2.2: Given a fuzzy set A in X and any real 

number α   [0, 1]. Then the α -cut or α -level or cut worthy 

set of A, denoted by α A is the crisp set 

 : ( )AA x X x      

The strong a cut, denoted by α +A is the crisp set 

 : ( )AA x X x      

Definition 2.3: The support of a fuzzy set A defined on X 

is a crisp set defined as  
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Definition 2.4: The height of a fuzzy set A, denoted by 

h(A) is the largest membership grade obtain by any element in 

the set and it is denoted as ( ) sup ( )A
x X

h A x


  

Definition 2.5:  A fuzzy number is a convex normalized 

fuzzy set of the real line R whose membership function is 

piecewise continuous. 

Definition 2.6: A triangular fuzzy number A can be 

defined as a triplet [a, b, c]. Its membership function is 

defined as:  

,
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Definition 2.7: A trapezoidal fuzzy number A can be 

expressed as [a, b, c, d] and its membership fuzzy number is 

defined as: 

 

 

2.8 Intersection of fuzzy number: 

The operation intersection of two fuzzy numbers A and B 

whose membership function are A and B respectively is 

defined as 

 

 

2.9 Generalized Fuzzy Numbers (GFN): 

The membership function of GFN ([5], [6]) 

[ , , , ; ]A a b c d w  where ,0 1a b c d w      is 

defined as 

 

 

 

      

          

 

  

If 1w , then GFN A is a normal trapezoidal fuzzy 

number [ , , , ]A a b c d .If a b  and c d , then A  is 

a crisp interval .If b c  then A  is a generalized triangular 

fuzzy number. If a b c d   and 1w then A  is a 

real number. Compared to normal fuzzy number the GFN can 

deal with uncertain information in a more flexible manner 

because of the parameter w that represent the degree of 

confidence of opinions of decision maker’s. 

2.10 Generalized Fuzzy Numbers (GFN) 

with left height (wl) and right height (wr): 

Intersection two normal fuzzy numbers is in general not a 

fuzzy number. We have named such fuzzy sets as generalized 

fuzzy number with height. We defined generalized fuzzy 

number with left height (wl) and right height (wr) as  
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It is denoted by [ , , , ; , ]l rA a b c d w w , where 

,0 , 1l ra b c d w w     . 

If
l rw w , then A  is a generalised trapezoidal fuzzy 

number [ , , , ; ( )]l rA a b c d w or w . If 

l rw w and a b  and c d , then A  is a crisp interval 

.If 
l rw w and b c  then A  is a generalized triangular 

fuzzy number [ , , , ; ( )]l ra b c d w or w . If 

a b c d   and 1l rw w  then A  is a real 

number. 

For example, intersection of the triangular fuzzy numbers [10, 

16, 20] and [8, 20, 32] produce the generalized fuzzy number 

[10, 12, 17, 20; 0.33, 0.75] with left height 0.33 and right 

height 0.75 and which is given in figure 1. 

 

 

 

 

 

  

 

  

 

 

 

Figure 1: Intersection of fuzzy number (Shaded area) 

2.11 Normalization of generalized fuzzy 

number: 

To normalize a generalized fuzzy number we divide the 

membership function of the fuzzy number by its maximum 

height (highest membership grade). Then the generalized 

fuzzy number expressed by (2) becomes 
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Here A indicates normal trapezoidal fuzzy number. If b=c 

then A is a normal triangular fuzzy number. 

 For generalized fuzzy number with left height (wl) and right 

height (wr), we divide the membership function by maximum 

of wl and wr. Then the fuzzy number (3) will be 
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3. BASIC CONCEPTS OF DEMPSTER -

SHAFER THEORY OF EVIDENCE: 

Dempster Shafer theory of evidence is widely used for 

modelling both epistemic and aleatory uncertainty. The basic 

underlying set considered in this theory is called a frame of 

discernment  which is a set of mutually exclusive and 

exhaustive propositional hypotheses, one and only one of 

them is true [7]. 

Evidence theory is based on two dual non-additive measure, 

i.e. belief measure and plausible measure. The primitive 

function in Dempster-Shafer theory used to define belief 

measure and plausible measure is known as basic probability 

assignment (bpa or mass function) and it is usually denoted by 

m. 

Mathematically, bpa is a function : 2 [0,1]m    

satisfying the following two conditions: 

 

  

                                                      

 

Where   is an empty set and A  is any subset of . 

Given a frame, , for each source of evidence, a mass 

function assigns a mass to every subset of  , which 

represents the degree of belief that one of the hypotheses in 

the subset is true, given the source of evidence. 

