
17

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.10, November 2011

A Forest of Hashed Binary Search Trees with Reduced
Internal Path Length and better Compatibility with the

Concurrent Environment

Vinod Prasad
Sur College of Applied Sciences

Ministry of Higher Education, Sultanate of Oman

ABSTRACT
We propose to maintain a Binary Search Tree in the form of a
forest in such a way that – (a) it provides faster node access and,
(b) it becomes more compatible with the concurrent environment.
Using a small array, the stated goals were achieved without
applying any restructuring algorithm. Empirically, we have shown
that the proposed method brings down the total internal path-
length of a Binary Search Tree quite considerably. The
experiments were conducted by creating two different data
structures using the same input - a conventional binary search
tree, and a forest of hashed trees. Our empirical results suggest
that the forest so produced has lesser internal path length and
height in comparison to the conventional tree. A binary search
tree is not a well-suited data structure for concurrent processing.
The evidence also shows that maintaining a large tree in form of
multiple smaller trees (forest) increases the degree of parallelism.

Keywords: Binary Search Tree Path Length, Parallel
Processing Binary Search Tree, Balanced Tree

1. INTRODUCTION

The Binary Search Tree (BST) is a widely used storage medium in
the primary memory. A reasonably balanced BST provides fast
data access and retrieval. Despite its wide popularity, it has few
serious problems. First, its shape depends on the nature of the
input. Second, it is a sensitive data structure for insertion and
deletions -the tree shape could be destroyed, following a series of
insertions and deletions. Third, it is a highly incompatible data
structure for concurrent processing. Over the years these problems
have been investigated extensively. For the tree shape, refer to
[1]-[4], [13]-[18]; and, for the parallel processing of the tree, refer
to [5]-[11]. Eppinger [12] investigated tree’s behavior for a large
number of insertions and deletions.
 A tree could be maintained in better shape either dynamically
or statically. In dynamic maintenance, following each operation
tree is inspected, and readjusted, if the operation causes any
structural damage. AVL Tree [1], Martin & Ness [2], Red-Black
Tree [3], and Splay trees [15] fall into this category. In Splay
Trees, the frequently accessed node is pushed towards the root of
the tree for future immediate access. Gonnet [12], and Gerasch
[17] proposed algorithms to maintain the tree with reduced

internal path length. In static maintenance, periodically, the entire
tree is taken as input, and some maintenance work is applied.
Examples of static maintenance are: Day’s algorithm [4], Chang
& Iyengar’s algorithm [14], and, Stout & Warren’s algorithm
[16]. Both dynamic and static solutions have their advantages and
disadvantages. The dynamic maintenance of the tree is slow
because of frequent inspections and rotations. Apart from that,
every node in the tree has to store some additional information.
Static algorithms, on the other hand, demand lots of extra space.
In some cases, the algorithm consumes extra workspace that is
twice the size of the input. For example, Chang & Iyengar’s
algorithm [16] requires an additional array, equal to the size of
input, as extra workspace.

As far as the parallel processing of the tree is concerned,
substantial work has been done to develop concurrent algorithms,
refer to [5]-[11]. In a binary search tree, the root is the only
gateway for all the active processes making it difficult to achieve
maximum parallelism. Imagine a situation where we have to
update the root of the tree. A process performing this operation
has to lock the root, making the entire tree unavailable for rest of
the processes. No matter how efficient our concurrent algorithms
are, other processes have to wait until the previous releases the
lock. Ellis [9], [10] presented solutions for concurrent searches
and insertions in the 2-3 and AVL trees. Kung and Lehman [11]
investigated ordinary binary search trees, and proposed solutions
so that the system could support any number of processes
performing searches, insertions, deletions, and rotations. To
ensure that the searches are never blocked they used special nodes
and pointers.

Most of the presented solutions use some kind of
locking scheme to allow multiple processes to act upon a single
binary search tree simultaneously. The common goal of all
proposed solutions was to increase the degree of concurrency by
having a lesser portion of the tree locked, and thus exposing a
major portion to the rest of the processes. Such algorithms can
increase the degree of concurrency up to a certain extent.
However, better results could be obtained, if the underlying data
structure is modified to accommodate large number of processes.
Substantial work has been done on algorithms, but hardly any
attempt has been made to create a flexible data structure.

