
International Journal of Computer Applications (0975 – 8887)
Volume 33– No.8, November 2011

12

Automated Test Case Prioritization using RGrasp
M.Nalini Sri

Assistant Professor, Department of Electronics and
Computer Engineering

K. L. University, Vijayawada, India

 Lakshmi.A
Student, Department of Electronics and Computer

Engineering
K. L. University, Vijayawada, India

ABSTRACT
Several alterations in the software design would sometimes result
in the failure of the system which has been operating effectively,
meeting all the specifications at that point in time. In order to
recognize the unpredictability in the performance of the system,
testing is carried out. Regression testing involves validating the
modified software and detects whether new faults have been
introduced into the test code which has been previously tested. It is
very inefficient to perform the re-execution of each test case as it is
very time consuming. So, test case prioritization has been
introduced. Test case prioritization involves systematizing of test
cases in an order, based on some objective such as block coverage,
fault detection rate, thus enhancing the performance of the
regression testing. In this paper, we have proposed a new test case
prioritization metaheuristic termed RGRASP, for performing
automatic test case prioritization, along with various search based
algorithms for regression test case prioritization .The aim of this
paper is to provide an insight in performing prioritization using
numerous techniques.

Keywords
Regression testing, Test case prioritization, Greedy algorithm,
Additional Greedy algorithm, GRASP, RGRASP

1. INTRODUCTION
Whenever a new model has been added as a part of integration or
the system is modified, the software changes. Due to this
modification, new dataflow paths are established, new input/output
may occur and new control logic is invoked. These changes may
cause problems with the functions that have previously worked
flawlessly. Moreover, the effect that these changes would bring is
even unpredictable. For this reason, regression test is performed in
order to uncover the errors or the regressions that have arisen due
to the adjustment of the system [1].

There are two ways of conducting regression testing. Firstly,
executing each and every test case, so that the entire system is
tested to observe or measure its performance. But, there may not
be adequate resources, required for the whole system testing and
additionally, it results in the consumption of time. So, the second
method has been implemented. It includes scheduling the test cases
in an execution order according to some criterion, so that the most
favorable tests are executed first which would result in escalating
the performance of regression testing. Such a practice is known as
regression test case prioritization. The main purpose of this
prioritization is to increase the likelihood that if the test cases are
used for regression testing in the order, they will more closely meet
some objective than they would if they were executed in some
other order.

 In this paper, four search techniques are presented, which includes
Greedy algorithm, Additional Greedy algorithm, Genetic
algorithm, Simulated Annealing together with a metaheuristic
technique called GRASP (Greedy Randomized Adaptive Search
Procedure). In addition to these, we have projected an innovative
method called RGRASP (Reactive Greedy Randomized Adaptive
Search Procedure) for carrying out automatic test case
prioritization.

The rest of the paper is organized as follows. Section 2 describes
about the test case prioritization. Various search based algorithms
are depicted in Section 3. In Section 4, the GRASP technique and
RGRASP method along with its associated algorithms illustrating
its working are demonstrated. Section 5 gives conclusion to the
paper.

2. TEST CASE PRIORITIZATION
Test case prioritization is a technique in which each test case is
assigned a priority. Priority is allocated according to some basic
criterion and test cases with highest priority are scheduled first.
There may be many criterions or the objectives, based on which
the test cases are scheduled. Some of the measures on which test
case prioritization technique focuses are the coverage measures or
the so called ‘coverage objectives’. As pointed out by C. L. B.
Maria et al.[2], Firstly, APBC (Average Percentage of Block
Coverage), which measures the rate at which a particular test suite
covers the blocks of test code. Secondly, APSC (Average
Percentage of Statement Coverage), which assess the rate at which
a prioritized test suite would cover the statements in the code to be
tested. Thirdly, APDC (Average Percentage of Decision
Coverage), which evaluates the rate at which a prioritized test suite
covers the decision statements in the code for which the testing is
to be performed.

Besides, these measures the other objectives that the test case
prioritization can address includes: the rate at which risk high
faults can be detected, the rate at which the reliability of the
system, under test, can be detected and improved, rate of cost per
coverage of code components, rate of cost per coverage of features
listed in a required specification and many more such effects.

