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ABSTRACT  
We propose to maintain a Binary Search Tree in the form of a 
forest in such a way that – (a) it provides faster node access and, 
(b) it becomes more compatible with the concurrent environment. 
Using a small array, the stated goals were achieved without 
applying any restructuring algorithm. Empirically, we have shown 
that the proposed method brings down the total internal path-
length of a Binary Search Tree quite considerably. The 
experiments were conducted by creating two different data 
structures using the same input - a conventional binary search 
tree, and a forest of hashed trees. Our empirical results suggest 
that the forest so produced has lesser internal path length and 
height in comparison to the conventional tree. A binary search 
tree is not a well-suited data structure for concurrent processing. 
The evidence also shows that maintaining a large tree in form of 
multiple smaller trees (forest) increases the degree of parallelism.        
 
Keywords: Binary Search Tree Path Length, Parallel 
Processing Binary Search Tree, Balanced Tree  
 
 
1. INTRODUCTION  
 
The Binary Search Tree (BST) is a widely used storage medium in 
the primary memory. A reasonably balanced BST provides fast 
data access and retrieval. Despite its wide popularity, it has few 
serious problems. First, its shape depends on the nature of the 
input. Second, it is a sensitive data structure for insertion and 
deletions -the tree shape could be destroyed, following a series of 
insertions and deletions.  Third, it is a highly incompatible data 
structure for concurrent processing. Over the years these problems 
have been investigated extensively. For the tree shape, refer to 
[1]-[4], [13]-[18]; and, for the parallel processing of the tree, refer 
to [5]-[11]. Eppinger [12] investigated tree’s behavior for a large 
number of insertions and deletions.  
     A tree could be maintained in better shape either dynamically 
or statically. In dynamic maintenance, following each operation 
tree is inspected, and readjusted, if the operation causes any 
structural damage. AVL Tree [1], Martin & Ness [2], Red-Black 
Tree [3], and Splay trees [15] fall into this category. In Splay 
Trees, the frequently accessed node is pushed towards the root of 
the tree for future immediate access. Gonnet [12], and Gerasch 
[17] proposed algorithms to maintain the tree with reduced 

internal path length. In static maintenance, periodically, the entire 
tree is taken as input, and some maintenance work is applied. 
Examples of static maintenance are: Day’s algorithm [4], Chang 
& Iyengar’s algorithm [14], and, Stout & Warren’s algorithm 
[16]. Both dynamic and static solutions have their advantages and 
disadvantages. The dynamic maintenance of the tree is slow 
because of frequent inspections and rotations. Apart from that, 
every node in the tree has to store some additional information. 
Static algorithms, on the other hand, demand lots of extra space. 
In some cases, the algorithm consumes extra workspace that is 
twice the size of the input. For example, Chang & Iyengar’s 
algorithm [16] requires an additional array, equal to the size of 
input, as extra workspace.  

As far as the parallel processing of the tree is concerned, 
substantial work has been done to develop concurrent algorithms, 
refer to [5]-[11]. In a binary search tree, the root is the only 
gateway for all the active processes making it difficult to achieve 
maximum parallelism. Imagine a situation where we have to 
update the root of the tree. A process performing this operation 
has to lock the root, making the entire tree unavailable for rest of 
the processes. No matter how efficient our concurrent algorithms 
are, other processes have to wait until the previous releases the 
lock. Ellis [9], [10] presented solutions for concurrent searches 
and insertions in the 2-3 and AVL trees. Kung and Lehman [11] 
investigated ordinary binary search trees, and proposed solutions 
so that the system could support any number of processes 
performing searches, insertions, deletions, and rotations. To 
ensure that the searches are never blocked they used special nodes 
and pointers.  

Most of the presented solutions use some kind of 
locking scheme to allow multiple processes to act upon a single 
binary search tree simultaneously. The common goal of all 
proposed solutions was to increase the degree of concurrency by 
having a lesser portion of the tree locked, and thus exposing a 
major portion to the rest of the processes. Such algorithms can 
increase the degree of concurrency up to a certain extent. 
However, better results could be obtained, if the underlying data 
structure is modified to accommodate large number of processes. 
Substantial work has been done on algorithms, but hardly any 
attempt has been made to create a flexible data structure.  

In this paper, we propose a forest of binary search trees 
to deal with the stated problems - tree balance, and its 
incompatibility with the concurrent environment. To examine the 
overall balance of the proposed forest, we have used internal path 
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length (IPL), and the height of the tree as measurement 
parameters. (Concurrency-related issues are discussed in the 
section 6.)  

