
International Journal of Computer Applications (0975 – 8887)
Volume 33– No.9, November 2011

22

 Robust Representation for Conversion UML Class
into XML Document using DOM

Noreddine GHERABI
Hassan 1 University, FSTS
Department of Mathematics

and Computer Science

 Mohamed BAHAJ
Hassan 1 University, FSTS
Department of Mathematics

and Computer Science

ABSTRACT
This paper presents a Framework for converting a class diagram
into an XML structure and shows how to use Web files for the
design of data warehouses based on the classification UML.
Extensible Markup Language (XML) has become a standard for
representing data over the Internet. We use XSD schema for
define the structure of XML documents and validate XML
documents.

 A prototype has been developed, which migrates successfully
UML Class into XML document based on the formulation
mathematics model. The experimental results were very
encouraging, demonstrating that the proposed approach is
feasible efficient and correct.

General Terms
 ORDB, Modeling

Keywords
 UML, XML, XML schema, DOM.

1. INTRODUCTION
 XML was originally envisaged as a language for defining new
document formats for the Web and can be considered a meta-
language: a language for defining markup languages. XML is a
text-based format that provide mechanisms for describing
document structures using markup
 With the current revolution in the use of the Web as a platform
for application development, XML (eXtensible Markup
Language) [1] was the first interest to many e-business
applications.
 This document aims to define a correspondence between the
class diagrams of Unified Modeling Language (UML) [2] and
XML Schema using the mathematical representation of the class
diagram and technology DOM to build the XML structure.
A number of approaches to convert the XML Schema in UML
diagram or vice versa have been described in other works.
 Since both the technologies UML and XML are just beginning
to grow, not much work has been done in the domain of
mapping between these two techniques. Grady Booch et al[3],
describes a graphical notation in UML for designing XML
Schemas, in this paper the authors describe the relationship
between UML and the SOX schema (a forerunner to XML
Schema) used by CommerceOne.
 Until recently, there has been no effective means to design a
XML schema from the object-oriented concepts without
exposing designers to problems of low-level implementation.

 Bird, Goodchild and Halpin[4] have proposed a method that
uses a conceptual language of "role object model" to generate
XML schemas.
 Wu and Hsieh [5] used a technique for mapping UML to XML.
They created XSD from class diagrams, but this technique is
very complex to generate the XSD file for each class diagram.
 Mikael R. Jensen et al[6], present an algorithm for conversion
but this time in the opposite direction of our approach, they have
developed algorithms for automatically constructing UML
diagrams from XML schema.
 In another way, Abdelsalam Maatuk et al[7] propose an
approach for migrating existing Relational Databases (RDBs)
into Object-Relational Databases (ORDBs). Transforming
conceptual models (e.g., EER, UML class diagrams) into ORDB
has been studied over the past years [8, 9, 10, 11 and 12] but is
not yet fully satisfactory solution provider.
 J. Fong et al [13] proposes a method for Converting relational
database into XML data with DOM. Ref. [14] presents
techniques for converting relational databases into object
oriented databases. The data conversion involves unloading
relations into sequential files, and reloading them into object-
oriented databases with constraints preservation.
 We believe that this article will be among the best papers to
present algorithms that automatically extract XML data directly
from UML Class, retaining important semantic information.

2. PROPOSED METHOD
The basic steps of our approach are shown in Figure 1
The first step is to present the class diagram in the form of
mathematical formulation, and then codify it in a well-defined
structure this technique is detailed in section 2.1. The second
step, the class diagram codified will be validated using a
validation algorithm (Sections 3.1 and 3.2). After, in step 3 the
class diagram validated will be imported into the system with
the XSD schema. In Step 4 the system generates an XML and
defines the structure of the class diagram using DOM (Section
3.3). And finally this XML file is validated and stored.

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.9, November 2011

23

Fig.1: Schema of our proposed approach.

2.1 Class UML and XML Models
In our approach a class diagram in UML is represented as a set
of classes, is denoted as 4-tuple where the first element is the
name of the UML class, the second element is a list of attributes,
the third element is the set of methods and the latest element is
the relationships:

{ }RMAN CCCCCCClass ,,,(:: ==

Where:

• NC : is the name of the class C.

