
International Journal of Computer Applications (0975 – 8887) 
Volume 34– No.1, November 2011 

 

34 

Reliability Issues in Open Source Software 
R. K. Pandey                                                  Vinay Tiwari 

University Institute of Computer Science              University Institute of Computer Science 
and Applications (UICSA)                                           and Applications (UICSA) 

R.D. University, Jabalpur (M.P.)                              R.D. University, Jabalpur (M.P.) 
India                                                                           India 

 
 

ABSTRACT 
Open Source software in recent years has received great attention 
amongst software users. The success of the Linux Operating 
system, Apache web server, Mozilla web browser etc. 
demonstrates open source software development (OSS) as an 
alternative form of software development. Despite the 
phenomenal success of open source software the reliability of 
OSS is often questioned. The opponents of open source software 
claim that open source software is unreliable as the source code of 
OSS is available and the potential threats can easily be 
incorporated. Whereas the supporters claim OSS to be more 
reliable than proprietary software as the source code is open and 
freely available for scrutiny for all. This paper analyzes the 
reliability issues of open source software in contrast to the 
proprietary software. Various views of researchers on the 
reliability of OSS are studied and analyzed and a theoretical study 
is made to examine the reliability of OSS. Results of various 
surveys on reliability conducted by various researchers/agencies 
are also incorporated in support of reliability analysis of OSS. 

General Terms 
Design, Reliability, Security, Measurement 

Keywords 
Open Source Software (OSS), Software reliability, quality, 
proprietary software. 

1. INTRODUCTION 
In a recent survey conducted by Accenture [1] over 300 large blue 
chip organizations in both public and private sector of US and UK 
on the use of open source software, a very interesting result is 
found. “Two third of overall organizations (71%) increase using 
open source software not just for cost saving but for the improved 
reliability and better quality of open source software”. Open 
source software during recent years has attracted software users 
who want high quality software but are not in a position to afford 
expensive commercial software. Software like Apache web server 
GNU Linux, MYSQL, Mozilla web browser, Open office, Perl 
programming language etc. have got phenomenal success among 
the software users. The amount of free and open source software 
increasing exponentially with the expansion of internet and 
currently there are at least hundreds of thousands of such software 
projects. Generically open source refers to a program in which the 
source code is available to the general public for use and/or 
modifications from its original design free of charge, whereas in 
the conventional commercial software the end product is in the 
form of binary. Open source software is having major impact on 
software and its production processes. Open Source Software 
developers have produced systems with functionality that is 
competitive with similar proprietary software developed by 

commercial software organizations. The success of open source 
software demonstrates the alternative form of software 
development processes. Software development is undergoing a 
major change from being a fully closed software development 
process towards a more community driven open source software 
development process [2]. The computer software development 
can now be broadly split into two development models [3]: 
• Proprietary, or closed software owned by a company or 

individual in which ‘binary’ codes are made public and the 
source code is not usually made public. 

• Open Source software (OSS), where the source code is 
released with the binary codes. Users and developers can be 
licensed to use and modify the code and to distribute any 
improvement they make. 

Open source software development strategies are quite distinct 
from that of traditional software development methods. Free Open 
Source Software Development (FOSSD) is a way for building 
deploying and sustaining large software systems on a global basis 
and differs in many interesting ways from the principles and 
practices traditionally advocated for software engineering [4]. For 
example software design before the development and software 
testing before the release is hardly carried out in the OSS 
development. Secondly there is no single well defined 
development process for OSS and it can vary from project to 
project. The lack of unified development process and traditional 
software engineering practices raises question of reliability of 
OSS. Opponents of open source software claim that open source 
software are unreliable as the source code of OSS is available and 
the potential threats can easily be incorporated. On the other hand 
proponents of Open source software claim that the open source 
software are more reliable than closed proprietary software as 
thousands of independent programmers are involved in testing 
and fixing bugs of the software. This paper analyzes the reliability 
issues of open source software and examines the various views 
and claims of various researchers on reliability of open source 
software. Results of various surveys on reliability conducted by 
various researchers/agencies are also incorporated in the 
reliability analysis of Open Source Software. 