The height of the tree is the length of the longest path 
from the root to the leaf. The height is an important parameter to 
study the worst-case behavior of the tree. For average case 
analysis, the internal path length of the tree (IPL) can be used. IPL 
is the average distance of every node in the tree from the root, and 
is defined as the sum of the depths of all the nodes in the tree. 
Thus, for a tree with just one node, the IPL is equal to 0, and for a 
tree with two nodes, the IPL is equal to 1. Let I n be the IPL of a 

tree with ‘n’ nodes, and C n be the average number of 
comparisons required for a successful search, then we have a 
relation: I n = n (C n -1). From the given relation, it is clear that 
the IPL of the tree directly affects its performance. The lesser the 
height, the lesser will be the IPL, and hence, the faster would be 
the search. Knuth [19] has given a formula that relates the height 
of a ‘n’ node random binary search tree H n , and C n as C n = 2(1 

+ 1/n) H n  - 3.  
 

2. CREATION OF THE FOREST  
It is possible to maintain a random BST in form of a set of trees 
called ‘forest’. The number of trees in the forest would depend on 
the application. For the purpose of simulation, we have used a 
forest of 11 trees. To hold multiple trees, we need multiple roots. 
We have used an array of pointers of size k=11. Each cell of the 
array acts as a tree root. Like a usual tree, when the tree is empty, 
each root (array cell) points to a null value (refer to Figure 1). 
When a key has to be inserted or deleted, it is first divided by ‘k’, 
and the remainder is calculated to find the array location. 
Assuming the array location to be the root of the tree, the desired 
operation is performed as usual. In other words, keys need to be 
hashed by the function: loc=key % k. Where ‘loc’ is the array 
location to/from which the key has to be inserted/deleted. Using 
this technique, we get a set of k possible trees, which resembles a 
forest, but acts as a single binary search tree. The only difference 
between a usual single BST and a forest is determining the tree 
location using hashing. In Figure 1, a forest of two trees is shown. 
The collective IPL of the forest = the sum of the IPLs of all the 
trees in the forest = 12+6 = 18. Maximum height of the tree in the 
forest is 3.

 
 
    Forest 
 
                               T 0            T 1          T 2   … …………………………..……………...T 7  …………………... ..T10  
 

      Null  
 
 
 
 
 

  
 Keys hashed to 2nd array location.  
 Root of the tree is Forest [2]=24 

 
 
 

Figure 1: A Forest of Hashed Trees 
 
 
3. METHODOLOGY 
Using the same random input, two different structures were 
created - a conventional tree, and a forest. For every insertion, a 
random number was generated that was supplied to two separate 
algorithms: one that creates a conventional tree; and, the other 
that creates a forest. Duplicate keys were ignored. Once all the 
keys were inserted, the IPL of both of the structures was 
calculated. The IPL of the conventional tree was calculated as 
usual by calculating the sum of the depths of all the nodes in the 
tree. While, for the forest, the IPL was calculated by adding all 
the IPLs of the individual trees in the forest, at the same time, 
the heights of all the trees in the forest were recorded. For 
example, in Fig.1, the total IPLs of the forest was 12+6 = 18, 
the average height of the forest = (3+2)/2 = 2.5, the height of 
the worst tree in the forest = 3. For the division remainder 

method of hashing, it has been shown that a prime number 
distributes the keys more uniformly - that is why the array size 
of 11 was our choice. Another reason was to maintain the array 
size to be roughly equal to 1% of the input size. We chose the 
tree size to be 1023 and 2047 so that the forest so produced 
could also be compared with a perfect, balanced tree, and not 
just with the random BST. (For quick reference, please note that 
perfect balanced trees with 1023 and 2047 nodes would have 
heights 9 and 10, respectively; their IPLs would be 8194 and 
18434, respectively.)  
 
4. RESULTS 
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The following are parameters related to the forest that were used 
to compare the forest to a conventional and perfect balanced 
tree:  
Average height of the forest = Sum of the heights of all 11 trees 
in the forest/11. 
Height of the worst tree in the forest = A tree with the maximum 
height in the forest.  
Collective path-length of the forest = The sum of the path-
lengths of all 11 trees in the forest 