• AC : is the list of attributes associated with this
particular class

{ }dvtnA AAAAAAC ,,,(:: ==

 Where nA is an attribute name, tA is its type, vA is the

visibility of this attribute (Public, Private or protected) and dA
is a default value if given.

• MC : is a set of methods for defined class C

{ }),,(:: vtnM MMMMMC ==

 Where nM is the name of the method M , tM its type and

vM is the visibility of this method.

• RC : describes the different types of relations that can
exist between any pair of classes in the UML diagram.

{ }),,(:: rctR RRRRRC ==

 Where tR is the type of relationship (Association,

Composition, Aggregation or Generalization), cR is the

cardinality specified for the source class and rR defined the
target class with which the source class is connected.

We now define the sets to describe the XML structure diagram.

RM

AN

CRe,CMethods
 ,CAttributes ,Cname-Class Re

Methods,,Attributesname,(ClassClassesXML

∈∈
∈∈

−=−

lations
lations)/

The set XML-CLASS describes the structure of the complete
class diagram. It contains 4-tuple where the first element of the
set is the name of the UML class. The other elements are three
sets, where Attributes is a list of attributes associated with this
particular class, this attribute belongs to the entire CA and
defined as:

{

} dv

t N

A,A
,A,Aname-Attrdefault)/ -Attr

 ,,,(

∈−∈−
∈−∈

−−−=

defaultAttrvisibilityAttr
typeAttr

visibilityAttrtypeAttrnameAttrAttribute

The third element of the set XML-Classes describes the set of
Methods, is a list of all the methods that define the class, and
defined as:

{

}vt

 N

Method ,M
,Mname-Method/)
 ,,(

∈−∈−
∈−
−−=

visibilityMtypeMethod
visibilityMethod

typeMethodnameMethodMethod

UML Class

Codification of class diagram

Validation of the diagram

XSD schema

With DOM Transformation algorithm

Invalid

valid

XML valid

XML DATA

XML Invalid

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.9, November 2011

24

And the last element is a list of all existing relationships with
this class

{

}r c

t

RReel ,RRe
,RR/)ReRe

 ,Re,(ReRe

∈−∈−
∈−−

−−=

lationClassRycardinalitl
typeellationClassl

ycardinalitltypellation

Where:

• Attr-Type or Method-type = { Numeric, String, Text,
NULL…}

• Attr-visibility or Method-visibility={ Public, Private,
Protected }

• Rel-type={AGGREGATION, COMPOSITION,
ASSOCIATION, GENERALIZATION}.

• Rel-cardinality = { 0..*, 1..*, 0..1, 1}

 Rel-cardinality: is the set of cardinalities used to
describe the quantitative relationship between elements in
the UML data model. The cardinalities of a relationship are
given by specifying minimum and maximum cardinalities

3. OUR ALGORITHM TO TRANSFORM
THE UML DIAGRAM INTO XML
DOCUMENT
The algorithm to generate the XML file from the UML class is
divided into three steps. The first step, ReadUML, is a sub-
function to codify the structure of the class diagram in a text file
and then import it into the system. The second part, we verify
the structure of the diagram and then validate it, and the third
step of the algorithm, called the sub-function GenerateXML, is
to generate all elements of the diagram and create a valid XML

file. Finally, the function ValidateXMLDocument is used to
validate the generated XML file

 In general the structure of the XML generated by the algorithm
corresponds to the UML class where a tag XML is generated for
each Class, each attribute, each Method and each relationship.
All elements having a parent/ child relationship in the XSD
schema are connected in the UML diagram.

The general algorithm to convert the UML diagram in XML
format is:

3.1 Codification of the diagram
 In our approach the class diagram is codified in a text file in
symbolic form as follows:

 CN ; Number-of-Attributes ; {CA}/(An:At:Av:Ad);} ;
Number-of-Methods ; {CM}/(Mn:Mt:Mv);} ; Number-
of-Relationships ; {CR}/(Rt:Rc:Rr);};

 For example: Consider the class diagram in Figure 2. Attributes
or methods publics, privates and protected are presented
respectively by the following symbols: , , .