2. WHAT IS SOFTWARE RELIABILITY   
 AND ITS MEASURES 
According to ANSI [5] software reliability is defined as “the 
probability of failure free software operation for a specified period 
of time in a specified environment”. Informally reliability is 
defined as a measure of how closely a system matches its stated 
specifications. Although software reliability is defined as a 
probabilistic function and comes with the notion of time, it is 
noticeable that software reliability is different from traditional 
hardware reliability and it is not a direct function of time. In 

http://www.ijcaonline.org/�


International Journal of Computer Applications (0975 – 8887) 
Volume 34– No.1, November 2011 

 

35 

hardware reliability with the heavy usage and as the time goes 
electronic and mechanical parts may become “old” add wear-out 
but software will not rust or wear-out during its life cycle. 
Software will not change over time unless intentionally changed 
or upgraded. Software reliability is based on the concept of 
failures. Failure of software occurs for variety of reasons like 
defects in code i.e. coding error, faulty software design, irrelevant 
input data etc. Reliability means the absence of defects which 
cause incorrect operation, data loss or sudden failures. It is 
obvious that software product having a large number of defects is 
unreliable. It is also clear that the reliability of the system 
improves if the number of defects in it is reduced. However, there 
is no simple relationship between the observed system reliability 
and the number of latent defects in the system [6]. For example, 
removing errors from parts of software which are rarely executed 
makes little difference to the perceived reliability of the product. 
Thus, reliability of a product depends not only on the number of 
latent errors but also on the exact location of the errors and on 
how frequently is the corresponding instruction executed. Apart 
from this, the manner of use of a product also determines its 
reliability. If it is selected input data to the system such that only 
the “correctly” implemented functions are executed, none of the 
errors will ever be exposed and the perceived reliability of the 
product will be high. On the other hand, if the input data is 
selected such that only those functions which contain errors are 
invoked, the perceived reliability of the system will be very low.  
So, the failures affecting different users differ in kind and 
frequency. Even software that performs well for most users may 
be ruinously unreliable for some of them. 

Software reliability is comprised of three major mechanisms these 
are fault prevention, fault detection and removal and measurement 
to maximize reliability [7]. Measuring reliability means the 
measuring of defects. Identification and removing of software 
error contribute to increased reliability of software. Software 
reliability can not be directly measured, so other related factors 
are measured to estimate software reliability and compare it 
among products. Development process, faults and failures found 
are all factors related to software reliability. 

3. OPEN SOURCE SOFTWARE AND ITS 
CHARACTERISTICS 
Open source software is computer software that is available in 
source code form that permits users to study the software, to use 
software freely, change and improve software as per his 
requirements. Open source software is always released under a 
license that allows users to access, modify and redistribute the 
source code. In contrast, creators of proprietary software usually 
do not make their source code available to others. They provide 
only binary code, so users can run the software but cannot study, 
modify, or improve it. The OSS license gives users the following 
four essential ‘freedoms’ [8]. 

• to run the program for any purpose, 
• to study the working of the program, and modify the program 

to suit specific needs, 
• to redistribute copies of the program at no charge or for free, 

and 
• to improve the program, and release the improved modified 

version  

Feller and Fitzgerald [9] have outlined the following key 
conditions to define OSS: 

