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ABSTRACT 
This work is consecrated to the investigation of mechanical 
behavior of a composite plate containing some periodic 
distributions and no symmetrical with regard to the average 
plan. The choice of this model is characterized by two important 
parameters: thickness of the plate and the size of the period. It is 
supposed that the thickness is smaller compared to the period 
dimension. The obtained results indicate that the 
homogenisation technique is able to predict the behaviour of 
periodic composites. The equivalent elasticity coefficients and 
micro-constraints were analytically calculated, then by finite 
elements in the basic cell level. We have shown that the 
complexity of numerical modelling can be solved by choosing a 
plan model, which gives the same results as a three-dimensional 
model 
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1. INTRODUCTION 
The composite plates are used in the majority of the high 
mechanical performances structures. Nowadays their presence in 
all the technical fields, justifies this importance. However, the 
analysis of their mechanical behavior raises large difficulties 
linked to their strong heterogeneity and the diversity of their 
geometrical forms. In fact, the mechanical properties of the 
laminated plates depend on the nature of the layers according to 
a certain angles variation law according to the thickness and the 
nature of the reinforcement which can be in the form of wire, of 
wavy mates or fabrics. The modelling of the laminated 
structures and sandwiches is based on the thick plates theory, 
introduced by E. Reissner, 1945 and R. D. Mindlin, 1951, in the 
case of the isotropic homogeneous contexts. Considering that 
this theory is badly adapted for the study of the composite 
plates, many authors [4, 5, 6, 9, 10, 11, 12], have suggested its 
improvement by giving, more or less a refined field 
displacements. We notice that the refined theory takes into 
account the warping of the transverse segment and gives a good 
approximation constraints. The distribution of stresses resulting 
from transverse, can take a parabolic form in the thickness of the 
plate [12]. Another approach based on the homogenisation 
technique [1, 2, 3, 7, 13] has been suggested when it is about a 
periodic structure composite . This technique, as we have shown 
in this study, allows to calculate, not only the total behavior law 
of a composite, but also the mechanical contribution of its basic 
components. However, these studies are interested only in 
situations of simple geometry where the plate consists of one-

dimensional fibres, circular perforations or rectangular [1, 7, 
14]. Generally, the basic geometry represent a symmetry in 
relation to the average plan. The calculation of the elasticity 
coefficients of the equivalent context is analytically done by 
uncoupling membrane and flexion effects. In this work, we 
suggest to apply the homogenisation technique by asymptotic 
development in the case of non-symmetrical and periodic 
structure plates in relation to the average plan [8, 14, 15]. Two 
significant parameters characterize the choice of this model, the 
thickness of the plate and the size of the period. We suppose that 
the thickness h is smaller compared to the period dimension εY. 
This leads to consider a plate whose average plan is covered by 
a set of identical periods Y = [0, Y1]* [0, Y2]. (Figure1).  
Consequently, the plate behaviour is characterized by elasticity 
coefficients perfectly determined over the Y period and stretched 
by periodicity over the whole space. We notice these 
coefficients: 
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Fig 1: Plats periodic geometry 

2. STATE OF THE PROBLEM. 
We consider the frame work of the thick plates theory with 
linear elasticity, called the natural theory and we choose the 
situation where plates thickness h  is smaller compared to the 
size Y.ε  of the period Y. Thus, we write the displacements field 
in the following form:
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The equilibrium equations are obtained by applying the principle 
of virtual powers taking into account the plate elastic behaviour, 
the external forces fi  and the moments mi  
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With the boundary conditions      i, j = 1, 2  
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3. HOMOGENEISATION BY 
ASYMPTOTIC DEVELOPMENT 
The homogenisation method by asymptotic development 
consists of studying the limits of εu  and εσ ij  when ε tends 

towards zero. We have two scales. The first one is linked to the 
average plan and allows to describe the behaviour in the 
direction system (0, x1,x2.) The second, linked to the period Y, 
allows to reach the micro-constraints which develop around the 
point x Є Ω. 
3.1. Asymptotic Development 
For each positive value of ε an asymptotic development of the 
displacement field shall be performed, in the form: 

    +++= ),(),()()( 2210 yxuyxuxuxu iiii εεε …                (5) 

where the displacement components ),( yxun
i  (n = 1, 2, 3, ...) 