 In this example the class "Person" is defined by three attributes:
"Matricule" is the string type, its visibility is public and its
default value is undefined, same, the attribute "Name" is defined
by the type String, with visibility Public and no default value,

Fig 2: Example of the class diagram

Algorithm GenerateXMLClass

 ReadUML()

 ValidateClassDiagram()

 GenerateXML()

 ValidateXMLDocument()

 END.

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.9, November 2011

25

the 3rd attribute "Age" is of type Int, visibility is protected and
no default value.

 Class "Person" contains a single method "Working" the type of
the return value is String and its visibility is Public.

 One association relationship that exists with the class
"Company" and its cardinality is 1 ..*

 There is no other existing relationship, except the inheritance
relationship that will be represented in the encoding of the
specialized class "Director" and not in the general class
"person". Therefore, the codification of the class "Person" that
will be imported into the system is as follows:

Person;3;Matricule:String:Public:;Name:String:Publi
c:;Age:Int:Protected:;1;Working:String:public;1;1..*:
Company;0;0;0;

3.2 Validation UML Diagram
 In the validation of a class diagram, you must respect the
standards of UML 2.0, before moving on to the step of
conversion; therefore, there are various techniques to follow for
validation.

 Our system follows these steps for the validation of class
diagram:

- Class names must be unique and the number of
attributes of each class must be figured, and if possible
the type, the visibility and the default value of each
attribute will be presented in the diagram.

- The number of associations must be mentioned, over
the association must be provided by two existing
classes in the diagram with its cardinality.

- Similarly, the number of relations of composition and
aggregation of each class with other classes should
also be mentioned and their cardinalities.

- Inheritance relationship that connects two classes or
more classes, in a way generalization / specialization,
must be presented in the diagram.

- Algorithm verifies all the relations between classes
and respects the validation of a UML class diagram, in
order to validate the entire diagram which will be
imported into the system for conversion.

3.3 Generating XML File
3.3.1 XML Schema Definition
 First, we defined the XML Schema Definition (XSD) for each
class diagram. We think that very soon XML Schemas will be
used in most Web applications as a replacement for DTDs. Here
are some reasons:

- XML Schemas are extensible to future additions

- XML Schemas are richer and more powerful than

 DTDs

- XML Schemas are written in XML.

- XML Schemas support data types.

- XML Schemas support namespaces.

 This XSD is stored and prepared to use it to validate the
generated XML file, and its structure is defined as follows:

<?xml version="1.0" encoding="utf-8"?>
<xsd:schema
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema">

<xsd:element name="Class" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Attribute" minOccurs="0"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Attr-Type" type="xsd:string"/>
 <xsd:element name=" Visibility" type="xsd:string"/>
 <xsd:element name="Dvalue" type="xsd:string"/>
 </xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
<xsd:element name="Method" minOccurs="0"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Method-type" type="xsd:string"/>
 <xsd:element name="Visibility" type="xsd:string"/>
 </xsd:sequence>
<xsd:attribute name="name-Method" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
<xsd:element name="Relationships" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ASS" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Cardinality" type="xsd:string"/>
 <xsd:element name="Class-Relation" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
<xsd:element name="Aggregation" minOccurs="0"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Cardinality" type="xsd:string"/>
 <xsd:element name="Class-Relation" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
<xsd:element name="Composition" minOccurs="0"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Cardinality" type="xsd:string"/>
 <xsd:element name="Class-Relation" type="xsd:string" />
 </xsd:sequence>

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.9, November 2011

26

 </xsd:complexType>
 </xsd:element>
<xsd:element name="Generalization" minOccurs="0"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Class-Relation" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name-Class" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema

3.3.2 Algorithm for generation XML Document.
 Now we can generate the XML file corresponding to the class
diagram, for this we developed an algorithm that constructs the
XML structure based on the technique of DOM.

 In this algorithm the system through all the classes of the
diagram and extract the attributes and methods of each class and
the types of relationships between a class and other classes in
the diagram.

