
International Journal of Computer Applications (0975 – 8887) 
Volume 33– No.9, November 2011 

 

13 

Fuzzy Better Job First Scheduling Algorithm 
 

       D. Pandey                                   Vandana                   M. K. Sharma 
   Dept. of Mathematics                             Dept. of Computer Applications              Dept. of Mathematics 
  C.C S. University Meerut, India              IIMT Group of Inst. Meerut, India      RSS College Pilakhuwa, India      
 
 
ABSTRACT 
 Time of arrival, size of CPU burst and priority are three major 
factors that are usually attached with a process which is 
submitted for execution. Several scheduling policies exist which 
use one or the other of these factors to place the submitted 
processes in appropriate order in the ready queue. Each of the 
existing schedulers has some positive and negative implications 
by way of assigning individual importance to any of the three 
factors. This work is an attempt to analyze the collective effect 
of time of arrival, size of CPU burst and priority of the process, 
through a logical combination of all the three. Fuzzy Better Job 
First (FBJF) scheduling algorithm logically integrates these 
three factors of a process and uses fuzzy ranking approach to 
determine the next most worthy job to be executed. The 
proposed policy thus enjoys advantages all the criteria to 
considerable extent. 
General Terms  
 Arrival time, CPU burst, Priority, CPU Scheduling algorithm.  
Keywords 
Ready queue, Process, Average waiting time(AWT), HRRN, 
Membership function, Fuzzification, Defuzzification. 
 
1.  INTRODUCTION 
It is well known that three major considerations are generally 
attached with a process when it is submitted to a scheduling 
system for the purpose of execution. These are its time of 
arrival, size of its CPU burst and the priority assigned with the 
process, if any. Each of these has its own importance. It depends 
on the design of the scheduler as to which of these 
considerations is given main importance. There are some basic 
algorithms that possess considerations for one or the other. 
FCFS looks for arrival time, SJF bothers about the size of burst 
and priority scheduling gives preference in accordance with the 
assigned priorities. In FCFS, processes are executed in the order 
of arrival, without any regard to its size and priority. Although 
an attempt to draw the advantage of size of CPU burst in FCFS 
has been done in [1], yet FCFS is particularly troublesome for 
time-sharing systems, where it is important that each user gets a 
share of CPU at regular intervals. It would be disastrous to 
allow one process to keep the CPU busy for an extended period 
of time. Shortest job first is an approach to reducing the bias 
inherent in FCFS, in favor of long processes. But this algorithm 
focuses only on smallest CPU burst, without any concern to the 
priority or its arrival order. FCFS and SJF algorithms select the 
processes in their order of arrival and burst size respectively, 
but both of these give no consideration to priority.  
Conventional operating systems employ numerical priorities for 
scheduling processes [2]. A priority scheduler simply grants the 
processor to the process with the highest priority. One of the 
problems with a pure priority scheduling scheme is that lower-
priority processes may suffer starvation, if there is always a 
steady supply of higher-priority ready processes. Priority aging 
is a common technique that gradually increases the priorities of 
processes that have been waiting to execute for a long time [3]. 
Having observed several positive and negative implications of 

assigning individual importance to arrival order, burst length or 
priorities in different scheduling algorithms, it sounds proper to 
analyze their collective effect through a logical combination of 
all the three. This will help the scheduler in determining the 
next most worthy job to be executed. An effort to mix the 
functions of some basic scheduling algorithms has been done by 
Al-Husainy [4]. He introduced a new factor f that represented 
the mixed effect produced from the combination of three 
factors. His approach relies on the term percentage ratio, which 
involves imprecision in its calculation and judgment for 
appropriateness. Pandey and  Vandana[5] have also worked in 
the same direction. Referring Fuzzy logic Aburus and Miho [6] 
suggested an improvement over HRRN. Kadhim and Al-
Aubidy[7] combined the effect of priority and execution time to 
get new priority. This paper designs a new scheduler that uses 
fuzzy logic to combine the importance attached to the arrival 
order, CPU burst length, and priority of the process to select a 
better job to be executed. The approach is based on fuzzy 
ranking. AWTs have been computed on different randomly 
generated data-sets and the results have been compared with 
FCFS, SJF and Round Robin policies to justify the approach.     
The contents of this paper are organized as follows: In Section 
2, fuzzy ranking method for fuzzy better job first algorithm has 
been introduced. Section 3 defines the algorithm and its method 
of implementation. Results on different data-sets have been 
discussed in Section 4, while the last section highlights the 
conclusions. 
 