In this paper, we propose a forest of binary search trees
to deal with the stated problems - tree balance, and its
incompatibility with the concurrent environment. To examine the
overall balance of the proposed forest, we have used internal path

http://www.ijcaonline.org/�

18

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.10, November 2011

length (IPL), and the height of the tree as measurement
parameters. (Concurrency-related issues are discussed in the
section 6.)

The height of the tree is the length of the longest path
from the root to the leaf. The height is an important parameter to
study the worst-case behavior of the tree. For average case
analysis, the internal path length of the tree (IPL) can be used. IPL
is the average distance of every node in the tree from the root, and
is defined as the sum of the depths of all the nodes in the tree.
Thus, for a tree with just one node, the IPL is equal to 0, and for a
tree with two nodes, the IPL is equal to 1. Let I n be the IPL of a

tree with ‘n’ nodes, and C n be the average number of
comparisons required for a successful search, then we have a
relation: I n = n (C n -1). From the given relation, it is clear that
the IPL of the tree directly affects its performance. The lesser the
height, the lesser will be the IPL, and hence, the faster would be
the search. Knuth [19] has given a formula that relates the height
of a ‘n’ node random binary search tree H n , and C n as C n = 2(1

+ 1/n) H n - 3.

2. CREATION OF THE FOREST
It is possible to maintain a random BST in form of a set of trees
called ‘forest’. The number of trees in the forest would depend on
the application. For the purpose of simulation, we have used a
forest of 11 trees. To hold multiple trees, we need multiple roots.
We have used an array of pointers of size k=11. Each cell of the
array acts as a tree root. Like a usual tree, when the tree is empty,
each root (array cell) points to a null value (refer to Figure 1).
When a key has to be inserted or deleted, it is first divided by ‘k’,
and the remainder is calculated to find the array location.
Assuming the array location to be the root of the tree, the desired
operation is performed as usual. In other words, keys need to be
hashed by the function: loc=key % k. Where ‘loc’ is the array
location to/from which the key has to be inserted/deleted. Using
this technique, we get a set of k possible trees, which resembles a
forest, but acts as a single binary search tree. The only difference
between a usual single BST and a forest is determining the tree
location using hashing. In Figure 1, a forest of two trees is shown.
The collective IPL of the forest = the sum of the IPLs of all the
trees in the forest = 12+6 = 18. Maximum height of the tree in the
forest is 3.

 Forest

 T 0 T 1 T 2 … …………………………..……………...T 7 …………………... ..T10

 Null

 Keys hashed to 2nd array location.
 Root of the tree is Forest [2]=24

Figure 1: A Forest of Hashed Trees

3. METHODOLOGY
Using the same random input, two different structures were
created - a conventional tree, and a forest. For every insertion, a
random number was generated that was supplied to two separate
algorithms: one that creates a conventional tree; and, the other
that creates a forest. Duplicate keys were ignored. Once all the
keys were inserted, the IPL of both of the structures was
calculated. The IPL of the conventional tree was calculated as
usual by calculating the sum of the depths of all the nodes in the
tree. While, for the forest, the IPL was calculated by adding all
the IPLs of the individual trees in the forest, at the same time,
the heights of all the trees in the forest were recorded. For
example, in Fig.1, the total IPLs of the forest was 12+6 = 18,
the average height of the forest = (3+2)/2 = 2.5, the height of
the worst tree in the forest = 3. For the division remainder

method of hashing, it has been shown that a prime number
distributes the keys more uniformly - that is why the array size
of 11 was our choice. Another reason was to maintain the array
size to be roughly equal to 1% of the input size. We chose the
tree size to be 1023 and 2047 so that the forest so produced
could also be compared with a perfect, balanced tree, and not
just with the random BST. (For quick reference, please note that
perfect balanced trees with 1023 and 2047 nodes would have
heights 9 and 10, respectively; their IPLs would be 8194 and
18434, respectively.)