Table 1 is obtained as a result of several tests 
conducted with Borland C++ compiler 5.5 under windows, and 
GNU C++ compiler 3.4.3 (g++) under Linux. Table 1 (a) shows 
results for n = 1023, and k = 11. The average height of the forest 
was quite close to 9 - somewhat like a perfect, balanced tree 
with the same number of nodes.  If we compare the average 
height of the forest to the height of the conventional tree, there is 
a huge reduction (39% to a whopping 52%). The height of the 
worst tree in the forest was 17, where the conventional tree went 
up to 24. However, the worst tree in the forest would not have 
same number of nodes as the conventional tree; therefore, 
comparing their heights is not justifiable, but this will definitely 
give the worst-case behavior of both of the structures. As far as 
the IPL is concerned, a reduction in the forest IPL is more than 
considerable. Among the 10 sample runs, the worst IPL of the 
forest was recorded as 6623 - that is, far better than 11299 (the 
IPL of the corresponding BST), and much better than 8194 (the 
IPL of the perfect, balanced tree with the same number of 
nodes). The reduction in IPL was recorded to be from 39% to 
52%. Though the IPL is enough for an average case analysis, it 
would be interesting to apply the formula that relates IPL (I n ), 
and the average number of comparisons required for a successful 
search C n . Putting I n = 6623, and n=1023, we get for the 

forest: C n = (I n / n) + 1 =(6623/1023) + 1 = 7.47. For the 

corresponding conventional tree: C n = (11299/1023) + 1=12. 
For a perfect, balanced tree with the same number of nodes: 
C n = (8194/1023) + 1= 8. Hence, in terms the average number 
of comparisons required for a successful search, it is quite clear 
that the forest needs a minimal number of comparisons. These 
results indicate that the behavior of the forest is far better than 
that of a random BST. If we could ignore the extra cost of time 
consumed in hashing, on the average, the forest clearly seems to 
outperform even a perfect, balanced tree.  

Obviously, as the size of input increases, we will need 
a larger array to get similar results. What is the optimal ratio of 
‘n’ and ‘k’? This could be an interesting question. In our case, 
presented results in table 1(a) are for 1:93 (input size is 93 times 
of array size) and, 1(b) is for 1:186. Let’s consider a simpler 
question; how large should an array be, if we wanted to reduce 
the average height of the forest by 50%? Using random input: 
we know that the tree height is O (lg (n)). We have k trees, 
assuming that our hash function distributes keys uniformly 
among k trees, we would have each tree with a height of 
approximately O (lg(n/k)), i.e., we have the relationship :-          
lg(n ) /lg(n/k) = 2  

⇒   lg(n) = 2 lg(n/k) ⇒  n = (n/k) 2  ⇒  k= n  

Theoretically, that means for n = 1023, to reduce the average 
height of the forest to half, we need an array of size 

1023 =32. However, we have seen that the empirical results 
do not confirm this, and are more encouraging. With an array of 
a size of k=11, and n=1023, several runs have shown that, in 
most of the cases, the reduction in average height of the forest 
was between 39%  to 52%. The total IPL of the forest fell to 
40% in comparison to that of the conventional tree. In most of 
the cases, the total IPL of the forest beat even a corresponding 
perfect, balanced tree.   

In Table 1(b), we have provided the results of when 
input size was doubled, i.e., now n = 2047, but array-size is kept 
unchanged. This would give us some idea of how the 
performance of a forest is affected, when we increase the size of 
the input. Comparing the average height of the forest with the 
height of the conventional tree, it is evident that the reduction in 
height was still 26% to 48%. The worst IPL of the forest was 
16216 - that is, far better than 24133 (the IPL of the 
corresponding BST), and still better than 18434 (the IPL of the 
perfect, balanced tree with 2047 nodes). Indeed, there was some 
deterioration in the performance, but this confirms that the forest 
still works better when input size is increased to 186 times of the 
array size.  
 
5. TIME AND SPACE REQUIREMENTS 
OF THE FOREST 
We will compare the time and space requirements of the 
proposed forest with those of the usual BST. On the average, a 
random BST with n nodes requires lg(n) time to perform most of 
the operations. However, in the case of a forest, hashing is 
required to jump to the correct tree, i.e. additional O (1) is 
required for hashing. Following this, the entire process is the 
same as that of a usual BST operation. Hence, it is 
straightforward that, on the average, the forest with n nodes and 
k trees takes O (1) + lg(n/k) time. The worst-case behavior of a 
BST is O (n) - which remains the same as for the forest. This 
happens when all the keys are in sorted order, and hashed to one 
single tree in the forest, letting the tree grow up to n. A natural 
question is: what is the additional space requirement of the 
forest? When compared to a normal BST, the forest does not 
require additional space. Whatever space is used in form of the 
array is actually used to store the roots of the trees in the forest; 
hence, the array is not an overhead. From the given results, it is 
evident that the proposed forest is capable of providing an AVL 
tree-like performance at the cost of O (1) time. An AVL tree does 
have additional overheads, such as: time consumed in examining 
the tree balance and restructuring. Apart from that, each node in 
the AVL tree requires two additional bits to store balance 
information. This is all that is required, in terms of time and 
space. As a result, the forest behaves as if it was a balanced tree 
without using any rebalancing algorithm.  