A subset A of frame   is called the focal element of m , if 

( ) 1m A  . 

 

Using the basic probability assignment (bpa), belief measure 

and plausibility measure are respectively determined as 

                                                                                            

           

Here ( )m B  is the degree of evidence in the set B alone, 

whereas Bel(A) is the total evidence in set A and all subset B 

of A and the plausibility of an event A is the total evidence in 

set A, plus the evidence in all sets of the universe that intersect 

with A. 

Where Bel(A) and Pl(A) represent the lower bound and upper 

bound of belief in A. Hence, interval [Bel(A) , Pl(A)] is the 

range of belief in A . 

4. DEMPSTER’S RULE OF 

OMBINATION: 

If two basic probability assignments (mass functions) m1 and 

m2 are given by two different evidence sources Dempster's 

combination rule for can be use to combine them as: 

 

      

           … (8) 

 

5. FOCAL ELEMENTS AS FUZZY 

NUMBERS: 

In this section we show how belief and plausibility measures 

can be constructed when focal elements are fuzzy sets. 

Suppose  is a universe of discourse and information 

regarding some parameter, say, X, expert provide basic 

probability assignments (bpa) of focal elements as triangular 

fuzzy number. 

i.e., say, ([ , , ]) , 1,2,3,...i i i im a b c p i n 
 
satisfying  





n

i

ip
1

1

 

We can calculate  -cut of each fuzzy number.  -cut of 

],,[ iii cba are ])(,)([  iiiiii bccaba 
 

for ]1,0[ . 

As  -cut gives closed interval for continuous fuzzy number, 

therefore we can calculate cumulative belief and plausibility 

measure for each  -cut using classical Dempster-Shafer 

theory of evidence. Then we will have a collection of 

cumulative belief and plausibility for each  -cut. That is, for 

,1:1.0:0  we get 21cumulative distribution functions 

(cdfs); 10 cumulative belief measures, 10 cumulative 

plausibility measures, while there is one cdf where both belief 

and plausibility measure coincide and which corresponds to  

1-cut ( 1)  . From these cumulative belief and plausibility 

measures, membership functions (fuzzy numbers) of risk at 

different fractiles can be generated ([3], [4]).  

For example suppose for a variable X, the Dempster-Shafer 

structure is given as in table I. We need to calculate their 

cumulative belief and plausibility. 
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Focal Elements Basic Probability assignment 

[15, 22.5, 30] 0.05 

[30, 37.5, 45] 0.1 

[30, 45, 60] 0.2 

[45, 60, 70] 0.3 

[75, 82.5, 90] 0.1 

[60, 75, 90] 0.2 

[90, 97.5, 105] 0.05 

Table I: basic probability assignment of the fuzzy focal 

elements 

The representations of the focal elements are available in the 

form of triangular fuzzy number whose general form of alpha-

cut together with the basic probability assignment are given in 

table II. 

 

 

Table II: Alpha-cuts of fuzzy focal elements 

The graphical representation of cumulative belief and 

plausibility of the focal elements when α = 0, 0.5 and 1 (for 

simple and clear representation of Belief and Plausibility we 

have consider α = 0, 0.5 and 1) are also depicted in figure 2.  

 

 

       

 

 

 

 

 

 

 

Figure 2: Bel and Pl of fuzzy focal elements when α=0, 0.5 and 1 

We consider membership function of X at 90th fractile. For α = 

0, 75 and 90 are values of X. Similarly, 78.75 and 86.25 are 

value of the variable X for α=0.5 and 82.5 is the value of the 

variable X for α=0. These are depicted in figure 3 and 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Bel & Pl of X for α=0.0, 0.5 & 1.0 

 

 

 

 

 

 

 

 

 

 

Figure 4: The membership function of X at 90th fractile 

6. DEMPSTER’S COMBINATION RULE 

FOR FUZZY FOCAL ELEMENTS:  

When information regarding the same parameter is given by 

two sources of evidence, it can be combined to a single source 

by Dempster’s rule of combination. We extend the 

combination rule for fuzzy focal elements. Let us assume that 

two experts provide basic probability assignments (bpa) for 

focal elements which are taken as triangular fuzzy numbers, 

say, nipcbam iiii ,...3,2,1,]),,([1 
  

where 





n

i

ip
1

1 and mjpcbam jjjj ,...3,2,1,]),,([2 
 

where 



m

j

jp
1

1

 

respectively. To combine these two 

experts’ mass function (bpa) we use Dempster’s rule of 

combination. Here intersection of focal elements will be fuzzy 

set (generalised fuzzy number) as initial focal elements are 

considered as fuzzy number.  