4. RESULTS

0 1 2 3 4 5 6 7 8 9 10
* * * * * * * * * * *

46

35

57

24

13

79

68

51

40

29

18

62

http://www.ijcaonline.org/�

19

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.10, November 2011

The following are parameters related to the forest that were used
to compare the forest to a conventional and perfect balanced
tree:
Average height of the forest = Sum of the heights of all 11 trees
in the forest/11.
Height of the worst tree in the forest = A tree with the maximum
height in the forest.
Collective path-length of the forest = The sum of the path-
lengths of all 11 trees in the forest

Table 1 is obtained as a result of several tests
conducted with Borland C++ compiler 5.5 under windows, and
GNU C++ compiler 3.4.3 (g++) under Linux. Table 1 (a) shows
results for n = 1023, and k = 11. The average height of the forest
was quite close to 9 - somewhat like a perfect, balanced tree
with the same number of nodes. If we compare the average
height of the forest to the height of the conventional tree, there is
a huge reduction (39% to a whopping 52%). The height of the
worst tree in the forest was 17, where the conventional tree went
up to 24. However, the worst tree in the forest would not have
same number of nodes as the conventional tree; therefore,
comparing their heights is not justifiable, but this will definitely
give the worst-case behavior of both of the structures. As far as
the IPL is concerned, a reduction in the forest IPL is more than
considerable. Among the 10 sample runs, the worst IPL of the
forest was recorded as 6623 - that is, far better than 11299 (the
IPL of the corresponding BST), and much better than 8194 (the
IPL of the perfect, balanced tree with the same number of
nodes). The reduction in IPL was recorded to be from 39% to
52%. Though the IPL is enough for an average case analysis, it
would be interesting to apply the formula that relates IPL (I n),
and the average number of comparisons required for a successful
search C n . Putting I n = 6623, and n=1023, we get for the

forest: C n = (I n / n) + 1 =(6623/1023) + 1 = 7.47. For the

corresponding conventional tree: C n = (11299/1023) + 1=12.
For a perfect, balanced tree with the same number of nodes:
C n = (8194/1023) + 1= 8. Hence, in terms the average number
of comparisons required for a successful search, it is quite clear
that the forest needs a minimal number of comparisons. These
results indicate that the behavior of the forest is far better than
that of a random BST. If we could ignore the extra cost of time
consumed in hashing, on the average, the forest clearly seems to
outperform even a perfect, balanced tree.

Obviously, as the size of input increases, we will need
a larger array to get similar results. What is the optimal ratio of
‘n’ and ‘k’? This could be an interesting question. In our case,
presented results in table 1(a) are for 1:93 (input size is 93 times
of array size) and, 1(b) is for 1:186. Let’s consider a simpler
question; how large should an array be, if we wanted to reduce
the average height of the forest by 50%? Using random input:
we know that the tree height is O (lg (n)). We have k trees,
assuming that our hash function distributes keys uniformly
among k trees, we would have each tree with a height of
approximately O (lg(n/k)), i.e., we have the relationship :-
lg(n) /lg(n/k) = 2

⇒ lg(n) = 2 lg(n/k) ⇒ n = (n/k) 2 ⇒ k= n

Theoretically, that means for n = 1023, to reduce the average
height of the forest to half, we need an array of size

1023 =32. However, we have seen that the empirical results
do not confirm this, and are more encouraging. With an array of
a size of k=11, and n=1023, several runs have shown that, in
most of the cases, the reduction in average height of the forest
was between 39% to 52%. The total IPL of the forest fell to
40% in comparison to that of the conventional tree. In most of
the cases, the total IPL of the forest beat even a corresponding
perfect, balanced tree.

In Table 1(b), we have provided the results of when
input size was doubled, i.e., now n = 2047, but array-size is kept
unchanged. This would give us some idea of how the
performance of a forest is affected, when we increase the size of
the input. Comparing the average height of the forest with the
height of the conventional tree, it is evident that the reduction in
height was still 26% to 48%. The worst IPL of the forest was
16216 - that is, far better than 24133 (the IPL of the
corresponding BST), and still better than 18434 (the IPL of the
perfect, balanced tree with 2047 nodes). Indeed, there was some
deterioration in the performance, but this confirms that the forest
still works better when input size is increased to 186 times of the
array size.