1.  The source code must be available to users. 
2.  The software must be redistributable. 
3.  The software must be modifiable and the creation of 

derivative works must be permitted. 
4.  The license must not discriminate against any user, group of 

users, or field of endeavor. 
5.  The license must apply to all parties to whom the software is 

distributed. 
6.  The license cannot restrict aggregations software. 
Open source also encompasses a software development 
methodology. Open source software is generally developed on 
voluntary basis by the global network of developers. It is a 
collaborative software-development method that harnesses the 
power of peer review and transparency of process to develop code 
that is freely accessible. Open source draws on an ecosystem of 
thousands of developers and customers all over the world to drive 
innovation. The open source software development model has the 
following features [10].  
• Collaborative, parallel development involving source code 

sharing and reuse  
• Collaborative approach to problem solving through constant 

feedback and peer review   
• Large pool of globally dispersed, highly talented, motivated 

professionals   
• Extremely rapid release times   
Open source development is described as a rapid evolutionary 
process, which leverages large scale peer review. The basic 
premise is that allowing source code to be freely modified and 
redistributed encourages collaborative development. The software 
can be incrementally improved and more easily tested, resulting in 
a highly reliable product. 

 
4. DIFFERENCE BETWEEN TWO STYLES 
OF DEVELOPMENT 
The Cathedral and the Bazaar [11] is the most frequently cited 
description of the open-source development methodology. In this 
book, Raymond makes the distinction between two kinds of 
software development. The first is the conventional closed source 
development. This kind of development methods are, according to 
Raymond, like the building of a cathedral; central planning, tight 
organization and one process from start to finish. The second is 
the progressive open source development, which is more like an 
“a great babbling bazaar of differing agendas and approaches out 
of which a coherent and stable system could seemingly emerge 
only by a succession of miracles.” The Cathedral model 
represents the traditional commercial software development style, 
using small teams, tight management control, and long release 
intervals. The Bazaar model represents the style of releasing early 
often involving a large number of pool of developers working on 
the product. 

According to an Apache case study [12] the usually mentioned 
main differences between commercial and open-source projects 
are: 

http://www.ijcaonline.org/�


International Journal of Computer Applications (0975 – 8887) 
Volume 34– No.1, November 2011 

 

36 

•  Open-source systems are built by potentially large numbers 
(i.e., hundreds or even thousands) of volunteers. 

•  Work is not assigned; people undertake the work they 
choose. 

•  There is no explicit system-level design, or even detailed 
design 

•  There is no project plan, schedule, or list of deliverables. 
For commercial software engineers it might be surprising that 
open-source projects relying on far less design documents, 
contracts, project plans or development processes can have 
success. 

Traditional software development starts with detailed 
requirements document that is used by the system architect to 
specify the system. The customer usually tenders a job within his 
monetary limits, with more or less detailed requirements 
description to service providers. The project manager has to make 
sure that the development costs run within the boundaries of the 
customer’s budget. This in consideration, the whole project is 
scheduled into work units and iterations to consume the least 
resources possible while still fulfilling the requirements and 
making the deadline [13]. If costs run up to high the project fails. 
This means there is a lot of pressure on the development team 
during the project. At the same time they have to build it the way 
the customer wants it leaving the developers not much of a 
choice.  On the other hand it is hard to run an open source project 
following a traditional software development method. In open 
source software development requirements are rarely gathered 
before the start of the project [14]. Instead someone comes up 
with an initial idea, usually because of some personal interest. 
With all important design decisions made and a presentable 
prototype, capable of raising expectations, it is time to go public 
and acquire fellows. Obviously this works best if project initiator 
has a good reputation already [11]. Now it is time to build the 
community, release early and often and live up to the bazaar style. 
In classical development methods processes are designed to 
produce quality. These processes are targeted to ensure that the 
costs run within their estimates that all requirements and deadlines 
are met and traceability is assured. This is why much time and 
effort is spent in requirements analysis, design and specification. 
In open-source development there are usually no hard deadlines to 
meet and requirements are not statued before hand. Therefore 
working units are not necessarily scheduled ahead of time. Instead 
developers tackle issues from their personal list of ideas, bug 
reports or change requests through community feedback as they 
appear. 