 Algorithm to build the structure of the XML file from a UML
diagram:

C=first Class

While C!=Null

C=C.Next

Create New Element E

Create New Attribute Name

E.Name=CN

 NbA=Number of attributes of the Class C

For i=1 ti NbA do

Create New Attribute Attr(i).Name

Attr(i).Name=CA(i).An

Create New Element A

A(i).type= CA(i).At

A(i).visibility= CA(i).Av

A(i).defaultvalue= CA(i).Ad

End for

NbM=Number of methods of the Class C

For i=1 to i=NbM do

Create New Attribute Method(i).Name

Method(i).Name=CM(i).Mn

Create New Element M

M(i).type= CM(i).Mt

M(i).visibility= CM(i).Mv

End For

NbR=Number of Relations of the Class C

Create New Element R

For i=1 to i=NbR do

If Rel(i) is association then

Create New Element ASS

ASS.type= CR(i).Rt

ASS.cardinality= CR(i).Rc

ASS.ClassRelation= CR(i).Rr

Elseif Rel(i) is Composition then

Create New Element Composition

Composition.type= CR(i).Rt

Composition.cardinality= CR(i).Rc

Composition.ClassRelation= CR(i).Rr

Elseif Rel(i) is Aggregation then

Aggregation.type= CR(i).Rt

Aggregation.cardinality= CR(i).Rc

Aggregation.ClassRelation= CR(i).Rr

Elseif Rel(i) is Generalization then

Generalization.ClassRelation= CR(i).Rr

Enf If

Enf For

End While

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.9, November 2011

27

4. CASE STUDY
 We have developed a tool that performs the mapping of UML
to XML using the above specifications. Our platform conversion
is developed by the Java language, as a proof of concept for this
work (See Fig.4).

 The system takes as input an encoded text file that contains the
overall structure of the diagram.

Figure 2 shows a section of a UML class diagram developed
using MyEclipse. The encoded text file that contains the
structure of the diagram is defined as follows:

Person;3;Matricule:String:Public:;Name:String:Public:;Age:Int:
Protected:;1;Working:String:public;1;1..*:Company;0;0;0;

Company;2;Name:String:Public:;Adress:String:Public:;1;Recrui
-ting:Void:Protected;1;1..1:Person;0;0;0;

Department;1;Name:String:Public:;0;0;1;1..*:Company;0;0;

Director;0;1;Manage:Void:Private;1;1..1:Project;0;0;1;Person;

Project;2;Number:Int:Public:;Name:String:Protected:;0;1;1..*:
Director;0;0;0;

Fig 3: The output XML corresponding to the example of the class diagram illustrated in the Figure 2

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.9, November 2011

28

-

After, the system converts the diagram in XML format based on
the series of specifications identified in this document. The input
file has a format that we have defined to allow the conversion.
Each entity UML is chosen to be represented in a text-based
format and then converted to an element or attribute, depending
on the symbolic representation of the specifications.
Figures 3 and 4 respectively describe our platform conversion
and XML data corresponding to the class diagram used in Figure
1 of section 3.

 In this paper, we present a survey of transformation techniques
that are used to generate an XML structure from UML design.
We analyze the existing transformation techniques using all the
analysis parameters identified in the survey. The table in the
figure 5 shows a study of different aspects to highlight the
strengths and weaknesses of different techniques.

5. CONCLUSION
This paper has presented a simple solution for mapping UML
object-oriented model into XML document. The framework and
the process of mapping approach were discussed in this
document. A simple and consistent mathematical formulation
has been proposed here. In addition, a mapping tool was
developed to facilitate the automatic generation of XML data,
and also to validate the input structure UML and the structure of
XML output.
We have demonstrated the application of our approach to the
transformation of UML class into XML document, and obtained
a better performance compared with some previous methods.

Fig 4: Our tool for the converting of class diagram to XML document

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.9, November 2011

29

6. REFERENCES
[1] W. J. Pardi, XML in Action, Microsoft Press, Washington,

1999.

[2] M. Fowler and K. Scott, UML Distilled, 2nd Edition,
Addison Wesley, Boston, 2000.

