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ABSTRACT 

This paper describes the approach towards signal processing 
characteristics for temperature fluctuations from a fast 

thermocouple located above fuel subassemblies of fast 
reactor. Simulated temperature profile denoting various power 
levels was fed to the FPGA and the RMS value at each power 
level was calculated in real time. The technique mentioned in 
the paper helps in the analysis of reactor power and also 
fluctuation in it due to subassembly blockage. Altera Cyclone 
III FPGA was used as target device for Terasic DE0 board.   
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1. INTRODUCTION 
Temperature fluctuations are generated in a subassembly due 
to power increase or a blockage. These fluctuations are very 
important for studying the safety aspects.  In case of power 
increase, fluctuations are generated because of improper 
mixing of comparatively cold and hot fluid flow around the 
subassembly, whereas in case of blockage, fluctuations are 
generated due to less coolant flow through subassembly. In 

both the cases, there is a gradual increase in thermal power. 
Our main intention here is to correlate the increase in thermal 
power to its RMS value. From safety point of view, blockage 
detection is very important [1] as it can lead to more serious 
faults because of high power density of the core [2]. K-type 
bare thermocouple is used for measuring temperature [3]. The 

digitized data is fed as input to FPGA development board.  

2. THEORY FOR FLUCTUATION 

GENERATION IN A SUBASSEMBLY 
Figure 1 & 2 shows the phenomenon behind the fluctuation 
generation under normal condition when power is increased 
slowly as well as in blockage respectively. The latter is 
different in the sense that the amplitude level of fluctuations is 
more, hence leading to a greater RMS value. The presence of 
Vortex Street [4], which are repeating pattern of swirling 
vortices, is responsible for fluctuation generation. 

So far, many works are reported where the use of temperature 

fluctuation based parameters are being proposed. One such 
study by Tsunoda [5] supports the use of fluctuations. Also, 
Greef [6] calculated the parameter values for different 
thermodynamic conditions. 

Fig 1: Fluctuations due to thermal power increase 
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Fig 2: Fluctuations due to blockage 

3. SIGNAL PROCESSING SCHEME 
Figure 3 shows the schematic for the signal processing of such 
fluctuations. It consists of a Band pass filter and RMS 
calculator. The specifications for band pass filter are 
mentioned in TABLE I.  

 

Fig 3: Processing Sequence 

A band pass filter is required in order to remove noise pickup 
during data transmission as well as the noise introduced at the 
reactor inlet. The data sequence is generated artificially which 
resembles to that obtained from a fast k-type thermocouple 
whose response time is 150ms. A higher response time 
thermocouple is not useful for such a processing as it requires 

a large amount of time to process the data. 

 

 

Table 1. BPF Specifications 

S. NO. Band pass filter Specifications 

1 
fL Lower cutoff frequency 

0.01Hz 

2 
fH Upper cutoff frequency 

24 Hz 

3 Sampling Frequency Fs 100 Hz 

 

The digital filter design is accomplished by using fir_design 
script written in SCILAB, which calculates the filter 
coefficients. The same script can be written for MATLAB 
also. 

4. TOWARDS FPGA 

IMPLEMENTATION 
Implementing signal processing scheme on FPGA showed an 
increase in overall magnitude performance [7]. Also, its 
reconfigurable capability is an added advantage. The signal 
processing scheme shown in fig. 3 was implemented on 
Altera® Cyclone III family FPGA development board DE0 

[8], which is equipped with EP3C16F484C6 FPGA device, 
comprising of 15,408 LEs(Logic Elements). The board 
provides 346 user I/O pins. Fig. 4 shows the block diagram 
for DE0 board. 

  Fig 4: DE0 Block Diagram 
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4.1 Calculation of filter Coefficients 
Equation (1) which represents the frequency response of ideal 
band pass filter is used for calculating the coefficients for a 
rectangular window. Alternatively, various 
MATLAB/SCILAB commands like fir1, fir2 etc. can also be 
used for coefficient calculation. Fig. 5 shows the frequency 
response of the filter. 

shows the relationship between precision and number of 

factional bits.  