For example let’s assume experts1 and expert 2 provide basic 

probability assignment (bpa) for fuzzy focal elements and 

their Dempster-Shafer structure is given in table VI and table 

VII. We need to combine their opinions. 

Fuzzy Focal Elements Basic Probability Assignment 

[6, 8, 10] 0.3 

[10, 15, 20] 0.6 

[20, 25, 30] 0.1 

Table VI: BPA fuzzy focal elements assigned by expert 1 

Focal Elements Basic probability Assignment 

[15+7.5α, 30-7.5α] 0.05 

[30+7.5α, 45-7.5α] 0.1 

[30+15α, 60-15α] 0.2 

[45+15α, 75-15α] 0.3 

[75+7.5α, 90-7.5α] 0.1 

[60+15α, 90-15α] 0.2 

[90+7.5α, 105-7.5α] 0.05 
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Plausibility

Belief

Fuzzy Focal Elements Basic Probability Assignment 

[6, 18, 30] 0.6 

[10, 15, 20] 0.4 

 

Table VII: BPA fuzzy focal elements assigned by expert 2 

Replacing crisp focal element by fuzzy focal element we can 

obtain the combined Dempster’s structure as ([6, 9.432, 10; 

0.286], 0.2143), ([10, 12.86, 15.94, 20; 0.572, 0.828], 0.4286), 

([10, 15, 20; 1], 0.2857) and ([20, 22.92, 30; 0.59], 0.07143).  

7. SAMPLING TECHNIQUE FOR 

POSSIBILITY THEORY: 

Sampling technique to generate random numbers generally 

used in probabilistic method can also be used for possibility 

theory. Here, uniformly distributed random numbers between 

0 and 1 are generated. Random variables are generated by 

equating these numbers to belief function and plausibility 

function. Two numbers are generated in this process, one 

corresponding to belief function (xb) and the other 

corresponding to the plausibility function (xp). This process is 

repeated for all the uncertainty variables present in the model. 

For a uniformly distributed random number u the uncertain 

variable xn and uncertainty variable xp are obtained as 

xn = Bel-1(u) and xp = Pl-1(u). 

For example, if figure 5 is the graphical representation of 

cumulative belief and plausibility whose Dempster-Shafer 

structure is given by an expert. For the uniformly distributed 

random number 0.75, using possibility sampling we have 25 

and 35 are the values of the uncertain variable corresponding 

to plausibility measure and belief measure respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Cumulative belief and plausibility 

8. CASE STUDY:  

In this section, we perform non-cancer human health risk 

assessment with hypothetical data. Two cases are considered 

and in both cases two parameters are expressed in terms of 

Dempster-Shafer structure. Possibility sampling technique is 

used to calculate the output parameter.  

Human being is always exposed to radiation either from 

natural or anthropogenic sources in the environment. Besides 

natural nuclides being present in the environment since the 

beginning of the earth’s existence, manmade nuclides are 

being released from nuclear installations and fallouts from the 

nuclear test and nuclear accident. Further produced water is a 

significant source of waste generated in the production phase 

of oil and gas operations. When produce water is discharged 

into the ocean, a number of heavy metals and poly aromatic 

hydrocarbon present in it may introduce toxicity and 

bioaccumulation in aquatic organisms. These compounds are 

harmful to fish and therefore human can be affected through 

intake of such fishes. Consequently human health is indirectly 

(or directly) affected through different pathways such as 

inhalation, ingestion, submersion and dermal contact. When 

hazardous substances are released into the environment, an 

evaluation is necessary to determine the possible impact such 

substances may have on human health and ecology. For this 

purpose, risk assessment is performed to quantify the potential 

detriment to human and evaluate the effectiveness of proposed 

remediation measures. 

A lot of organic and inorganic pollutants exist in produced 

water. However, here we consider only the heavy metal 

arsenic (As) because of its toxicity and high concentration in 

produced water. 

The general form of a comprehensive food chain risk 

assessment model [11] as provided by EPA, 2001 is follows: 

 

      

            … (9) 

Where CID = Chronic daily intake (mg/kg-day), FIR = fish 

ingestion rate (g/day), FR = fraction of fish from 

contaminated source, EF = exposure frequency (day/year), ED 

= exposure duration (years), CF = conversion factor (= 10-9), 

BW = body weight (kg), AT = averaging time (days) and Cf = 

chemical concentration of fish tissue (mg/kg). The chemical 

concentration in fish tissue (Cf) can be computed as  

      

        … (10) 

Where PEC = predicted environmental concentration (mg/l) 

and BCF is the chemical bioaccumulation factor in fish (l/kg). 

