
International Journal of Computer Applications (0975 – 8887)
Volume 33- No.10, November 2011

1

An Intuitive Signal Processing Approach for

Temperature Fluctuations in Fuel Subassemblies

Paawan Sharma
RTSD, EIG, IGCAR
Kalpakkam-603102

INDIA

N. Murali
RTSD, EIG, IGCAR
Kalpakkam-603102

INDIA

P Mohanakrishnan
RPD, REG, IGCAR
Kalpakkam-603102

INDIA

P Swaminathan
EIG (Retd.), IGCAR
Kalpakkam-603102

INDIA

ABSTRACT

This paper describes the approach towards signal processing
characteristics for temperature fluctuations from a fast

thermocouple located above fuel subassemblies of fast
reactor. Simulated temperature profile denoting various power
levels was fed to the FPGA and the RMS value at each power
level was calculated in real time. The technique mentioned in
the paper helps in the analysis of reactor power and also
fluctuation in it due to subassembly blockage. Altera Cyclone
III FPGA was used as target device for Terasic DE0 board.

Keywords

Temperature fluctuations, root mean square, subassembly.
Fast reactor.

1. INTRODUCTION
Temperature fluctuations are generated in a subassembly due
to power increase or a blockage. These fluctuations are very
important for studying the safety aspects. In case of power
increase, fluctuations are generated because of improper
mixing of comparatively cold and hot fluid flow around the
subassembly, whereas in case of blockage, fluctuations are
generated due to less coolant flow through subassembly. In

both the cases, there is a gradual increase in thermal power.
Our main intention here is to correlate the increase in thermal
power to its RMS value. From safety point of view, blockage
detection is very important [1] as it can lead to more serious
faults because of high power density of the core [2]. K-type
bare thermocouple is used for measuring temperature [3]. The

digitized data is fed as input to FPGA development board.

2. THEORY FOR FLUCTUATION

GENERATION IN A SUBASSEMBLY
Figure 1 & 2 shows the phenomenon behind the fluctuation
generation under normal condition when power is increased
slowly as well as in blockage respectively. The latter is
different in the sense that the amplitude level of fluctuations is
more, hence leading to a greater RMS value. The presence of
Vortex Street [4], which are repeating pattern of swirling
vortices, is responsible for fluctuation generation.

So far, many works are reported where the use of temperature

fluctuation based parameters are being proposed. One such
study by Tsunoda [5] supports the use of fluctuations. Also,
Greef [6] calculated the parameter values for different
thermodynamic conditions.

Fig 1: Fluctuations due to thermal power increase

International Journal of Computer Applications (0975 – 8887)
Volume 33- No.10, November 2011

2

Fig 2: Fluctuations due to blockage

3. SIGNAL PROCESSING SCHEME
Figure 3 shows the schematic for the signal processing of such
fluctuations. It consists of a Band pass filter and RMS
calculator. The specifications for band pass filter are
mentioned in TABLE I.

Fig 3: Processing Sequence

A band pass filter is required in order to remove noise pickup
during data transmission as well as the noise introduced at the
reactor inlet. The data sequence is generated artificially which
resembles to that obtained from a fast k-type thermocouple
whose response time is 150ms. A higher response time
thermocouple is not useful for such a processing as it requires

a large amount of time to process the data.

Table 1. BPF Specifications

S. NO. Band pass filter Specifications

1
fL Lower cutoff frequency

0.01Hz

2
fH Upper cutoff frequency

24 Hz

3 Sampling Frequency Fs 100 Hz

The digital filter design is accomplished by using fir_design
script written in SCILAB, which calculates the filter
coefficients. The same script can be written for MATLAB
also.

4. TOWARDS FPGA

IMPLEMENTATION
Implementing signal processing scheme on FPGA showed an
increase in overall magnitude performance [7]. Also, its
reconfigurable capability is an added advantage. The signal
processing scheme shown in fig. 3 was implemented on
Altera® Cyclone III family FPGA development board DE0

[8], which is equipped with EP3C16F484C6 FPGA device,
comprising of 15,408 LEs(Logic Elements). The board
provides 346 user I/O pins. Fig. 4 shows the block diagram
for DE0 board.

 Fig 4: DE0 Block Diagram

International Journal of Computer Applications (0975 – 8887)
Volume 33- No.10, November 2011

3

4.1 Calculation of filter Coefficients
Equation (1) which represents the frequency response of ideal
band pass filter is used for calculating the coefficients for a
rectangular window. Alternatively, various
MATLAB/SCILAB commands like fir1, fir2 etc. can also be
used for coefficient calculation. Fig. 5 shows the frequency
response of the filter.

shows the relationship between precision and number of

factional bits.

Fig 5: Filter Response

The rectangular window gives the minimum integrated

squared error from the ideal response [9]. The root mean

square (RMS) block denotes the statistical measure of the

magnitude of varying filtered temperature fluctuations, and is

mathematically represented as,

n

xxx
x n

rms

22

2

2

1

where n denotes the bin size taken for every individual

calculation. For obvious reasons, n =2 for calculating running
RMS, where the time separation between two successive
values of temperature is equal to the sampling period of the
ADC block.