2. FUZZY RANKING METHOD 
Fuzzy ranking concept is used to order the processes for the 
purpose of execution on the processor by taking into 
consideration the combined effect of three attributes. This 
method is based on fuzzy logic that combines three input 
attributes: Arrival order, CPU burst and Priority of a process. 
Each of these attributes is classified into different linguistic 
categories; for example, priority of a process can be High, 
Normal and Low. Likewise CPU estimates can be Short, 
Medium and Long and arrivals can be Early, Intermediate, Late 
etc. Fuzzy sets representing their linguistic concepts are then 
defined for each of the attributes; Arrival, CPU burst and 
Priority. The least common multiple of the ranges of three 
attributes or a suitable fraction of it is chosen to be a common 
range for defining membership functions. Trapezoidal 
membership functions may prove to be a better representation 
of linguistic concepts. The linguistic terms are the fuzzy 
variables representing the state of the process corresponding to 
each attribute. 
Every admitted process is assigned a fuzzy variable 
corresponding to each attribute in proportion to the common 
range. The fuzzy variables are then used to combine the three 
attributes of the process in the form of a new fuzzy set in 
accordance with a fuzzy rule base. This is performed by using 
fuzzy aggregation operator to obtain fuzzy ranking. The new 
fuzzy set is defuzzified to obtain a crisp output value for every 
process. Crisp output values are then sorted in an increasing 
order of values to provide crisp ranking to the processes for 

http://www.ijcaonline.org/�


International Journal of Computer Applications (0975 – 8887) 
Volume 33– No.9, November 2011 

 

14 
 

execution on the processor. The entire fuzzy ranking 
mechanism can easily be implemented through a Fuzzy Logic 
Controller. 
  
3.  ALGORITHM AND 
IMPLEMENTATION 
A general sequence of Fuzzy Better Job First (FBJF) algorithm 
with fuzzy ranking approach is listed below: 
Step 1: Define linguistic categories such as low, medium, high 
etc. to be used for the time of arrival, size of CPU burst and 
priority of the processes. Linguistic category of each attribute is 
attached with every admitted process.   
Step 2: Define membership function distributions representing 
the linguistic concept. 
Step 3: Set-up a fuzzy rule base on the basis of the number of 
categories defined for each attribute in Step 1. If l, m, n denote 
the number of categories  defined for time of arrival, size of 
burst, priority respectively then the fuzzy rule base will have 
( l m n× × ) rules.  
Step 4: Use standard fuzzy union to aggregate the membership 
functions of three attributes attached with each process in 
accordance with the rule base. This produces a single fuzzy set 
combining the three attributes of the process. 
Step 5: Use centroid method to defuzzify the single fuzzy set 
obtained in Step 4. This gives a crisp output value for each 
process. 
Step 6: Rank the processes in ascending order of output values. 
The ranks serve as the order of execution of the processes. Go 
to Step 7 for ranking the processes having equal output values. 
Step 7: Processes having same output values shall have same 
rank. To order the processes having same rank, any of the 
following procedure may be adopted as per the suitability of 
requirement: 
(a) Order the same rank processes in the order of their time of 
arrival. This scheduling algorithm is called Fuzzy Better Job 
First (Arrival), in short FBJF (A). 
(b) Order the same rank processes in the order of their CPU 
burst size. This scheduling algorithm is called Fuzzy Better 
Job First (Burst), in short FBJF (B). 
(c) Order the same rank processes in the order of their priorities. 
This scheduling algorithm is called Fuzzy Better Job First 
(Priority), in short FBJF(P).  
To understand FBJF algorithm, we observe its implementation 
through the following example of fifteen processes. Processes 
with randomly drawn time of arrival, size of CPU bursts and 
assigned priorities are presented in Table 1.   
  