The non-cancer risk model for fish ingestion is expressed as: 

 

        … (11) 

 

Where, Rfd is the reference dose.  

Case I: In this case, representation of the parameters 

predicted environmental concentration (PEC) and chemical 

bioaccumulation factor (BCF) are considered to be epistemic 

nature i.e., bpa are assigned for fuzzy focal elements. Other 

parameters are taken to be constant. Values of the parameters 

for the calculation of non-cancer human health risk 

assessment are given in the table VIII. 
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Plausibility, alpha=0

Belief, alpha=0

Belief & Plausibility, alpha=1

Plausibility, alpha=0.5

Belief, alpha=0.5

Parameter Units 
Type of 

variable 
Value/distribution 

Average 

Time (AT) 
Days constant 25550 

Body Weight 

(BW) 
Kg constant 70 

Exposure 

Duration 

(ED) 

Years constant 30 

Exposure 

frequency 

(EF) 

Days/year constant 350 

Fraction of 

contaminated 

Fish (FR) 

- constant 0.5 

Fish 

Ingestion 

Rate (FIR) 

g/day constant 170 

Conversion 

Factor (CF) 
- constant 1E-09 

PEC for As ug/l epistemic 
Given in 

table(IX) 

BCF for As l/kg epistemic 
Given in table 

(X) 

Oral Rfd for 

As 
mg/(kg.day) constant 3.0E-04 

Table VIII: Parameters used in the risk assessment 

 

Fuzzy focal elements Basic probability assignment 

[1.5, 2.25, 3.0] 0.20 

[2.0, 3.0, 4.0] 0.25 

[4.0, 5.5, 7.0] 0.35 

[7.0, 8.0, 9.0] 0.20 

Table IX: Dempster-Shafer structure for PEC 

 

Fuzzy focal elements Basic probability assignment 

[30, 35, 40] 0.15 

[40, 45, 50] 0.30 

[45,50,55] 0.35 

[55, 57.5, 60] 0.20 

 Table X: Dempster-Shafer structure for BCF 

The result of the non-cancer human health risk assessment 

using equation (11) is depicted in figure (6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Non-cancer human health risk 

The cumulative belief and plausibility corresponding to lower 

and upper value of each alpha-cut are used to generate 

membership function of the resulting risk at 80th, 85th and 95th 

fractiles of risk. The membership functions of the resulting 

risk at these fractiles are depicted in the following figure 7. 

 

 

 

 

 

 

 

 

 

 

Figure 7: The membership function of risk at 80th, 85th and 95th 

fractiles. 

Case II: In this case, representation of the parameters 

chemical bioaccumulation factor (BCF) and oral reference 

dose (Rfd) are considered to be epistemic nature i.e., bpa are 

assigned for fuzzy focal elements. Other parameters are 

keeping constant. Values of the parameters for the calculation 

of non-cancer human health risk assessment are given in the 

table XI. 

 

Parameter Units 
Type of 

variable 
Value/distribution 

Average 

Time (AT) 
Days constant 25550 

Body Weight 

(BW) 
Kg constant 70 

Exposure 

Duration 

(ED) 

Years constant 30 

Exposure 

frequency 
Days/year constant 350 
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Pl, alpha=0

Bel, alpha=0

Pl, alpha=0.5

Bel, alpha=0.5

Pl & Bel, alpha=1

(EF) 

Fraction of 

contaminated 

Fish (FR) 

- constant 0.5 

Fish 

Ingestion 

Rate (FIR) 

g/day constant 170 

Conversion 

Factor (CF) 
- constant 1E-09 

PEC for As ug/l constant 5.25 

BCF for As l/kg epistemic 
Given in table 

(X) 

Oral Rfd for 

As 
mg/(kg.day) epistemic 

Given in table 

(XII) 

Table XI: Parameters used in the risk assessment 

 

Fuzzy focal elements Basic probability assignment 

[2.0e-04, 2.3e-04, 2.6e-04] 0.05 

[2.3e-04, 2.65e-04, 3.0e-04] 0.35 

[3.0e-04, 3.3e-04, 3.6e-04] 0.40 

[3.4e-04, 3.7e-04, 4.0e-04] 0.20 

Table XII: Dempster-Shafer structure for Rfd 

 

The non cancer risk assessment has been performed using the 

model (11) and result is depicted in the following figure 8. 

 

 

 

  

 

 

 

 

 

 

Figure 8: Non-cancer human health risk 

In a similar fashion as above from cumulative belief and 

plausibility corresponding to lower and upper value of each 

alpha-cut level are used to generate membership function of 

the resulting risk at 80th, 85th and 95th fractiles of risk and 

which are given in figure 9.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: The membership function of risk at 80th, 85th 

and 95th fractiles. 

