λ - Closed Sets in Intuitionistic Fuzzy Topological Spaces

P.Rajarajeswari Department of Mathematics Chikkanna Government Arts College Tirupur, Tamil Nadu, INDIA

ABSTRACT

In this paper we introduce a new class of intuitionistic fuzzy closed set namely intuitionistic fuzzy λ -closed set and intuitionistic fuzzy λ -open set and studied some of their basic properties.

Keywords:

Intuitionistic fuzzy topology, Intuitionistic fuzzy λ –closed sets and intuitionistic fuzzy λ –open sets.

AMS subject classification: 54A40, 03F55

1. INTRODUCTION

After the introduction of fuzzy sets by Zadeh [10] in 1965 and fuzzy topology by Chang [4] in 1968, several researches were conducted on the generalizations of the notions of fuzzy sets and fuzzy topology. The idea of "intuitionistic fuzzy set" was first introduced by Atanassov [3] in 1986 and various concept of fuzzy mathematics have extended for intuitionistic fuzzy sets. In this present paper the concept of intuitionistic fuzzy λ -closed sets and intuitionistic fuzzy λ -open sets are introduced and studied some of their basic properties.

2. PRELIMINARIES Definition 2.1 [1]

Let X be a nonempty fixed set. An intutionistic fuzzy set A in X is an object having the form $A = \{ < x, \mu_A(x), \upsilon_B(x) > : x \in X \}$, where the function $\mu_A : X \rightarrow [0,1]$ and $\upsilon_A: X \rightarrow [0,1]$ denotes the degree of membership $\mu_A(x)$ and the degree of non membership $\gamma_A(x)$ of each element $x \in X$ to the set A respectively and $0 \le \mu_A(x) + \upsilon_A(x) \le 1$ for each $x \in X$.

Definition 2.2 [1]

Let X be a non empty fixed set. Let A and B be the intuitionistic fuzzy sets in the form A = {<x, $\mu_A(x)$, $\upsilon_A(x) >$: $x \in X$ } and B = {<x, $\mu_B(x)$, $\upsilon_B(x) >$: $x \in X$ } Then (a)A \subseteq B if and only if $\mu_A(x) \le \mu_B(x)$ and $\upsilon_A(x) \ge \upsilon_B(x)$ for all $x \in X$

(b)A = B if and only if
$$A \subseteq B$$
 and $B \subseteq A$

(c)
$$A^{C} = \{ < x, \upsilon_{A}(x), \mu_{A}(x) > / x \in X \}$$

 $(\mathbf{d})\mathbf{A}\cap\mathbf{B} = \{<\mathbf{x}, \, \mu_{\mathbf{A}}(\mathbf{x}) \land \mu_{\mathbf{B}}(\mathbf{x}), \, \upsilon_{\mathbf{A}}(\mathbf{x}) \lor \upsilon_{\mathbf{B}}(\mathbf{x}) > / \mathbf{x} \in \mathbf{X}\}$

$$(e)A \cup B = \{x, \mu_A(x) \lor \mu_B(x), \upsilon_A(x) \land \upsilon_B(x) > / x \in X\}$$

(f)
$$0 = \{ \langle x, 0, 1 \rangle / x \in X \}$$
 and $1 = \{ \langle x, 1, 0 \rangle / x \in X \}$ are

respectively the empty set and the whole set of X.

G.Bagyalakshmi Department of Mathematics SNMV College of Arts and Science Coimbatore, Tamil Nadu, INDIA

Definition 2.3 [5]

An intuitionistic fuzzy topology on X is a family τ of intuitionistic fuzzy topology sets in X satisfying the following axioms.

(i)0, $1 \in \tau$ (ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$ (iii) $\cup G_i \in \tau$ for any family $\{G_i / i \in I\} \subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space and each intuitionistic fuzzy set in τ is known as an intuitionistic fuzzy open set in X.

Definition 2.4 [5]

The complement $A^{\tilde{C}}$ of an intuitionistic fuzzy open set A in an intuitionistic fuzzy topological space (X, τ) is called intuitionistic fuzzy closed set in X.