Test case prioritization technique can be implemented both
manually as well as automatically. Previously, Greedy algorithm
has been used in scheduling the test cases so as to obtain an
optimal ordering. But this algorithm resulted in providing the only
the local optimal solution but may not provide the optimal test case
ordering as stated by Rothermal [3] and Li et al.[4]. As such
various other metaheuristic search techniques are involved in
finding the optimal or near optimal solutions to the optimization
problems.

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.8, November 2011

13

Metaheuristic search techniques [5], are high-level frameworks
that utilize the automated discovery of heuristics in order to find
solutions to combinatorial problems at a reasonable computational
cost. In the context of software engineering, a new research field
called SBSE(Search -based Software Engineering) [2], has
been emerged by the application of the metaheuristics, to well
known complex software engineering problems. In this field, the
software engineering problems are modeled as optimization
problems, by defining an objective function or set of constraints
and the solutions to such problems are found by the application of
the search based techniques.

3. SEARCH – BASED PRIORITIZATION
ALGORITHMS

This section signifies some of the search based test case
prioritization techniques which are recurrently used in dealing with
the test case prioritization problems. Let us have a brief description
of working of each algorithm.

3.1 Greedy Algorithm
Greedy Algorithm is an accomplishment of the “next-best” search
philosophy. It is based on the principle that the element that is, the
test case with the maximum weight or the highest percentage of
coverage is considered first and is added to the initially empty
solution. Then, it is followed by the next test case with highest
weight, and the process goes on till a complete but a suboptimal
solution has been obtained.

Consider the example of statement coverage for a program
containing m statements and a test suite containing n test cases. For
the Greedy Algorithm, the statements covered by each test case
should be counted first, which can be accomplished in O(m n)
time; then, the test cases should be sorted according to the
coverage. In the second step, quicksort can be used, thereby
increasing the time complexity by O(n log n). Typically, m is
greater than n, in which case, the cost of this prioritization is O(m
n) as stated in [4].

For example, consider a problem, with four test cases. Test case A
covers ten statements, the maximum that can be covered by a
single test case among the four. Test case B, covers five
statements. Test cases C and D cover the same number of
statements but less than B, and so the Greedy Algorithm could
return either A B C D or A B D C depending upon the order in
which test cases are considered.

 Let APBC be the coverage criterion, and let the partial solution
contains three test cases that covers 1000 blocks of code. Suppose
consider there are two other test cases that could be to a solution.
The first solution covers 750 blocks of code, but out of these 400
have been already covered by the current solution. Then, this
solution covers 75% of the blocks, but the actual added coverage
of this test case is 35% of the coverage. The second test case
covers 500 blocks of code, but none of these blocks were covered
by the current solution .This means that this solution covers 50%
of the blocks. The Greedy algorithm would select the first test
case, because it has the greater percentage of block coverage
overall.

3.2 Additional Greedy Algorithm
The Additional Greedy Algorithm always adds a locally optimal
test case to a partial test suite. During each iteration, the algorithm

adds the test case which gives the maximum coverage gain to the
partial solution.

Again, consider statement coverage: The Additional Greedy
Algorithm requires coverage information to be updated for each
unselected test case following the choice of a test case. Given a
program containing m statements and a test suite containing n test
cases, selecting a test case and readjusting coverage information
has cost O(m ,n) and this selection and readjustment must be
performed O(n) times. Therefore, the cost of the Additional
Greedy Algorithm is O(m, n2) as highlighted in [4].

 Let us consider the same example from Section 3.1. Let a partial
solution contain three test cases that covers 1000 blocks of code.
There are remaining two test cases: the first covers 750 blocks of
code, out of these 400 have been already covered by the current
solution, the second covers 500 blocks of code, but none of these
blocks were covered by the current solution. Then, the first
solution covers 35% of the block coverage while the second test
case covers 50% blocks of code. The Additional Greedy Algorithm
would select the second test case, because that solution has greater
percentage of weight related to the current partial solution.