In this study, case 1 uses parameters predicted environmental 

concentration (PEC) and chemical bioaccumulation factor 

(BCF) as Dempster-Shafer structure while case 2 uses 

parameters chemical bioaccumulation factor (BCF) and oral 

reference dose (Rfd) as Dempster-Shafer structure. In which 

focal elements of Dempster-Shafer structure are taken as 

fuzzy number for both the cases so the resulting risk is also a 

fuzzy number. The membership function of risk at 80th, 85th 

and 95th fractiles of risk case 1 and case 2 are depicted in 

figure 7 and figure 9 respectively. The membership functions 

of risk at different fractiles have fuzzy number which can be 

interpreted as risk at a certain fractile of risk being around the 

most likely value. For instant, at 95th fractile risk is around 

6.654e-04 in which the possible range (i.e., support of the 

membership function) of the risk at the corresponding fractile 

is 5.926e-04 to 8.234e-04 for case 1. For case 2, 5.794e-04 is 

the most likely value i.e., risk is around 5.794e-04 while range 

is from 4.803e-04 to 6.835e-04 for the same fractile of risk. 

Similarly at 85th and 80th fractiles of risk, for case 1, 5.988e-

04 and 5.261e-04 are the most likely value while ranges are 

[4.658e-04, 7.485-04] and [3.659e-04, 6.986e-04] respectively 

and for case 2, 5.038e-04 is the most likely value for both the 

fractiles while [4.003e-04, 6.265e-04] and [3.93e-04, 6.265e-

04] are the ranges for 85th and 80th fractiles respectively. 

9. CONCLUSION:  

Dempster-Shafer theory of evidence is one of the important 

tool for decision making under uncertainty. Dempster-Shafer 

theory is more fruitful in situation when cost of technical 

difficulties involved or uniqueness of the situation under study 

makes it difficult/impossible to make enough observations to 

quantify the models with real data. Then experts provide 

opinion in terms of basic probability assignment for focal 

elements.  Usually, it is seen that experts provide basic 

probability assignment for interval (or crisp) focal elements. 

However due to presence of uncertainty focal elements can 

sometimes be treated as triangular fuzzy number (TFN) 

instead of intervals or crisp set. TFN encodes only most likely 

value (mode) and the spread. 

In this paper, we study Dempster-Shafer theory of evidence by 

considering focal elements as triangular fuzzy number. We 

have devised a method for obtaining belief and plausibility 

measure from bpa’s assigned to fuzzy foal elements. 
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 For that we calculate alpha-cut of the fuzzy for focal 

elements. Each alpha-cut produces a collection of crisp focal 

elements from which we calculate cumulative belief and 

plausibility measure. The process is repeated for sufficient 

number of each alpha-cut. From this we get a family of 

cumulative belief and plausibility measures and using these 

cumulative belief and plausibility measure membership 

function at different fractiles are generated. 

We have also defined Dempster’s rule of combination for 

fuzzy focal elements when two sources of evidences are 

provided with. For this purpose, we have defined generalized 

fuzzy number with left height and right height as intersection 

of fuzzy numbers does not always produce generalized fuzzy 

number but also produce generalized fuzzy number with left 

height and right height. We have seen that Dempster’s 

combination rule for fuzzy focal elements produce generalized 

fuzzy numbers with left and right height.  

Finally to demonstrate use of fuzzy focal elements in 

Dempster-Shafer theory we performed non-cancer human 

health risk assessment with hypothetical data by considering 

two cases. In case 1 parameters predicted environmental 

concentration (PEC) and chemical bioaccumulation factor 

(BCF) are provided as body of evidence and in case 2 uses 

parameters chemical bioaccumulation factor (BCF) and oral 

reference dose (Rfd) are  represented by body evidence. In 

both the cases focal elements are taken as triangular fuzzy 

number. After calculation of belief and plausibility, 

membership functions of the risk are generated at different 

fractiles. The membership functions of risk at different 

fractiles are fuzzy number since the focal elements are taken 

as fuzzy numbers.  We can interpret the Membership function 

of risk at some given fractile as risk being around the most 

likely value. The membership function of risk at a certain 

fractile provides important information to the analyst. From 

the membership function it is obvious that the possibility of 

occurrence of risk values having zero membership values for a 

given fractile are zero, whereas for membership value one risk 

is most likely. The possible ranges of the risk at the 

corresponding fractile are provided by the support of the 

membership function. The shape also provides extra 

information about the resulting uncertainty which is the effect 

of fuzzy focal elements. 
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