Table 1: Processes with attribute values 
 

Let us define the CPU-bursts of all processes into following 
linguistic categories: 
                 Short burst :     0 3ix≤ ≤ ; 

                 Medium burst: 4 6ix≤ ≤  

                 Long burst:      7 10ix≤ ≤ . 
The time of arrivals of all processes are defined into following 
linguistic categories:  
                 Early arrival :             0 5ix≤ ≤ ; 

                 Intermediate arrival:    6 10ix≤ ≤ ; 

                  Late arrival:              11 15ix≤ ≤ . 
The priorities of all processes are defined as following: 
                 High priority :     1 2ix≤ ≤ ; 

                 Low priority:       3 5ix≤ ≤ . 
 Fuzzy sets for Arrival time, Burst size and Priority are defined 
by following trapezoidal membership functions: 
 

 

 

 
Fig. 1: Membership functions for three attributes 

 
It may be pointed out here that to ignore the effect of any 
attribute, we must define the membership function 
corresponding to that attribute to be zero for the entire range.   
In compliance to step 3, we set-up a fuzzy rule base, that 
consists of following 18 ( 3 3 2× × ) rules of fuzzy logic. 
 
IF arrival is early, CPU burst is short and priority is high 
THEN output is 1O . 
IF arrival is early, CPU burst is short and priority is low THEN 
output is 2O .  
IF arrival is early, CPU burst is medium and priority is high 
THEN output is 3O .  
IF arrival is early, CPU burst is medium and priority is low 
THEN output is 4O . 
IF arrival is early, CPU burst is long and priority is high THEN 
output is 5O . 

P- ID CPU Burst Arrival Time Priority 
1 1.48 0.19 2 
2 5.16 1.12 5 
3 9.71 1.84 2 
4 2.28 3.28 3 
5 7.11 3.45 4 
6 1.10 4.45 5 
7 0.41 5.64 1 
8 3.74 6.49 3 
9 2.07 7.62 2 
10 1.78 9.18 4 
11 2.15 10.02 4 
12 0.81 11.65 3 
13 4.24 12.50 2 
14 9.84 13.17 4 
15 8.78 14.45 1 

Low Priority 

1 3 5 

High Priority  

Early 
Arrival 

Intermediate 
Arrival 

Late 
Arrival 

0 2 4 8 12 15 

Short Burst Medium Burst Long Burst 

0 1 4 5 8 10 

http://www.ijcaonline.org/�


International Journal of Computer Applications (0975 – 8887) 
Volume 33– No.9, November 2011 

 

15 
 

IF arrival is early, CPU burst is long and priority is low THEN 
output is 6O .  
IF arrival is intermediate, CPU burst is short and priority is 
high THEN output is 7O . 
IF arrival is intermediate, CPU burst is short and priority is low 
THEN output is 8O .  
IF arrival is intermediate, CPU burst is medium and priority is 
high THEN output is 9O . 
IF arrival is intermediate, CPU burst is medium and priority is 
low THEN output is 10O . 
IF arrival is intermediate, CPU burst is long and priority is 
high  THEN output is 11O . 
IF arrival is intermediate, CPU burst is long and priority is low 
THEN output is 12O . 
IF arrival is late, CPU burst is short and priority is high THEN 
output is 13O . 
IF arrival is late, CPU burst is short and priority is low THEN 
output is 14O . 
IF arrival is late, CPU burst is medium and priority is high  
THEN output is 15O . 
IF arrival is late, CPU burst is medium and priority is low  
THEN output is 16O  . 
IF arrival is late, CPU burst is long and priority is high  THEN 
output is 17O  . 
IF arrival is late, CPU burst is long and priority is low THEN 
output is 18O  . 

  As explained in steps 4 and 5, the output values 1 18O toO  
are obtained by defuzzyfying the single combined fuzzy set by 
centroid method. In this method the centroid of the single fuzzy 
set gives the output value. We present in Fig. 2, the output 
values 1 18O toO  determined by the centroid of the new 
membership function obtained using MATLAB. 
 