Definition 2.5 [5]

Let (X, τ) be in intuitionistic fuzzy topological space and $A = \{<x, \mu_A(x), \upsilon_A(x) > / x \in X\}$ be an intuitionistic fuzzy set in X. Then the intuitionistic fuzzy interior and the intuitionistic fuzzy closure are defined by

 $Cl(A) = \cap \{K \ / \ K \ is an intuitionistic fuzzy closed sets in X \\ and \ A \subseteq \ K\}$

 $Int(A) = \bigcup \{G \mid G \text{ is an intuitionistic fuzzy open sets in } X$ and $G \subseteq A\}.$

Remark 2.6 [5]

For any intuitionistic fuzzy set A in (X, τ) we have (i) $cl(A^{C}) = [int(A)]^{C}$, (ii) $int(A^{C}) = [cl(A)]^{C}$, (iii)A is an intuitionistic fuzzy closed in X \Leftrightarrow Cl(A) = A (iv)A is an intuitionistic fuzzy open set in X \Leftrightarrow int(A) = A

Definition 2.7

An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X,τ) is called (i).intuitionistic fuzzy generalized closed set [9] (intuitionistic fuzzy g – closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is intuitionistic fuzzy open (ii) intuitionistic fuzzy g – open set[9] if the complement of an intuitionistic fuzzy g – closed set is called intuitionistic fuzzy g - open set. (iii) intuitionistic fuzzy semi open (resp. intuitionistic fuzzy semi closed) if there exists an intuitionistic fuzzy open set \cup (resp. intuitionistic fuzzy closed) such that $\cup \subseteq A \subseteq cl$ (\cup) (resp. int (U) $\subseteq A \subseteq U$).

Remark 2.8 [9]

Every intuitionistic fuzzy closed set [9] (intuitionistic fuzzy open set) is intuitionistic fuzzy g-closed (intuitionistic fuzzy g- open set) but the converse may not be true.

3. INTUITIONISTIC FUZZY λ – CLOSED SET

In this section we introduce intuitionistic fuzzy λ -closed set and studied some of its properties.

Definition 3.1

An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, τ) is called intuitionistic fuzzy λ -closed if A \supseteq cl(U) whenever A \supseteq U and U is intuitionistic fuzzy open in X.

Theorem 3.2

Every intuitionistic fuzzy closed set is intuitionistic fuzzy λ -closed.

Proof: Let A be an intuitionistic fuzzy closed set in the intuitionistic topological space (X, τ) . Let U be the intuitionistic fuzzy open set in X such that $A \supseteq U$, then $cl(A) \supseteq cl(U)$ since A is intuitionistic fuzzy closed we have cl(A) = A. Therefore $A \supseteq cl(U)$. Hence A is intuitionistic fuzzy λ -closed set.

Remark 3.3

The converse of the above theorem may not be true as seen in the following example.

Example 3.4

Let $\mathbf{X} = \{a, b\}$ and $\tau = \{\, 0 \mbox{ , } 1 \mbox{ , } \cup\}$ be an intuitionistic fuzzy

topology on X where $\cup = \{ <a, 0.5, 0.5 >, <b, 0.3, 0.6 \}$. Then the intuitionistic fuzzy set A = $\{a, 0.5, 0.5 >, <b, 0.8, 0.2 >\}$ is intuitionistic fuzzy λ -closed set but it is not intuitionistic fuzzy closed.

Theorem 3.5

If A and B are two intuitionistic fuzzy λ -closed sets in an intuitionistic fuzzy topological space (X, τ), then A \cap B is an intuitionistic fuzzy λ -closed set.

Proof:

Let U be an intuitionistic fuzzy open set in X such that $A\cap B \supseteq U$. Since A and B and B are intuitionistic fuzzy λ -closed sets we have $A \supseteq cl(U)$ and $B \supseteq cl(U)$. Therefore $A\cap B \supseteq cl(U)$. Hence $A\cap B$ is intuitionistic fuzzy λ -closed set.

Remark: 3.6

The union of two intuitionistic fuzzy λ -closed sets in an intuitionistic fuzzy topological space (X, τ) may not be

intuitionistic fuzzy $\lambda\text{-closed}$ as seen from the following example.