[3] Grady Booch, Magnus Christerson, Mathew Fuchs, Jari
Koistinen; “UML for XML Schema Mapping
Specification”; Rational Software Corp. and CommerceOne
Inc., December 1999.

[4] BIRD, L., GOODCHILD, A. and HALPIN, T. (2000):
Object Role Modeling and XML Schema. Proc.
International Conceptual Modeling Conference, Salt Lake
City, USA, 309-322, Springer.

[5] I-Chen Wu, Shang-Hsien Hsieh; “An UML-XML-RDB
Model Mapping Solution for Facilitating Information
Standardization and Sharing in Construction Industry”;
Proceedings. National Institute of Standards and
Technology, Gaithersburg, Maryland. September 23-25,
2002, 317-321 pp

[6] Mikael R. Jensen, Thomas H. Møller, Torben Bach
Pedersen. Converting XML Data to UML Diagrams for
Conceptual Data Integration. DIWeb'2001. pp.17~31

[7] Grant, E. S., Chennamaneni, R. and Reza, H.: Towards
Analyzing UML Class Diagram Models to Object-
Relational Database Systems Transformations. In
Databases and Applications, pp. 129{134, 2006.

[8] Marcos, E., Vela, B., and Cavero, J. M.: Extending UML
for Object-Relational Database Design. In 4th Int. Conf. on
the Unified Modeling Language, vol. 2185, pp. 225{239,
2001.

[9] Marcos, E., Vela, B. and Cavero, J. M.: A Methodological
Approach for Object-Relational Database Design using
UML. Soft. and Syst. Modeling, vol. 2, pp. 59{75, 2003.

[10] Maatuk, A., Ali, M. A. and Rossiter, N.: An Integrated
Approach to Relational Database Migration. In IC-ICT '08,
pp. 1{6, Bannu, Pakistan, 2008.

[11] Maatuk, A., Ali, M. A. and Rossiter, N.: Converting
Relational Databases into Object relational Databases. In
JOT, Vol. 9, No. 2, March-April 2010 .

[12] Urban, S. D., Dietrich, S. W. and Tapia, P.: Succeeding
with Object Databases: Mapping UML Diagrams to
Object-Relational Schemas in Oracle 8. John Wiley and
Sons, Ltd, pp. 29{51, 2001.

[13] Fong, J. H.K. Wonga, Z. Cheng, Converting relational
database into XML documents with DOM. Information and
Software Technology. v45. 335-355,2003.

[14] J. Fong, Converting relational to object-oriented databases,
ACM SIGMOD RECORD 26 (1) (1997) 53–58.

[15] K Narayanan, S Ramaswamy in Proceedings of the 4th
Workshop in Software Model Engineering (2005)

[16] N. Routledge, L. Bird, A. Goodchild “UML and XML
Schema” Australian Computer Science Communications
Volume 24 Issue 2, January-February 2002

[17] John Heintz and W. Eliot Kimber, 2000, Using UML to
define XML document types. In Proceedings of isogen
international.

 XML
Schema
(XSD)

Transfor-
mation

Into XML
data

Using
DOM

Using
DTD

Mapping

Attribute Method Composition Aggregation Generalization

K. Narayanan et al
[15]

Yes No No No Yes No Yes No Yes

N. Routledge et al
[16]

Yes No No No Not indicated

I-Chen Wu et al
[5]

Yes No Yes No Yes Yes Not indicated

Grady Booch et al
[3]

Yes No No No Yes No Yes Not indicated Yes

John Heintz et al
[17]

No No No Yes Yes No No Yes Yes

OUR Yes Yes Yes No Yes Yes Yes Yes Yes

Fig 5: A comparative study with other mapping methods

http://www.ijcaonline.org/�

	INTRODUCTION
	PROPOSED METHOD
	Class UML and XML Models

	Our algorithm to transform the UML Diagram into XML document
	Codification of the diagram
	Validation UML Diagram
	Generating XML File
	XML Schema Definition
	Algorithm for generation XML Document.

	CASE STUDY
	Conclusion
	REFERENCES