      EA, SB, HP            EA, SB, LP       EA, MB, HP 

0 5 10 15 20 25 30

0

0.5

1

 centroid

0 5 10 15 20 25 30

0

0.5

1

 centroid

0 5 10 15 20 25 30

0

0.5

1

 centroid

                   
 
       EA, MB, LP           EA, LB, HP            EA, LB, LP 
 

0 5 10 15 20 25 30

0

0.5

1

 centroid

0 5 10 15 20 25 30

0

0.5

1

 centroid

0 5 10 15 20 25 30

0

0.5

1

 centroid

    
 
 
 
 
 

     IA, SB, HP               IA, SB, LP             IA, MB, HP         

0 5 10 15 20 25 30

0

0.5

1

 centroid

0 5 10 15 20 25 30

0

0.5

1

 centroid

0 5 10 15 20 25 30

0

0.5

1

 centroid

 
         IA, MB, LP          IA, LB, HP           IA, LB, LP                  

0 5 10 15 20 25 30

0

0.5

1

 centroid

0 5 10 15 20 25 30

0

0.5

1

 centroid

0 5 10 15 20 25 30

0

0.5

1

 centroid

   
         LA, SB, HP          LA, SB, LP           LA, MB, HP 

0 5 10 15 20 25 30

0

0.5

1

 centroid

0 5 10 15 20 25 30

0

0.5

1

 centroid

0 5 10 15 20 25 30

0

0.5

1

 centroid

 
       LA, MB, LP         LA,LB, HP              LA, LB, LP 

0 5 10 15 20 25 30

0

0.5

1

 centroid

0 5 10 15 20 25 30

0

0.5

1

 centroid

0 5 10 15 20 25 30

0

0.5

1

 centroid

 
Fig 2: Output values by centroid method 

          
  Following Step 6, output values are used to rank the processes 
and the same rank cases are handled as suggested in Step 7. 
Table 2 lists the output value for each process and the order of 
execution of the processes according to all variants of FBJF, 
that is, FBJF(A), FBJF(B) and FBJF(P). 
 

Table 2: Output values and Ranks 
 

P-ID Output Values FBJF(A)                 FBJF(B) FBJF(P
) 

1 6.220 1 1 1 
2 15.830 8 8 8 
3 18.880 14 14 14 
4 15.440 4 5 4 
5 15.835 9 9 9 
6 15.440 5 4 5 
7 9.909 2 2 2 
8 18.860 12 12 12 
9 9.909 3 3 3 
10 15.607 7 7 7 
11 16.008 10 11 11 
12 16.008 11 10 10 
13 18.870 13 13 13 
14 20.920 15 15 15 
15 15.526 6 6 6 

 
Average Waiting Time (AWT) under different scheduling 
policies is computed for this example, using the data given in 
Table 1. It can be observed from the following table that the 
performances of all variants of FBJF are better than both, the 
FCFS and Priority scheduling and are tolerably comparable to 
SJF. 

http://www.ijcaonline.org/�


International Journal of Computer Applications (0975 – 8887) 
Volume 33– No.9, November 2011 

 

16 
 

Table 3: Average waiting time under different policies 
 

Policy FCFS SJF Priority FBJ 
(A) 

FBJF 
(B) 

FBJF 
(P) 

AWT 26.04 15.2
2 

26.74 20.16 19.99 20.07 

                                                                          
4. RESULTS AND DISCUSSIONS 
We worked on several randomly generated data sets to observe 
the performance of FBJF scheduling algorithm. Results 
presented in this paper correspond to three data-sets of 50 
processes each. Different ranges of arrival-time, burst-size and 
numerical priorities have been considered. We have defined 
three linguistic categories for each attribute: Burst (Short, 
Medium, Long), Arrival time (Early, Intermediate, Late), 
Priority (High, Normal, Low). Same data-sets were used to 
evaluate the average waiting time for different scheduling 
policies, in order to compare the performance of the proposed 
scheduling algorithm against them. Values for average waiting 
time computed according to five different scheduling policies 
on three data-sets are presented through bar graph in Fig. 3, 4 
and 5 below. It can be observed that the performance of each 
variant of the proposed algorithm on average waiting time is 
significantly better than FCFS, Priority scheduling and Round 
Robin (with quantum 5) policies and is tolerably comparable to 
SJF. However all variants of FBJF are competitive within 
themselves.  
 