5. TIME AND SPACE REQUIREMENTS
OF THE FOREST
We will compare the time and space requirements of the
proposed forest with those of the usual BST. On the average, a
random BST with n nodes requires lg(n) time to perform most of
the operations. However, in the case of a forest, hashing is
required to jump to the correct tree, i.e. additional O (1) is
required for hashing. Following this, the entire process is the
same as that of a usual BST operation. Hence, it is
straightforward that, on the average, the forest with n nodes and
k trees takes O (1) + lg(n/k) time. The worst-case behavior of a
BST is O (n) - which remains the same as for the forest. This
happens when all the keys are in sorted order, and hashed to one
single tree in the forest, letting the tree grow up to n. A natural
question is: what is the additional space requirement of the
forest? When compared to a normal BST, the forest does not
require additional space. Whatever space is used in form of the
array is actually used to store the roots of the trees in the forest;
hence, the array is not an overhead. From the given results, it is
evident that the proposed forest is capable of providing an AVL
tree-like performance at the cost of O (1) time. An AVL tree does
have additional overheads, such as: time consumed in examining
the tree balance and restructuring. Apart from that, each node in
the AVL tree requires two additional bits to store balance
information. This is all that is required, in terms of time and
space. As a result, the forest behaves as if it was a balanced tree
without using any rebalancing algorithm.

The biggest advantage of this technique is that the
entire forest acts as if it was a single BST. That means we do not
need to change any existing BST-related algorithm in order to
apply with the forest; insertion, deletion and updating algorithms
remain the same. The tree traversal requires the roots of the
individual tree to be passed to the traversal algorithm. In fact, all
the trees in the forest can be traversed in parallel.

http://www.ijcaonline.org/�

20

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.10, November 2011

6. PARALLEL PROCESSING OF THE
FOREST
Another benefit is compatibility with the concurrent
environment. The forest of trees is far more compatible with the
concurrent environment than a single BST. Here, we have a
forest with multiple trees, and each tree in the forest is
independent, and hence, can be operated independently. No
proof is required to demonstrate that a forest allows more
numbers of processes to act upon the different trees
simultaneously. Without using any locking schemes, ‘k’
processes can act simultaneously on ‘k’ different trees. From the
structure of the forest, it is reasonable to conclude that
maintaining the tree this way increases the degree of parallelism
by ‘k’ times. The choice of ‘k’ depends on the required degree of
parallelism. For huge data sets and massively parallel systems,
we would like to have a greater number of trees in the forest,
requiring larger arrays. Although, to reduce the IPL, we haven’t
used any tree-restructuring technique here, still the individual
tree in the forest can be restructured for even better results. As
stated earlier, in global restructuring, the entire tree is taken as
input and restructured. This process may take a lot of time
particularly if the tree size is large. But in case of a forest, only a

part of the forest (single tree) would be needed for restructuring
at a time. In fact, tree restructuring can be done simultaneously
with the other operations. Furthermore, a binary search tree is a
sensitive data structure, with regard to insertions and deletions.
A series of insertions and deletions can harm the balance
structure of the tree. Eppinger [10] has shown that performing a
large number of insertions and asymmetric deletions increases

the IPL of a tree to up to θ(n lg 3 (n)), resulting in the tree being
no longer random. In the case of a forest, insertions and
deletions will get distributed over the different trees, increasing
the immunity of the structure to such operations.

7. CONCLUSION
We have shown that, without losing structural information, a
tree could be converted into a forest with reduced internal path
length and better compatibility with the concurrent environment.
This has been achieved without using any restructuring
algorithm. At the cost of hashing, without compromising for
space, small modifications in the data structure results in faster
node access, and an increased degree of parallelism.

Table : A comparison between the Conventional Tree and the Forest of Trees

 a): Number of Nodes: 1023

(b): Number of Nodes: 2047

Sample
run

Conventional Tree Forest % Reduction in Height and Path-
Length

 Height Path-
length

Average Height
of the Forest

Height of
the Worst

Tree

Collective Path-
length of the

Forest

% Reduction in
Height

% Reduction in
the Path-length

1 21 24918 15.0 17 15865 28 36
2 21 24133 15.5 17 16216 26 32
3 25 24179 14.7 19 15603 41 35
4 26 26814 14.9 17 16110 42 40
5 22 24728 14.1 18 15936 36 35
6 27 28267 14.0 17 15207 48 46
7 24 26528 14.5 17 15489 39 42
8 24 25742 13.9 18 15705 42 39
9 25 24478 14.7 18 15508 41 37
10 23 24219 14.5 18 15418 37 36