5. RELIABILITY ISSUES IN OSS 
The reliability is the important attribute of the software quality 
and it is generally considered that free is not better and the 
reliability of OSS is called into question by closed source 
proponents. They claim that the software in closed source is 
developed by the systematic approach and with strict guidelines of 
software engineering principles resulting a high quality and more 
reliable software.  Whereas the open source violating the 
traditional software engineering principles, guideline and absence 
of the systematic plan of development resulting in a less reliable 
software.  They further argue that since open source software is 
open, defects and security flaws are more easily found and this 
makes it easier for a malicious person to discover security flaws 
whereas closed source makes it more difficult for attackers to find 

and exploit flaws.  They argue that ‘if the software is in the public 
domain, then potential hackers have also had the opportunity to 
study the software closely to determine its vulnerabilities’. So the 
question arises “Is open source software more or less reliable than 
proprietary software?” The remaining discussion trying to find out 
the answer to this question on various theoretical as well as 
various analytical results. 

In his most cited book Eric Raymond Says: "The general business 
case for open-source is reliability. Open-source software is peer-
reviewed software; it is more reliable than closed, proprietary 
software. Mature open-source code is as reliable as software ever 
gets." Further he writes: "The core idea of open-source 
development is very simple: open-source programmers have 
learned that secrecy is the enemy of quality. The most effective 
way to achieve reliability in software is to publish its source code 
for active peer review by other programmers and by non-
programmer domain experts in the software's application area".  
Peer review enables fellow software writers to ensure that the 
software will actually do what it is designed to do. Open source 
coding can be analyzed, audited, and vetted by dozens, hundreds, 
or even thousands of individuals who all expect to be able to use 
their software without problems. Several quantitative analyses are 
made to test the defect density of open source software. A study 
by Coverity [15] found that the Linux kernel had far fewer defects 
than the industry average. Code-analysis firm Coverity performed 
a four-year research effort and found that the Linux kernel has 
significantly fewer software bugs in it than the industry average. 
Coverity’s approach reported 985 defects in the 5.7 million lines 
of code in that make up the Linux kernel. According to data from 
Carnegie Mellon University (CMU), a typical program of similar 
size would usually have more than 5,000 defects. The August 
2005 study found an average of 0.16 defects/KSLOC, down from 
0.17 defects/KSLOC, even though the amount of code had 
increased. Another study by Reasoning found that the MySQL 
database (a leading OSS/FS database) had fewer defects than a set 
of 200 proprietary programs used for comparison. In a similar 
manner to the previous study, on December 15, 2003, Reasoning 
announced its analysis results comparing MySQL with various 
proprietary programs. MySQL had found 21 software defects in 
236,000 source lines of code (SLOC), producing a defect density 
of 0.09 defects/KSLOC. Using a set of 200 recent proprietary 
projects (totaling 35 million SLOC), the same tool found a defect 
rate of 0.57 defects /KSLOC, over six times the error rate. In open 
source model, code is written with more care and creativity, 
because developers are working only on things for which they 
have real passion. Participation of wider development community 
helped significantly in the defect repair. Another is that 
developers really care about reliability. Free software packages do 
not always compete commercially, but they still compete for a 
good reputation, and a program which is unsatisfactory will not 
achieve the popularity that developers hope for. What's more, an 
author who makes the source code available for all to see puts his 
reputation on the line, and had better make the software clean and 
clear, on pain of the community's disapproval. 

6. SECURITY  
Open source advocates argue that the open source model also 
means increased security, because code is in the public view, it 
will be exposed to extreme scrutiny, with problems being found 
and fixed instead of being kept secret until the wrong person 
discovers them. In January 1999, attackers were able to plant a 
Trojan Horse version of the TCP/Wrappers tool on a well-known 

http://www.ijcaonline.org/�


International Journal of Computer Applications (0975 – 8887) 
Volume 34– No.1, November 2011 

 

37 

FTP site; since source code was available; the back door was 
quickly noticed and removed. In contrast to this with a monolithic 
operating system like Windows 2000, which has tens of millions 
of lines of secret, bug-ridden code. Without access to the source 
code, customers are 100% reliant on the good will and 
competence of the Microsoft Corporation, a reputation for self-
serving behavior, and last but not least, it's a way that the little 
guys can get together and have a good chance at beating a 
monopoly.  New Evans Data Survey [15] reports that Linux 
systems are relatively immune from attacks as security breaches 
are rare in Linux Environment. 78% of the respondents to the 
GNU/Linux developers’ survey have never experienced an 
unwanted intrusion and 94% have operated virus-free.  