                                      Fig.  3: Results of data-set 1 

 

       
Fig.  4: Results of data-set 2 

 
 

 
Fig.  5: Results of data-set 3 

5. CONCLUSIONS 
Fuzzy Better Job First scheduling algorithm proposed in this 
paper uses fuzzy set theoretic approach to combine three 
attributes (order of arrival, size of CPU burst and priority) 
associated with an admitted process, to help the scheduler to 
select the most worthy job to be processed next. Fuzzy ranking 
method has been applied to order the processes in the ready 
queue after integrating all the three factors. The philosophy of 
FBJF policy permits it to enjoy advantages of all included 
attributes to some extent. Despite taking the combined effect of 
three attributes into consideration, this policy is capable of 
providing an additional weightage to any particular attribute 
through its variants. Our algorithm can be used to function as 
purely SJF by choosing fuzzy sets corresponding to Arrival and 
Priority  having membership functions to be zero for the entire 
range. Likewise FCFS and pure Priority scheduling can be 
performed through this algorithm. Further from the comparison 
of results of FBJF with other scheduling algorithms on average 
waiting time recorded in Section IV, it is evident that  except for 
SJF (which is more a theoretical approach), its performance is  
better than other practical scheduling methods, such as FCFS, 
Priority and Round robin scheduling. Moreover, the rule base in 
FBJF operates on linguistic categories instead of individual data 
of the processes, therefore our algorithm will perform more 
efficiently than Al-Husainy[4] for the system having large 
number of processes.   

6. REFERENCES 
[1] D. Pandey, Vandana and M.K. Sharma, “CPU Scheduling: 

FCFS with Shorter Processes First”, MR International 
Journal of Engineering and Technology, 1 (2), 2008, pp 
11-17.   

[2]   H. M. Deital,  “Operating Systems”, Pearson, 2006. 
[3] William Stallings, “Operating Systems- Internals and 

Design Principles”, Pearson, 2006. 
[4] A.F. Al-Husainy Mohammed, “Best-Job first CPU 

Scheduling Algorithm”, Information Technology Journal 
6(2), 2007, pp 288-293. 

[5] D. Pandey and  Vandana  "Weighted Approach To Better 
Job First Scheduling",  Journal of International Academy 
of Physical Sciences, 14(1), pp 101-112, 2010. 

[6]  Abdurazzag Ali Aburas, Vladimir Miho ,“Fuzzy Logic 
Based Algorithm for Uniprocessor Scheduling",  
Proceedings of the International Conference on Computer 
and Communication Engineering, Kuala Lumpur, 
Malaysia, pp 499-504,  May 13-15, 2008. 

[7] Shantha J. Kadhim and Kasim Al-Aubidy “Design and 
Evaluation of a  Fuzzy-Based CPU Scheduling 
Algorithm”, CCIS 70, pp 45-52, 2010. 

 

http://www.ijcaonline.org/�

	ABSTRACT
	Time of arrival, size of CPU burst and priority are three major factors that are usually attached with a process which is submitted for execution. Several scheduling policies exist which use one or the other of these factors to place the submitted pr...
	General Terms
	Arrival time, CPU burst, Priority, CPU Scheduling algorithm.
	Keywords
	Ready queue, Process, Average waiting time(AWT), HRRN, Membership function, Fuzzification, Defuzzification.
	1.  INTRODUCTION
	It is well known that three major considerations are generally attached with a process when it is submitted to a scheduling system for the purpose of execution. These are its time of arrival, size of its CPU burst and the priority assigned with the pr...
	We worked on several randomly generated data sets to observe the performance of FBJF scheduling algorithm. Results presented in this paper correspond to three data-sets of 50 processes each. Different ranges of arrival-time, burst-size and numerical p...
	Fig.  3: Results of data-set 1
	Fig.  4: Results of data-set 2