3.3 Genetic Algorithm
Genetic Algorithm represents a class of adaptive search techniques
which are mainly employed to solve optimization problems. It
includes an initial population which is a set of randomly generated
individuals. Each individual is represented by a sequence of
variables/parameters (called genes), known as the chromosome.
The procedure works, until a stopping criterion is met, as the new
populations are generated based on the previous population. The
generation of the new population is done through “genetic
operators” and the choice of selecting individuals of the current
solution that will generate the new population individuals. This
algorithm prioritizes the test cases based on the fitness value.

In the genetic algorithm proposed by Li et al. [4], the initial
population is fashioned by randomly choosing from the test case
pool. The fitness function was calculated as follows:

fitness (pos) = 2. (𝑝𝑝𝑝𝑝𝑝𝑝 −1)
(𝑛𝑛−1)

 (1)

where pos is position of the test case in the current test suite and n
is the population size.

The Crossover Algorithm (Recombination) is used to produce two
offspring o1 and o2 from two parents p1 and p2, following the
ordering chromosome crossover style adopted by Antoniol et al.
[3]:

• A random position k is selected in the chromosome.
• The first k elements of p1 become the first k elements of o1.
• The last n-k elements of o1 are the sequence of the n-k

elements which remain when the k elements selected from p1
are removed from p2.

• o2 is obtained similarly, composed of the first n-k elements of
p2 and the remaining elements of p1 (when the first n-k
elements of p2 are removed).

The mutation is generally performed by selecting the two test cases
and interchanging their positions in the test case sequence.

3.4 Simulated Annealing

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.8, November 2011

14

Simulated annealing is a generalization of a Monte Carlo method.
Its name comes from annealing in metallurgy, where a melt,
initially disordered at high temperature, is slowly cooled, with the
purpose of obtaining a more organized system (a local optimum
solution). The system approaches a frozen ground state with T = 0.
Each step of simulated annealing algorithm replaces the current
solution by a random solution in its neighborhood, based on a
probability that depends on the energies of the two solutions.

These are some of the search based algorithms which resulted in
solving the problems that are associated with the test case
prioritization.

4. TEST CASE PRIORITIZATION USING
RGRASP

This section suggests a innovative methodology for test case
prioritization using RGrasp metaheuristic. Prior to this approach,
Grasp algorithm has been explained, which would be employed in
the novel approach proposed later.

4.1 Grasp Algorithm
GRASP is an acronym for Greedy Randomized Adaptive Search
Procedure. This procedure is also termed as “multistart algorithm”,
as it is frequently, carried out in order to obtain the most favorable
solution [6]. GRASP is a top level general strategy, which various
other heuristics in search of the feasible solutions to the test case
prioritization problems in their domain. GRASP has two phases
namely, construction phase, and local search phase [7].

4.1.1 Construction Phase
In this phase, the feasible solution is iteratively constructed one
element at a time by application of a randomized greedy strategy.

This strategy holds a Restrict Candidate List (RCL) which
maintains all the conceivable test cases or the elements that are
about to be added in each iteration. These conceivable elements
signify the test cases that contribute with the best coverage value.
This RCL is regulated in length by the parameter α. If α = 0, then
there is only one optimal solution with highest coverage in the list
and it follows the perfect greedy algorithm. If α = 1, then there are
possible number of test cases, which are randomly picked up in
each iteration with respect to some greedy function. This function
measures the benefit of selecting each element.

This heuristic is adaptive, because the benefits associated with
every element are updated in each iteration of the construction
phase to reflect the changes brought on by the selection of the
previous element. The solution thus obtained at each iteration is
then stepped into the next phase termed local search phase.

4.1.2 Local Search Phase
In case of many deterministic methods, the solutions that are
generated by the construction phase are not guaranteed to be
locally optimal with respect to the simple neighborhood
definitions. So, it is always beneficial to apply the local search to
attempt to improve each constructed solution. Using the local
search procedure, the current solution is superseded with the local
optimum in the neighborhood solution set. After this course of
action, this local optimal solution is compared with that of the
optimal solution found in the previous iterations. Based on their
percentage of coverage values, these two solutions are exchanged
accordingly.