7. BUGS TRACKING AND REMOVAL 
Raymond states that “with enough eye balls, all bugs are 
shallow”, which suggests that there exists a positive relationship 
between the number of people involved and bug numbers. In an 
open source environment bugs are discovered quickly and fixed 
within hours of their being detected. This is because the coding 
for open source software is open and transparent. Because people 
can look at it, they can easily figure out where the bug is. They 
not only discover bugs but also fix them and then report it to the 
maintainers as well as issuing an updated version of the software 
on their own authority. Research indicates that the open-source 
software - Linux - has a lower percentage of bugs than some 
commercial software. In a closed source development, only fewer 
people examining how the program works means that fewer bugs 
in the program will be found and fixed. On the other hand open 
source development environment has thousands of independent 
programmers testing and fixing bugs of the software resulting in a 
more reliable software. 

8. OPENNESS BENEFITS 
Since open source software is open, defects and security flaws are 
more easily found. Users have access to the human readable 
source code to the program. They have the option to consult the 
source code and fix the problem or at least tell the developers 
exactly where the problem is [16]. If the developers will not fix 
the problem, the user has the option of fixing it or hiring someone 
else to fix it. Users will no longer be at the mercy of one 
programmer or company which owns the source code and is in 
sole position to make changes [17]. Open source software will 
have more people looking at the program, and this usually means 
that more bugs will be caught. 

9. DEVELOPMENT PROCESS 
The OSS development approach has helped produce reliable, high 
quality software quickly and inexpensively. It is sometimes said 
that the open source development process may not be well defined 
and the stages in the development process, such as system testing 
and documentation may be ignored. However this is only true for 
small (mostly single programmer) projects. Larger, successful 
projects do define and enforce at least some rules as they need 
them to make the teamwork possible. In the most complex 
projects these rules may be as strict as reviewing even minor 
change by two independent developers. 

10. SCHEDULING / COMMERCIAL 
PRESSURES 
Free software are developed in accordance with purely technical 
requirements. It does not require to think about commercial 

pressure that often degrades the quality of the software. 
Commercial pressures make traditional software developers pay 
more attention to customers’ requirements than to security 
requirements, since such features are somewhat invisible to the 
customer. The fixed schedule imposed on the software developers 
also degrades the quality of the software [18]. The proprietary 
software company probably announced that the software would be 
released on a particular date. This places an onus on the software 
developers, forcing them to release software that's possibly not 
ready simply because the schedule demands it. On the other hand 
open source projects are largely immune from “time-to-market” 
pressures. A system need not be released until the project owners 
are satisfied that the system is mature and stable. 

11. CONCLUSIONS 
In this paper study is made to find out the reliability of open 
source software in comparisons of proprietary software. 
Reliability is difficult to measure and problems reports are not 
necessarily a sign of poor reliability. However our study shows 
that open source software in many ways is quite equivalent or 
better than the proprietary software. This behavior is also 
supported by various quantitative analysis reported by various 
research agencies. These studies show that in many cases, using 
OSS programs is a reasonable or even superior approach 
compared to their proprietary competitor. The main factors that 
make open source software more reliable are the facts that 
developers are usually also users of the software, developers are 
members of a community of developers,  public availability of the 
source code and fast bug removal practices since thousands of 
independent programmers testing and fixing bugs of the software. 
Widely used open source programs tend to be more reliable; if 
they were not reliable, they probably would not be so widely used. 

12. REFERENCES 
[1] Accenture, Aug 2010, available at  

http://www.accenture.com retrieved on 15.4/2011. 

[2]  Deshpande Amit, Richle Dirk  (2008), The total growth of 
Open source, Proceedings of  the fourth conference on Open 
Source Systems (OSS 2008), Springer Verlag. 