Sample
run

Conventional Tree Forest % Reduction in Height and Path-
Length

 Height Path-
length

Average Height
of the Forest

Height of
the Worst

Tree

Collective Path-
length of the

Forest

% Reduction in
Height

% Reduction in
the Path-length

1 18 11018 10.8 12 6193 40 44
2 20 10782 12.0 14 6594 40 39
3 21 11299 11.6 13 6623 44 41
4 24 13728 12.0 17 6542 50 52
5 21 11840 11.1 14 6081 47 48
6 22 11158 12.2 15 6567 44 41
7 20 11185 11.4 16 6467 43 42
8 20 10814 12.2 17 6533 39 40
9 22 11359 12.0 16 6481 45 43
10 24 12174 11.4 13 6414 52 47

http://www.ijcaonline.org/�

21

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.10, November 2011

8. REFERENCES
[1] Adel’son-Vel’skii, G. M, and Landis E. M, 1962. “An

Algorithm for the Organization of Information, Soviet
Mathematics Doklady”, Vol. 3, 1259–1263.

[2] Martin, W. A, and Ness, D. N. 1972, “Optimal Binary Trees
Grown with a Sorting Algorithm”, Communication. of the
ACM, 15, 88-93.

[3] Bayer, R. 1972, “Symmetric Binary B-Trees: Data Structure
and Maintenance Algorithms”, Acta Informatica. 1, 290–
306.

[4] Day, A. C. 1976, “Balancing a Binary Tree, Computer
Journal”, 19, 360-361.

[5] Samadi, B. 1976, “B Trees in System with Multiple Users”,
Information Processing Letters, 5 (4), 107-112.

[6] Eswaran, K. P., Gray, J. N., Lorie, R. A, and Traiger, I. L.
1976, “The notions of Consistency and Predicate Locks in a
Database System”, Communication of the ACM, 19(11),
624-633.

[7] Bayer, R., Schkolnick, M. 1977, “Concurrency of
Operations on B Trees”, Acta Informatica, 9(1), 1-21, 1977

[8] Ries, D. R., Stonebreaker, M. 1977, “Effects of Locking
Granuality in a Database Management System”. ACM Trans.
Database Systems, 2(3) , 233-246, 1977

[9] Ellis, C. S. 1980. “Concurrent search and insertion in AVL
trees”. IEEE Transactions on Computers, Vol 29, 811–817.

[10] Ellis, C. S. 1980, “Concurrent search and insertion in 2-3
trees”. Acta Informatica, Vol 14, 63–86, 1980

[11] Kung, H. T., Lehman, P. L. 1980, “Concurrent manipulation
of binary search trees”. ACM Transactions on Database
Systems, Vol. 5, 354–382

[12] Eppinger, J. L. 1983, “An Empirical Study of Insertion and
Deletion in Binary Search Trees”, Communication of the
ACM, 26, 663-669.

[13] Gonnet, G. H. 1983, “Balancing binary Search Trees by
Internal Path Reduction”, Communication of the ACM,
26(12), 1074-1081.

[14] Chang, H, Iyengar, S. S, 1984, “Efficient Algorithms To
Globally Balance a Binary Search Tree”, Communication of
the ACM, 27, 695-702.

[15] Sleator, D. D., Tarjon, R. E, 1985, “Self-Adjusting Binary
Search Trees”. Journal of The ACM, 32(3), 652-686.

[16] Stout, F, Bette, L. W. 1986, “Tree Rebalancing in Optimal
Time and Space”, Communication of the ACM, 29, 902-908.

[17] Gerasch, T. E. 1988, “An insertion algorithm for a minimal
internal path length binary search tree”. Communications of
the ACM, Vol.31 (5), 579–585.

[18] Bell, J., Gupta, G. 1993, “An evaluation of self-adjusting
binary search tree techniques”. Software Practice and
Experience, Vol. 23(4), 369–382.

[19] Knuth, D. E. 2005, The Art of Computer Programming,”
Pearson Education, Vol. 3, Searching and Sorting.

http://www.ijcaonline.org/�

	Root of the tree is Forest [2]=24
	Figure 1: A Forest of Hashed Trees
	Table : A comparison between the Conventional Tree and the Forest of Trees