Evidently, the response of this algorithm intensively, depends on
the value of the parameter α. So, to facilitate the diminution of this
impact, the GRASP algorithm has been modified to RGRASP
metaheuristic, as emphasized in [8].

4.2 RGrasp Metaheuristic
RGrasp approach follows the Grasp algorithm, besides, updating
the values of the parameter α based on the former performance.
For this course of action, this approach, has initially, determined a
array of values for α. Moreover, each value of α is assigned a
probability, of being selected, 1/𝑛𝑛 where ‘n’ is the measure of the
set of α values. For each one of the i value of α, the probabilities pi
are evaluated recursively, based on the below equation as
mentioned in [6]

𝑝𝑝𝑖𝑖 = 𝑞𝑞𝑖𝑖
∑ 𝑞𝑞𝑞𝑞𝑛𝑛
𝑞𝑞=1

 (2)

with qi = S*/Ai , where S* is the incumbent solution and Ai is the
average value of all the solutions found with α=αi. Now, when a
particular value of α stimulates a better solution, then its respective
probability of being selected is improved in future. Alternatively, if
the solution proves to be bad, then the probability associated with
that specific α value is reduced in the further iterations.

4.3 RGrasp Algorithm
The RGrasp algorithm is shown in the pseudo-code illustrated in
the Figure 1 below, as pointed in [7], [8]. The first step involves
assigning the probabilities of selecting each value of α. Initially, all
the probabilities are assigned to 1/n where n is the quantity of set
of values of α represented by αSet. Then the construction and the
local search phases of the Grasp are executed iteratively, until the
stopping criterion is attained.

Figure 1: RGrasp for Test Case Prioritization

After performing the constructive and local phases, the best
solution is updated when a new solution is identified as the better
solution in each iteration.

Now, let’s consider how the probabilities of selecting are shifted
for each value of α. It is illustrated in Figure 2 as shown below:

Figure 2: Selection of α

(1) Initialize probabilities associated with α as 1/n
(2) For k=1 to max_iterations do
(3) α← select_α(αSet);
(4) solution←run_constructionphase(α);
(5) solution←run_localsearchphase(solution);
(6) update_solution(solution, best_solution);
(7) end;
(8) return opimum_solution;

procedure select_α(αSet)

(1) α ← α with probability
 𝑝𝑝𝑖𝑖 = 𝑞𝑞𝑖𝑖

∑ 𝑞𝑞𝑞𝑞𝑛𝑛
𝑞𝑞=1

 ;

(2) return α;

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.8, November 2011

15

As, described in the local search phase of GRASP Algorithm,
probabilities of pi are reevaluated at each iteration by using (1).
After selecting the value for α, we need to perform the execution of
the construction phase of Grasp.

It is explained in the following Figure 3, [8]. Initially an empty
solution is considered. Now, the candidate set C is initialized with
the test cases from various test suites with respect to the greedy
function.

As, such the coverage of all the test cases in the candidate set are
evaluated. Now, for each iteration, one test case which increases
the coverage of the current solution is selected by the greedy
evaluation function. This element is randomly selected from the
Restricted Candidate List), which has the elements with best
values. After the element is incorporated to the partial solution, the
RCL is updated. The increment of coverage is then reevaluated.

Figure 3: Algorithm for Constructive Phase of RGrasp

The αSet is updated after the solution is found, in order to change
the selection probabilities of the αSet elements. This update is
exemplified in Figure 4. Besides this, the pseudo-code that is
associated with the local search phase of the RGRASP
metaheuristic is demonstrated in Figure 5.

Figure 4: Procedure for Updating α

Figure 5: Algorithm for Local Search Phase of RGrasp

Let s be the test suite generated by the construction phase. Now,
the first test case on the test suite is exchanged with the other test
cases, one at a time, such that n − 1 new test suites are generated,
exchanging the first test case with the i th one, where i varies from
2 to n, and n is the length of the original test suite. The original test
suite is then compared with all generated test suites. If one of those
test suites is having better coverage than the original one, it
replaces the original solution. Thus, solving the test case
prioritization problems automatically, by generating the best
optimal solution on the basis of some criterion is made possible
through RGRASP.