Example 3.7

Let $X = \{a, b\}$ and \cup , A and B be the intuitionistic fuzzy sets of X defined as follows:

 $\label{eq:absolution} \begin{array}{l} \cup = \{<a, \, 0.5. \, 0.5 >, < b, \, 0.6, \, 0.3 > \}, \, A = \{<a, \, 0.5. \, 0.5 >, \\ < b, \, 0.5, \, 0.3 > \} \text{ and } B = \{<a, \, 0.5. \, 0.5 >, < b, \, 0.6, \, 0.4 > \} \end{array}$

Let $\tau = \{ 0 \ 1, \cup \}$ be intuitionistic fuzzy topology on X.

Then A and B are intuitionistic fuzzy λ -closed in (X, τ) . But $A \cup B$ is not intuitionistic fuzzy λ -closed.

Remark 3.8

The concept of intuitionistic fuzzy λ -closed sets and intuitionistic fuzzy g-closed sets are independent as seen from the following examples.

Example 3.9

Let $X = \{a, b\}$ and $\tau = \{0, 1, \cup\}$ be an intuitionistic

fuzzy topology on X ,where $\cup = \{ \langle a, 0.5, 0.5 \rangle, \langle b, 0.5, 0.2 \rangle \}$. Then the intuitionistic fuzzy set A = $\{\langle a, 0.5, 0.5 \rangle, \langle b, 0.5, 0.4 \rangle \}$ is not intuitionistic fuzzy g-closed but intuitionistic fuzzy λ -closed.

Example 3.10

Let X = {a, b} and τ = { 0 1, U } be an intuitionistic

fuzzy topology on X where $\cup = \{<a, 0.5, 0.5>, <b, 0.6, 0.3>\}$ Then the intuitionistic fuzzy set A = $\{<a, 0.5, 0.5>, <b, 0.6, 0.2>\}$ is intuitionistic not fuzzy λ -closed set but intuitionistic fuzzy g-closed set.

Remark 3.11

The concept of intuitionistic fuzzy λ -closed sets and intuitionistic fuzzy semi closed sets are independent as seen from the following examples.

Example 3.12

Let ${\rm X}=\{a,\,b\}$ and $\tau=\{\begin{array}{cc}0&1\,,\,\cup\}$ be an intuitionistic fuzzy

topology on X where U = {<a, 0.5, 0.5>, <b, 0.5, 0.2>}. Then the intuitionistic fuzzy set A = {<a, 0.5, 0.5>, <b, 0.5, 0.4>} is Intuitionistic fuzzy λ -closed but not intuitionistic fuzzy semi closed.

Example 3.13

Let X = {a, b} and τ = { 0, 1, {<a,0.5, 0.5>, <b,0.3, }

0.5>}, { $\langle a,0.5, 0.5 \rangle$, $\langle b,0.4, 0.5 \rangle$ } be an intuitionistic fuzzy topology on X. Then intuitionistic fuzzy set A= { $\langle a, 0.5, 0.5 \rangle$, $\langle b, 0.3, 0.5 \rangle$ } is not an intuitionistic fuzzy λ -closed but intuitionistic fuzzy semi closed set.

Remark 3.14

Theorem 3.2, Remark 3.3, 3.8, and 3.11 reveals the following diagram of implication.

Definition 3.15

An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, τ) is called intuitionistic fuzzy λ – open set if and only if its complement A^C is an intuitionistic fuzzy λ -closed.

Remark 3.16

Every intuitionistic fuzzy open set is an intuitionistic fuzzy λ - open set in (X,τ) but the converse may not be true as seen from the following example.

Example 3.15

Let $X = \{a, b\}$ and $\tau = \{ \begin{array}{c} 0 \\ \end{array}$, $\cup \}$ be an intuitionistic fuzzy

topology on X. Where $\cup = \{ <a, 0.5, 0.5 >, <b, 0.3, 0.6 > \}$ then the intuitionistic fuzzy set $B = \{ <a, 0.5, 0.5 >, <b, 0.2, 0.8 > \}$ is intuitionistic fuzzy λ - open set but it is not intuitionistic fuzzy open in (X, τ)

Remark 3.16

The intersection of two intuitionistic fuzzy λ - open sets is an intuitionistic fuzzy topological space (X, τ) may not be intuitionistic fuzzy λ - open for example.