[3]  Postnote on Open Source Software, Parliamentary office of 
Science and Technology, No.242, June 2005 source: 
http://www.parliament.uk/parilamentary_office/post/pubs200
5.cfm.  retrieved on 15.4/2011. 

[4]  Sommerville, I., Software Engineering, 7th edition, Addison 
Wesley, New York 2004. 

[5]  ANSI/IEEE,  Standard  Glossary  of  Software Engineering   
Terminology, STD-729-199,  ANSI/IEEE,  1991. 

[6]  Mall Rajib (2009), Fundamentals of Software Engineering,  
PHI.  

[7]  Rosenberg  Dr. Linda, Hammer Tad, Shaw Jak, (1999), 
Software Metrics and Reliability.  

[8] Rinette Roets, Minnaar Marylou, and Kerry 
Wright,(2007)Open source: Towards Successful Systems 
Development Projects in Developing Countries, Proceedings 
of the9th International Conference on Social implications of 
computers in developing countries, Sao Paulo, Brazil, May 
2007. 

http://www.ijcaonline.org/�
http://www.accenture.com/�
http://www.parliament.uk/parilamentary_office/post/pubs2005.cfm�
http://www.parliament.uk/parilamentary_office/post/pubs2005.cfm�


International Journal of Computer Applications (0975 – 8887) 
Volume 34– No.1, November 2011 

 

38 

[9]  Feller J. and Fitzgerald B. (2000), A framework analysis of 
the open source software development paradigm. In 
Proceedings of the twenty first intern ational conference on 
Information systems‘, International Conference on 
Information Systems, pages 58–69, Brisbane, Queens-land, 
Australia. 

[10] Johnson Kim (2001), A descriptive process model for Open 
source software development, University of Calgary. 

[11] Raymond Eric S. (1999), The Cathedral and the Bazaar: 
Musings on Linux and Open Source by an Accidental 
Revolutionary, O’Reilly & Associates. 

[12] Mockus Audris, Fielding Roy T. and Herbsleb James (2000), 
A Case Study of Open Source Software Development: The 
Apache Server. ACM 

[13] Sebastian Prehn (2007) Open Source Software Development 
Process, Term Paper July  29, 2007, TU Kaiserslautern AG 
Software Engineering Seminar 

[14] Robbins Jason E. Adopting Open Source Software 
Engineering (OSSE) Practices by Adopting OSSE Tools. 

[15] Wheeler David A. (2007) Why Open Source Software / Free 
Software (OSS/FS, FLOSS, or FOSS)? Look at the 
Numbers! Available at 
http://www.osepa.eu/site_pages/News/43/WhyOSS_Look_at
_the_numbers_Wheeler_2007.pdf. retrieved on 15.4/2011. 

[16] Marian-Pompiliu (2009), Open Source Software Reliability. 
Features and Tendence, Open Source Scientific Journal Vol. 
1, No. 1. 

[17] Stallman R. M, (2003) The GNU Manifesto. The Free 
Software Foundation, available at: 
http://www.fsf.org/gnu/manifesto.html. retrieved on 
15.4/2011. 

[18] Pfaff Ben, David Ken, Why open source software is better 
for society than proprietary closed  source software. 
Available at http://benpfaff.org/writings/anp/oss-is-
better.html retrieved on 15.4/2011. 

 

 

http://www.ijcaonline.org/�
http://www.osepa.eu/site_pages/News/43/WhyOSS_Look_at_the_numbers_Wheeler_2007.pdf�
http://www.osepa.eu/site_pages/News/43/WhyOSS_Look_at_the_numbers_Wheeler_2007.pdf�
http://www.fsf.org/gnu/manifesto.html�
http://benpfaff.org/writings/anp/oss-is-better.html�
http://benpfaff.org/writings/anp/oss-is-better.html�

	Reliability Issues in Open Source Software
	University Institute of Computer Science              University Institute of Computer Science
	and Applications (UICSA)                                           and Applications (UICSA)
	Abstract
	Open Source software in recent years has received great attention amongst software users. The success of the Linux Operating system, Apache web server, Mozilla web browser etc. demonstrates open source software development (OSS) as an alternative form...
	General Terms
	Design, Reliability, Security, Measurement
	1. Introduction
	In a recent survey conducted by Accenture [1] over 300 large blue chip organizations in both public and private sector of US and UK on the use of open source software, a very interesting result is found. “Two third of overall organizations (71%) incre...
	2. What is software reliability    and its measures
	According to ANSI [5] software reliability is defined as “the probability of failure free software operation for a specified period of time in a specified environment”. Informally reliability is defined as a measure of how closely a system matches its...
	3. Open Source Software and its Characteristics
	4. Difference between two styles of Development
	5. Reliability issues in OSS
	11. Conclusions
	In this paper study is made to find out the reliability of open source software in comparisons of proprietary software. Reliability is difficult to measure and problems reports are not necessarily a sign of poor reliability. However our study shows th...
	12. References
	[1] Accenture, Aug 2010, available at  http://www.accenture.com retrieved on 15.4/2011.
	[2]  Deshpande Amit, Richle Dirk  (2008), The total growth of Open source, Proceedings of  the fourth conference on Open Source Systems (OSS 2008), Springer Verlag.
	[3]  Postnote on Open Source Software, Parliamentary office of Science and Technology, No.242, June 2005 source: http://www.parliament.uk/parilamentary_office/post/pubs2005.cfm.  retrieved on 15.4/2011.
	[4]  Sommerville, I., Software Engineering, 7th edition, Addison Wesley, New York 2004.
	[5]  ANSI/IEEE,  Standard  Glossary  of  Software Engineering   Terminology, STD-729-199,  ANSI/IEEE,  1991.
	[6]  Mall Rajib (2009), Fundamentals of Software Engineering,  PHI.
	[7]  Rosenberg  Dr. Linda, Hammer Tad, Shaw Jak, (1999), Software Metrics and Reliability.
	[8] Rinette Roets, Minnaar Marylou, and Kerry Wright,(2007)Open source: Towards Successful Systems Development Projects in Developing Countries, Proceedings of the9th International Conference on Social implications of computers in developing countries...
	[9]  Feller J. and Fitzgerald B. (2000), A framework analysis of the open source software development paradigm. In Proceedings of the twenty ﬁrst international conference on Information systems‘, International Conference on Information Systems, pages ...
	[10] Johnson Kim (2001), A descriptive process model for Open source software development, University of Calgary.
	[11] Raymond Eric S. (1999), The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary, O’Reilly & Associates.
	[12] Mockus Audris, Fielding Roy T. and Herbsleb James (2000), A Case Study of Open Source Software Development: The Apache Server. ACM
	[13] Sebastian Prehn (2007) Open Source Software Development Process, Term Paper July  29, 2007, TU Kaiserslautern AG Software Engineering Seminar
	[14] Robbins Jason E. Adopting Open Source Software Engineering (OSSE) Practices by Adopting OSSE Tools.
	[15] Wheeler David A. (2007) Why Open Source Software / Free Software (OSS/FS, FLOSS, or FOSS)? Look at the Numbers! Available at http://www.osepa.eu/site_pages/News/43/WhyOSS_Look_at_the_numbers_Wheeler_2007.pdf. retrieved on 15.4/2011.
	[16] Marian-Pompiliu (2009), Open Source Software Reliability. Features and Tendence, Open Source Scientific Journal Vol. 1, No. 1.
	[17] Stallman R. M, (2003) The GNU Manifesto. The Free Software Foundation, available at: http://www.fsf.org/gnu/manifesto.html. retrieved on 15.4/2011.
	[18] Pfaff Ben, David Ken, Why open source software is better for society than proprietary closed  source software. Available at http://benpfaff.org/writings/anp/oss-is-better.html retrieved on 15.4/2011.