               

Fig 5: Filter Response 

The rectangular window gives the minimum integrated 

squared error from the ideal response [9]. The root mean 

square (RMS) block denotes the statistical measure of the 

magnitude of varying filtered temperature fluctuations, and is 

mathematically represented as, 
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where n  denotes the bin size taken for every individual 

calculation. For obvious reasons, n =2 for calculating running 
RMS, where the time separation between two successive 
values of temperature is equal to the sampling period of the 
ADC block. 
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where, 12 , cc = cutoff frequencies; 

M = filter order/2; 

4.2 Calculation of number of precision bits 

A script cal_sfix_bits was used to calculate the bit strength 
needed for specific magnitude and precision. Figure 6  
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                Fig 6: Precision vs No. of fractional bits 

Table II represents a comparison of coefficient values for 
different fractional bit strengths.  It may be required to 
truncate the output resulted from multiplication, so as to 
preserve the FPGA resources. This is performed by keeping m 

LSBs of integer and n MSBs of fractional portion from 2m 
and 2n bits of the output. For the sake of simplicity, however, 
the bit pattern is used unaltered.  

Table 2. Coefficient Conparison 

Coefficient value 

(Calculated) 

Actual value 

7 bit                14 bit 

0.048455588950058 
0.046875 0.048401 

-0.001999671029421 
0.0078125 -0.0020142 

0.300730704615709 
0.29688 0.30072 

-0.064365833819427 
-0.070313 -0.064392 

0.017947456292925 
0.015625 0.017944 

0.315681787493831 
0.3125 0.31567 
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Coefficient value 

(Calculated) 

Actual value 

7 bit                14 bit 

0.478000000000000 
0.47656 0.47797 

0.106223795893264 
0.10156 0.1062 

0.021789901874715 
0.015625 0.02179 

 

Fig. 7 shows block level model. The input and output are the 
boundary ports used for giving stimulus and checking the 
output on a scope. The input is defined by 16 bits   {5:11} i.e. 
5 integer and 11 fractional bits. Coefficient values are also 

represented by 16 bits {2:14} Fig. 8 shows the details of the 
BPF FIR filter subsystem, where the filter is implemented in 
direct form. 

Since any FIR filter can be implemented using direct form, 
non-recursive structure, it is always possible to implement a 
FIR filter non-recursively. The main advantage of direct form 
is that a constant load is observed by each delayed input 
signal, buffers are not required [10]. Gain blocks represent the 
corresponding filter coefficient values. Fig. 9 shows RMS 
implementation. 

5. SIMULATION RESULTS 
Software simulation results were obtained by feeding noise 

added sine wave as a input to FPGA. Fig. 10 shows the input 

and output for sine wave of different frequencies viz. 1,5,15 & 

30 Hz added with random noise having mean value as 232 

and 0.1 as variance. It is to be noted that in a certain 

frequency range, the value of processed signal parameter 

(fluctuations) is proportional to the frequency of the 

fluctuations. 

 

 

 

 

 

 

 

                Fig 7: Block level model 

 

                Fig 8: A section of direct form FIR filter 

Gain blocks represent the corresponding filter coefficient 
values.  
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                Fig 9: RMS block with bin size=2 

 

Fig 10: Simulation Results 

6. CONCLUSION 
A signal processing scheme was modeled and simulated for a 

specific spectrum of signals added with noise, and the number 

of fractional bits required for correct number representation 

was estimated. It is to be noted that a statistical parameter can 

be derived from the processed signal which would help in 

recognition of calculative abnormalities in power. A study is 

proposed in future for further investigation. The scripts can be 

referred from the Appendix. 
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***************************************** 

APPENDIX- A : FIR FILTER DESIGN  

***************************************** 

function [coeff]=fir_design(N, ftype, fc, fs) 

 

// Output variables initialisation (not found in input 
variables) 

coeff=[]; 

// Display mode 

mode(0); 

// Display warning for floating point exception 

ieee(1); 

// Returns filter coefficients for a rectangular window 
function 

// N = order of filter 
// ftype = ''bp'', ''lp, ''hp'', ''bs'' 
// for ''bp'' & ''bs'' fc = [fc1 fc2] 

// fc and fs - cutoff and sampling frequency in Hz 
// Example - a = fir_design(12,''bp'',2000,10000) 

//        

M = mtlb_a(round(mtlb_double(N)/2),1); 

ft = ftype; 