)(

)(sin{

)(

)}(sin{
][12

Mn

Mn

Mn

Mn
nh cc

d

; Mn

12 cc

; Mn ------------------------ (1)

where, 12 , cc = cutoff frequencies;

M = filter order/2;

4.2 Calculation of number of precision bits

A script cal_sfix_bits was used to calculate the bit strength
needed for specific magnitude and precision. Figure 6

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12

-log(precision)

N
o

.
o

f
fr

a
c
ti

o
n

a
l
b

it
s

 Fig 6: Precision vs No. of fractional bits

Table II represents a comparison of coefficient values for
different fractional bit strengths. It may be required to
truncate the output resulted from multiplication, so as to
preserve the FPGA resources. This is performed by keeping m

LSBs of integer and n MSBs of fractional portion from 2m
and 2n bits of the output. For the sake of simplicity, however,
the bit pattern is used unaltered.

Table 2. Coefficient Conparison

Coefficient value

(Calculated)

Actual value

7 bit 14 bit

0.048455588950058
0.046875 0.048401

-0.001999671029421
0.0078125 -0.0020142

0.300730704615709
0.29688 0.30072

-0.064365833819427
-0.070313 -0.064392

0.017947456292925
0.015625 0.017944

0.315681787493831
0.3125 0.31567

International Journal of Computer Applications (0975 – 8887)
Volume 33- No.10, November 2011

4

Coefficient value

(Calculated)

Actual value

7 bit 14 bit

0.478000000000000
0.47656 0.47797

0.106223795893264
0.10156 0.1062

0.021789901874715
0.015625 0.02179

Fig. 7 shows block level model. The input and output are the
boundary ports used for giving stimulus and checking the
output on a scope. The input is defined by 16 bits {5:11} i.e.
5 integer and 11 fractional bits. Coefficient values are also

represented by 16 bits {2:14} Fig. 8 shows the details of the
BPF FIR filter subsystem, where the filter is implemented in
direct form.

Since any FIR filter can be implemented using direct form,
non-recursive structure, it is always possible to implement a
FIR filter non-recursively. The main advantage of direct form
is that a constant load is observed by each delayed input
signal, buffers are not required [10]. Gain blocks represent the
corresponding filter coefficient values. Fig. 9 shows RMS
implementation.

5. SIMULATION RESULTS
Software simulation results were obtained by feeding noise

added sine wave as a input to FPGA. Fig. 10 shows the input

and output for sine wave of different frequencies viz. 1,5,15 &

30 Hz added with random noise having mean value as 232

and 0.1 as variance. It is to be noted that in a certain

frequency range, the value of processed signal parameter

(fluctuations) is proportional to the frequency of the

fluctuations.

 Fig 7: Block level model

 Fig 8: A section of direct form FIR filter

Gain blocks represent the corresponding filter coefficient
values.

International Journal of Computer Applications (0975 – 8887)
Volume 33- No.10, November 2011

5

 Fig 9: RMS block with bin size=2

Fig 10: Simulation Results

6. CONCLUSION
A signal processing scheme was modeled and simulated for a

specific spectrum of signals added with noise, and the number

of fractional bits required for correct number representation

was estimated. It is to be noted that a statistical parameter can

be derived from the processed signal which would help in

recognition of calculative abnormalities in power. A study is

proposed in future for further investigation. The scripts can be

referred from the Appendix.

7. REFERENCES
[1] Gregory, C.V.; Lord, D.J., “Study of local blockages in

fast reactor sub-assemblies,” Journal of Brit. Nucl.
Energy Soc., v. 13, no. 3, pp. 251-260, 1974.

[2] Alan Edward Waltar, Albert Barnett Reynolds, “Fast
breeder reactors,” Pergamon Press, 1981.

[3] ASTM Committee on Temperature Measurement,
“Manual on the Use of thermocouples,” 4th Edition,
pp.46, 1993.

[4] Stavros Tavoularis, “Rod bundle vortex networks, gap
vortex streets and gap instability: A nomenclature and
some comments on available methodologies,” Nuclear
Engineering and Design 241, pp. 4612–4614, 2011.

[5] Tomio Tsunoda, “Application of temperature fluctuation
to Anomaly detection in Fuel Assemblies", Journal of
Nuclear Science and Technology 13(3), pp. 103-110,
1976.

[6] C.P. Greef, “Temperature fluctuations: an assesment of
their use in the detection of fast reactor coolant

blockages,” Nuclear Engineering & Design 52, pp. 35-
55, 1979.

[7] Gabriele D'Antona, Alessandro Ferrero, “Digital Signal
Processing for Measurement Systems: Theory and
Applications,” Springer Publication, pp.58, 2006.

[8] http://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&No=364

[9] Charles Chein, “Digital Radio Systems on a chip: a

systems approach,” Kluwer Academic Publications, pp.
372, 2001.

[10] Russell J. Petersen, L. Hutchings, “An assessment of the
suitability of FPGA-based systems for use in digital
signal processing”, Lecture Notes in Computer Science,
Volume 975/1995, 293-302. 1995.