5. CONCLUSION
As the system’s parameters are changed, in order to identify its
performance, we generally perform regression testing. In
regression testing, we need to carry out the re-execution of every
test case. But re-execution of each and every test case is a time
consuming process and also requires certain resources which may
not be available at that particular instant of time. So, in order to
increase the effectiveness of regression testing, test case
prioritization is made. This test case prioritization mechanism
involves prioritizing the test cases, so that the most efficient or the
test cases with the highest priority are executed first in determining
the performance of the system due to the new environment. This
prioritization can be performed both manually and automatically.
In this paper we proposed a unique approach called RGrasp
Algorithm for automated test case prioritization.

6. REFERENCES
[1] Roger S. Pressman Software Engineering a practitioner’s

approach 6/e, 2005.

[2] C.L.B.Maia et al, “Automated test case prioritization with
reactive grasp”, Advances in Software Engineering, volume
2010, Hindawi Publishing Corporation, article id 428521,
dol:10.1155/2010/428521.

[3] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
“Prioritizing test cases for regression testing,” IEEE
Transactions on Software Engineering, vol. 27, no. 10, pp.
929–948, 2001.

[4] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for
regression test case prioritization,” IEEE Transactions on
Software Engineering, vol. 33, no. 4, pp. 225–237, 2007.

[5] Modern Heuristic Techniques for Combinatorial Problems,
C.R. Reeves, ed. John Wiley & Sons, 1993.

[6] M. Resende and C. Ribeiro, “Greedy randomized adaptative
search procedures,” in Handbook of Metaheuristics, F. Glover

 𝑝𝑝𝑖𝑖 =
𝑞𝑞𝑖𝑖

∑ 𝑞𝑞𝑞𝑞𝑚𝑚
𝑞𝑞=1

procedure update_ αSet (solution)

 update probabilities of all the values of α in αSet
using the equation

while s is not locally optimum do

(1) find s´ ε neighborhood (s), with f(s´) < f(s);
(2) s← s´;
(3) end;
(4) return(s as the optimal solution the test case

prioritization problem);

(1)solution←{};
(2) initialize the candidate set C with random test cases
from the pool of test cases;
(3) calculate the coverage c´(e) for all e ε C;
(4) while C≠{} do (5)
(5) cmin = min{c´(e)| e ε C};
(6) cmax = max{c´(e)| e ε C};
(7) RCL={e ε C | c´(e) ≤ cmin + α (cmax – cmin)};
(8) s← test case from RCL at random;
(9) solution← solution U {s};
(10) update C;
(11) recalculate c´(e) for all e ε C;
(12) end;
(13) update_αSet(solution);
(14) return solution;

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.8, November 2011

16

and G. Kochenberger, Eds., pp. 219–249, Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2001.

[7] T.A.Feo, M.G.C. Resende, “Greedy randomized adaptive
search procedures” in Journal of Global Optimization, 6, 109-
134 (1995).

[8] P.R.Srivastav, “Test case prioritization” in Journal of
Theoretical and Applied Information technology.

[9] G. Antoniol, M. D. Penta, and M. Harman, “Search-based
techniques applied to optimization of project planning for a

massive maintenance project,” in Proceedings of the IEEE
International Conference on Software Maintenance (ICSM
’05), pp. 240–252, Budapest, Hungary, September 2005.

[10] G. Rothermel, R. Untch, C. Chu, and M.J. Harrold, “Test
Case Prioritization: An Empirical Study,” Proc. Int’l Conf.
Software Maintenance, pp. 179-188, Sept. 1999.

[11] SEBASE, Software Engineering By Automated Search,
September 2009, http://www.sebase.org/applications.

http://www.ijcaonline.org/�

	INTRODUCTION
	TEST CASE PRIORITIZATION
	SEARCH – BASED PRIORITIZATION ALGORITHMS
	Greedy Algorithm
	Additional Greedy Algorithm
	Simulated Annealing
	Grasp Algorithm
	Construction Phase
	Local Search Phase

	RGrasp Metaheuristic
	RGrasp Algorithm

	CONCLUSION
	REFERENCES