// Calculation of normalized frequency 

select ft 

  case "lp" then 

    fn = ((2*%pi)*mtlb_double(fc))/mtlb_double(fs); 

    clear("n"); 

    for n = mtlb_imp(1,1,mtlb_double(N)) 

      if mtlb_logic(n,"~=",M) then 

        h(1,n) = 

matrix(sin(fn*mtlb_s(n,M))/(%pi*mtlb_s(n,M)),1,-

1); 

      elseif mtlb_logic(n,"==",M) then 

        h(1,n) = matrix(fn/%pi,1,-1); 

      end; 

    end; 

    coeff = h; 

    return; 

 

  case "hp" then 

    fn = ((2*%pi)*mtlb_double(fc))/mtlb_double(fs); 

    clear("n"); 

    for n = mtlb_imp(1,1,mtlb_double(N)) 

      if mtlb_logic(n,"~=",M) then 

        h(1,n) = matrix(mtlb_s(1,fn/%pi),1,-1); 

      elseif mtlb_logic(n,"==",M) then 

        h(1,n) = matrix(-

sin(fn*mtlb_s(n,M))/(%pi*mtlb_s(n,M)),1,-1); 

      end; 

    end; 

    coeff = h; 

    return; 

  case "bp" then 

    fn2 = 

((2*%pi)*mtlb_double(mtlb_e(fc,2)))/mtlb_double(f

s); 

    fn1 = 

((2*%pi)*mtlb_double(mtlb_e(fc,1)))/mtlb_double(f

s); 

    for n = mtlb_imp(1,1,mtlb_double(N)) 

      if mtlb_logic(n,"~=",M) then 

        h(1,n) = 

matrix(mtlb_s(sin(fn2*mtlb_s(n,M))/(%pi*mtlb_s(n,

M)),sin(fn1*mtlb_s(n,M))/(%pi*mtlb_s(n,M))),1,-1); 

      elseif mtlb_logic(n,"==",M) then 

        h(1,n) = matrix(mtlb_s(fn2,fn1)/%pi,1,-1); 

      end; 

    end; 

    coeff = h; 

    return; 

  case "bs" then 

    fn2 = 

((2*%pi)*mtlb_double(mtlb_e(fc,2)))/mtlb_double(f

s); 

    fn1 = 

((2*%pi)*mtlb_double(mtlb_e(fc,1)))/mtlb_double(f

s); 

    for n = mtlb_imp(1,1,mtlb_double(N)) 

      if mtlb_logic(n,"~=",M) then 

        h(1,n) = 

matrix(mtlb_s(sin(fn1*mtlb_s(n,M))/(%pi*mtlb_s(n,

M)),sin(fn2*mtlb_s(n,M))/(%pi*mtlb_s(n,M))),1,-1); 

      elseif mtlb_logic(n,"==",M) then 

        h(1,n) = 

matrix(mtlb_s(1,mtlb_s(fn2,fn1)/%pi),1,-1); 

      end; 

    end; 

    coeff = h; 

    return; 

 

end; 

endfunction 
***********************************************

* 

APPENDIX- B : CALCULATION OF FRACTIONAL BITS 

FOR FIXED POINT REPRESENTATION 

***********************************************

* 

function [m, n]=cal_sfix_bits(minimum, maximum, 

res, signed) 

 

// Output variables initialisation (not found in input 
variables) 

m=[]; 

n=[]; 

 

// Display mode 

mode(0); 

 

// Display warning for floating point exception 

ieee(1); 

 

// calculates the no. of integer and fractional bits  
// for a required range = (minimum, maximum) 

// and resolution 
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// Also supports signed/unsigned numbers 

// NOTE : For calculating Real World Values 

(RWVs) 
//       multiply the fixed point equivalent by 2^(-n) 

// Example : [c d] = cal_sfix_bits(-1.222, 

234.542,.0001,1) 
s = [minimum,maximum]; 

t = abs(mtlb_double(s)); 

%v0 = t;u = max(%v0,firstnonsingleton(%v0)); 

if mtlb_logic(mtlb_double(signed),"==",0) then 

  a = 

floor(mtlb_a(log2(mtlb_double(maximum)),1)); 

  b = ceil(log2(1/mtlb_double(res))); 

else 

  a = mtlb_a(floor(log2(mtlb_a(u,2))),1); 

  b = ceil(log2(1/mtlb_double(res))); 

end; 

m = a; 

n = b; 

endfunction 

 
***********************************************

* 

 