The biggest advantage of this technique is that the 
entire forest acts as if it was a single BST. That means we do not 
need to change any existing BST-related algorithm in order to 
apply with the forest; insertion, deletion and updating algorithms 
remain the same. The tree traversal requires the roots of the 
individual tree to be passed to the traversal algorithm. In fact, all 
the trees in the forest can be traversed in parallel.  
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6. PARALLEL PROCESSING OF THE 
FOREST 
Another benefit is compatibility with the concurrent 
environment. The forest of trees is far more compatible with the 
concurrent environment than a single BST. Here, we have a 
forest with multiple trees, and each tree in the forest is 
independent, and hence, can be operated independently. No 
proof is required to demonstrate that a forest allows more 
numbers of processes to act upon the different trees 
simultaneously. Without using any locking schemes, ‘k’ 
processes can act simultaneously on ‘k’ different trees. From the 
structure of the forest, it is reasonable to conclude that 
maintaining the tree this way increases the degree of parallelism 
by ‘k’ times. The choice of ‘k’ depends on the required degree of 
parallelism. For huge data sets and massively parallel systems, 
we would like to have a greater number of trees in the forest, 
requiring larger arrays. Although, to reduce the IPL, we haven’t 
used any tree-restructuring technique here, still the individual 
tree in the forest can be restructured for even better results. As 
stated earlier, in global restructuring, the entire tree is taken as 
input and restructured. This process may take a lot of time 
particularly if the tree size is large. But in case of a forest, only a 

part of the forest (single tree) would be needed for restructuring 
at a time. In fact, tree restructuring can be done simultaneously 
with the other operations.  Furthermore, a binary search tree is a 
sensitive data structure, with regard to insertions and deletions. 
A series of insertions and deletions can harm the balance 
structure of the tree. Eppinger [10] has shown that performing a 
large number of insertions and asymmetric deletions increases 

the IPL of a tree to up to θ(n lg 3 (n)), resulting in the tree being 
no longer random. In the case of a forest, insertions and 
deletions will get distributed over the different trees, increasing 
the immunity of the structure to such operations.  
 
7. CONCLUSION 
We have shown that, without losing structural information, a 
tree could be converted into a forest with reduced internal path 
length and better compatibility with the concurrent environment. 
This has been achieved without using any restructuring 
algorithm. At the cost of hashing, without compromising for 
space, small modifications in the data structure results in faster 
node access, and an increased degree of parallelism.   
 

 
Table : A comparison between the Conventional Tree and the Forest of Trees 

                                                                                           a): Number of Nodes: 1023 

  
(b): Number of Nodes: 2047 

Sample 
run 

Conventional Tree Forest % Reduction in Height and Path-
Length 

 Height  Path-
length 

Average Height 
of the Forest  

Height of 
the Worst 

Tree  

Collective Path-
length of the 

Forest 

% Reduction in 
Height 

% Reduction in 
the Path-length 

1 21 24918 15.0 17 15865 28 36 
2 21 24133 15.5 17 16216 26 32 
3 25 24179 14.7 19 15603 41 35 
4 26 26814 14.9 17 16110 42 40 
5 22 24728 14.1 18 15936 36 35 
6 27 28267 14.0 17 15207 48 46 
7 24 26528 14.5 17 15489 39 42 
8 24 25742 13.9 18 15705 42 39 
9 25 24478 14.7 18 15508 41 37 
10 23 24219 14.5 18 15418 37 36 

Sample 
run 

Conventional Tree Forest % Reduction in Height and Path-
Length 

 Height  Path-
length  

Average Height 
of the Forest 

Height of 
the Worst 

Tree 

Collective Path-
length of the 

Forest 

% Reduction in 
Height 

% Reduction in 
the Path-length 

1 18 11018 10.8 12 6193 40 44 
2 20 10782 12.0 14 6594 40 39 
3 21 11299 11.6 13 6623 44 41 
4 24 13728 12.0 17 6542 50 52 
5 21 11840 11.1 14 6081 47 48 
6 22 11158 12.2 15 6567 44 41 
7 20 11185 11.4 16 6467 43 42 
8 20 10814 12.2 17 6533 39 40 
9 22 11359 12.0 16 6481 45 43 
10 24 12174 11.4 13 6414 52 47 
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