Example 3.17

Let X = {a, b} and U, C and D be the intuitionistic fuzzy sets of X defined by follows.U = {<a, 0.5, 0.5>, <b, 0.6, 0.3>}, C = { <a, 0.5, 0.5>, <b, 0.3, 0.5>} and D = { <a, 0.5, 0.5>, <b, 0.4, 0.6>}.Let $\tau = \{0, 1, U\}$ be

intuitionistic fuzzy topology on X. Then C and D are intuitionistic fuzzy λ -open in (X, τ). But A \cap B is not intuitionistic fuzzy λ - open.

Theorem 3.18

Proof: Assume that α is a intuitionistic fuzzy λ - open set in X. Then α^{C} is a intuitionistic fuzzy A fuzzy set α in a fuzzy topological space X is intuitionistic fuzzy λ -open if $\alpha \supseteq int(\sigma)$ whenever $\alpha \supseteq \sigma$ and σ is intuitionistic fuzzy closed set in X. λ - closed set in X. Let σ be a intuitionistic fuzzy closed in X such that $\alpha \supseteq \sigma$ which implies $\alpha^{C} \supseteq \sigma^{C}$. Since α^{C} intuitionistic fuzzy λ - closed and σ^{C} is intuitionistic fuzzy open we have $\alpha^{C} \supseteq$ cl (σ^{C}). But cl (σ^{C}) = [int (σ)]^C And so $\alpha^{C} \supseteq$ [int (σ)]^C $\Rightarrow \alpha \subseteq$ int (σ).

Conversely assume that $\alpha \subseteq int(\sigma)$ where $\alpha \subseteq (\sigma)$ and σ is intuitionistic fuzzy closed in X. We want to prove that α is intuitionistic fuzzy λ - open. We have to prove that α^{C} is intuitionistic fuzzy λ - closed. Let β be a intuitionistic fuzzy open set such that then $\alpha^{C} \supseteq \beta$ which implies $\alpha \subseteq \beta^{c}$ then by our hypothesis we have $\alpha \subseteq int(\beta^{c})$. But $int(\beta^{c}) = [Cl(\beta)]^{c}$. We have $\alpha \subseteq Cl(\beta)^{c}$. Then $\alpha^{c} \supseteq Cl(\beta)$. Therefore α^{c} is intuitionistic fuzzy λ -closed set. Therefore α is intuitionistic fuzzy λ - open set.

4. CONCLUSION

In this paper we have introduced intuitionistic fuzzy λ - closed sets and studied some of its basic properties. Also we study the relationship between the newly introduced sets namely intuitionistic fuzzy λ - closed sets and some of the intuitionistic fuzzy closed sets that already exists. In this paper also we introduce intuitionistic fuzzy λ - open sets and studied some of its basic properties.

5. REFERENCES

- K.Atanasov, Intuitionistic fuzzy sets, In VII ITKR'S session , (V. Sgurew, Ed) Sofia, Bulgaria (1983).
- [2] K. Atanassov and S. Stoeva., Intuitionistic fuzzy sets, In Polish Symposium on Interval and Fuzzy Mathematics, Poznam (1983), 23 – 26.
- [3] K. Atanassov, Intuitionistic fuzzy sets, fuzzy sets and systems 20,(1986), 87-96.
- [4] C. L. Chang, Fuzzy topological spaces, J Math. Anal. Appl. 24 (1968) 182 – 190.
- [5] D. Coker an introduction to Intuitionistic fuzzy topological space fuzzy sets and systems 88 (1997), 81 – 99.
- [6] Gurcay H., Coker D and GS., A Haydeer. "On fuzzy continuity in intuitionistic fuzzy sets topological spaces". The journal of fuzzy mathematical Vol. 5 No. 23 ,65 – 378 (1997).
- [7] A.Pushpapalatha, Ph.D thesis, Bharathiar University, Coimbatore.
- [8] Sundaram P and Sheik John "On ω closed set in topology" Acta clencia India 4, 389 392 (2000).
- [9] S.S. Thakur and Rekha Chaturvedi, Generalized closed sets in intuitionistic fuzzy topology, The journal of fuzzy mathematics, 16 (3) 559 – 572, (2008).
- [10] 10 Zadeh L.A. Fuzzy sets, information and control, 18, 338 – 353 (1965).