International Journal of Computer Applications (0975 – 8887)
Volume 33- No.10, November 2011

6

APPENDIX- A : FIR FILTER DESIGN

function [coeff]=fir_design(N, ftype, fc, fs)

// Output variables initialisation (not found in input
variables)

coeff=[];

// Display mode

mode(0);

// Display warning for floating point exception

ieee(1);

// Returns filter coefficients for a rectangular window
function

// N = order of filter
// ftype = ''bp'', ''lp, ''hp'', ''bs''
// for ''bp'' & ''bs'' fc = [fc1 fc2]

// fc and fs - cutoff and sampling frequency in Hz
// Example - a = fir_design(12,''bp'',2000,10000)

//

M = mtlb_a(round(mtlb_double(N)/2),1);

ft = ftype;

// Calculation of normalized frequency

select ft

 case "lp" then

 fn = ((2*%pi)*mtlb_double(fc))/mtlb_double(fs);

 clear("n");

 for n = mtlb_imp(1,1,mtlb_double(N))

 if mtlb_logic(n,"~=",M) then

 h(1,n) =

matrix(sin(fn*mtlb_s(n,M))/(%pi*mtlb_s(n,M)),1,-

1);

 elseif mtlb_logic(n,"==",M) then

 h(1,n) = matrix(fn/%pi,1,-1);

 end;

 end;

 coeff = h;

 return;

 case "hp" then

 fn = ((2*%pi)*mtlb_double(fc))/mtlb_double(fs);

 clear("n");

 for n = mtlb_imp(1,1,mtlb_double(N))

 if mtlb_logic(n,"~=",M) then

 h(1,n) = matrix(mtlb_s(1,fn/%pi),1,-1);

 elseif mtlb_logic(n,"==",M) then

 h(1,n) = matrix(-

sin(fn*mtlb_s(n,M))/(%pi*mtlb_s(n,M)),1,-1);

 end;

 end;

 coeff = h;

 return;

 case "bp" then

 fn2 =

((2*%pi)*mtlb_double(mtlb_e(fc,2)))/mtlb_double(f

s);

 fn1 =

((2*%pi)*mtlb_double(mtlb_e(fc,1)))/mtlb_double(f

s);

 for n = mtlb_imp(1,1,mtlb_double(N))

 if mtlb_logic(n,"~=",M) then

 h(1,n) =

matrix(mtlb_s(sin(fn2*mtlb_s(n,M))/(%pi*mtlb_s(n,

M)),sin(fn1*mtlb_s(n,M))/(%pi*mtlb_s(n,M))),1,-1);

 elseif mtlb_logic(n,"==",M) then

 h(1,n) = matrix(mtlb_s(fn2,fn1)/%pi,1,-1);

 end;

 end;

 coeff = h;

 return;

 case "bs" then

 fn2 =

((2*%pi)*mtlb_double(mtlb_e(fc,2)))/mtlb_double(f

s);

 fn1 =

((2*%pi)*mtlb_double(mtlb_e(fc,1)))/mtlb_double(f

s);

 for n = mtlb_imp(1,1,mtlb_double(N))

 if mtlb_logic(n,"~=",M) then

 h(1,n) =

matrix(mtlb_s(sin(fn1*mtlb_s(n,M))/(%pi*mtlb_s(n,

M)),sin(fn2*mtlb_s(n,M))/(%pi*mtlb_s(n,M))),1,-1);

 elseif mtlb_logic(n,"==",M) then

 h(1,n) =

matrix(mtlb_s(1,mtlb_s(fn2,fn1)/%pi),1,-1);

 end;

 end;

 coeff = h;

 return;

end;

endfunction

*

APPENDIX- B : CALCULATION OF FRACTIONAL BITS

FOR FIXED POINT REPRESENTATION

*

function [m, n]=cal_sfix_bits(minimum, maximum,

res, signed)

// Output variables initialisation (not found in input
variables)

m=[];

n=[];

// Display mode

mode(0);

// Display warning for floating point exception

ieee(1);

// calculates the no. of integer and fractional bits
// for a required range = (minimum, maximum)

// and resolution

International Journal of Computer Applications (0975 – 8887)
Volume 33- No.10, November 2011

7

// Also supports signed/unsigned numbers

// NOTE : For calculating Real World Values

(RWVs)
// multiply the fixed point equivalent by 2^(-n)

// Example : [c d] = cal_sfix_bits(-1.222,

234.542,.0001,1)
s = [minimum,maximum];

t = abs(mtlb_double(s));

%v0 = t;u = max(%v0,firstnonsingleton(%v0));

if mtlb_logic(mtlb_double(signed),"==",0) then

 a =

floor(mtlb_a(log2(mtlb_double(maximum)),1));

 b = ceil(log2(1/mtlb_double(res)));

else

 a = mtlb_a(floor(log2(mtlb_a(u,2))),1);

 b = ceil(log2(1/mtlb_double(res)));

end;

m = a;

n = b;

endfunction

*