are periodic in Y. With the equilibrium equations, we associate 

the operators: ε
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ijD et ε
iE  such as: 
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The asymptotic development of these operators, is identical to 

that of )(xui
ε . For example the operator ε

ijA , will be written in 

the form: 
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Taking into account the variable changing 
ε
xy =  , these 

operators are written: 
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3.2. Equivalents Coefficients. 
By introducing the relations (8-12) into the equilibrium 
equations (2-4) and by identifying the terms of the order zero ε , 
the study of the limit when ε tends towards zero, allows us to 
obtain the microscopic equations system which enable to 
determine the equivalent coefficients: 
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In these equations, the unknown factors 1
iv , 1

il , 1w  check the 

conditions of periodicity boundary in y. And 0
iv , 0

il , 0w  
supposed known, depend only on x, and the microscopic 
equations (13-15) admit particular solutions in the form: 
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The functions rs
iφ , rs

iϕ , rs
iξ , rs

iη and iΦ check the periodicity 
boundary conditions and they are cellular equations solutions, 
defined on the period Y , as follows: 
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i, j, k, h, r, s, m = 1, 2 

With the matrix notations : 
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By taking into account the equilibrium equations and by 
integrating according to the thickness h  of the plate , the 
equations homogenized in the form: 
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Finally, the calculation of the homogenized coefficients requires 
analytical or numerical resolution of the various cellular 
problems (19,20), they are written as:
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3.3. Micro-constraints Expressions 
The Micro-constraints expressions are obtained by considering 
the asymptotic development of the internal efforts :
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Thus, by taking into account the obtained results after the 
resolution of all the problems of cellular equations and by 
identifying terms of the same power of ε , according to [14], the 
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These are the expressions which will be used for the numerical 
quantification of the micro-constraints inside the basic cell. 

4.APPLICATIONS 
For the validation of numerical calculations by finite elements 
method, considering the particular case sandwich plates 
reinforced by form trapezoidal veins (shown in Figure 3.a.1) 
and circular (Figure 3.a.2) The geometrical parameters are 
adjusted in order to satisfy a material cost of  65% (35% of the 
void). The mechanical characteristics of the used material are: 
- Young Modulus: E = 20.000 MPa,  

- Poisson’s ratio:v  = 0,3 
Figure 2 represents the geometry of the quarter of the basic cell 
relating to each plate reinforced by form circular veins.These 
cells are generated by three zones, noted A (known as zone of 
pillar), B, C (known as hollow zones). 

 

Fig 2. The quarter of the basic cells and corresponding zones 
in the average plan  

We have treated the problem numerical calculations by finite 
element, two-dimensional using triangular element has three-
nodes (see mesh figure 3.b.1 and 3.b. 2) for trapezoidal and 
circular geometry thus three-dimensional has six-nodes (see 
mesh figure 4.a. for trapezoidal and Figure 4.b for circular ). The 
results from these two models are compared to analytical 
calculation (see table 1). 
The elasticity coefficients and equivalent micro-constraints were 
analytically calculated then by finite element of the basic cell 
level. However, the symmetry of the basic cell relative to the 
axes (0,y1,y2) allows reducing the area of mesh to the quarter of 
the period. In contrast, the analytical solution requires the use of 
any cross-section (Figure 3.c.1 and 3.c.2) for trapezoidal and 
circular geometry. By applying on the plate a macroscopic 
traction equal to 100 MPa, we calculated the values of micro-
constraints dimensional induced in the corresponding period. 
The results presented in Figure 5. For each vein form has 
macroscopic stress tensor. its rotation components and shear are 
constant throughout the medium , and have the values: 

   
˜ σ 22 =

6 ˜ M 22
h2 = 100  MPa   and ˜ σ 23 =

˜ Q 2
h

= 100  MPa (32) 

The rescaled micro strains are chosen as: 
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Table 1 : Coefficients of elasticity of the plate reinforced by circular flanges. 
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12v  

Analytical 11838 13822 4489,3 4504,9 5316,0 0,257 

Finite Element(2D) 11864 13842 4499,6 4515,9 5324,0 0,257 

Finite Element(3D) 11864 13842 4499,6 4515,9 5324,0 0,257 
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Fig 3 : Geometry of the plate with trapezoidal and circular flange 
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Fig 4 : Geometry of base cells(mesh size a quarter of the necessary period for three-dimensional) 
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Fig 5: Distribution of rescaled micro-constraints in the basic cell relating to the circular flanges 
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5. CONCLUSION 
In this study we have presented the results that treat the problem  
relative to a plate reinforced by form circular. The equivalent 
elasticity coefficients and the micro-constraints were 
analytically calculated then by finite elements method in the 
basic cell level. In addition, we showed that the complexity of 
numerical modelling can be solved by choosing a plan that gives 
the same results as a three-dimensional model. The results 
indicate that the homogenization technique is able of predict the 
behaviour of periodic structure plates.  
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