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ABSTRACT - Grid computing is a mainstream technology 

to integrate large scale distributed sharing resources. To achieve 

the promising potentials of tremendous distributed resources, 

effective and efficient scheduling algorithms are fundamentally 

important. Most of the applications in grid computing fall into 

interdependent task model called workflow application. Task 

scheduling is a fundamental issue in achieving high performance 

in grid computing systems. It is well known that the complexity 

of a general scheduling problem is NP-Complete [1]. The grid 

workflow task scheduling problem is described by a Directed 

Acyclic Graph (DAG) or task graph. The graph represents the 

dependency among tasks, their computation time and 

communication time between them. In the management of 

workflow execution scheduling, the key issues that impact on 

the performance of the system is based on proper scheduling. In 

this paper, a new algorithm, named Efficient Dual Objective 

Scheduling (EDOS) is proposed to maximize the resource 

utilization in a grid and to minimize makespan by reserving the 

resources in advance and schedule the task on priority. The 

proposed algorithm has been implemented for arbitrary task 

graphs in a simulated environment. Finally, the results are 

compared with the well known Min-Min and HEFT scheduling 

algorithms and showing that the proposed algorithm is yielding 

better results, that is, minimizing makespan and higher 

utilization of resources.  

 

Keywords: Grid computing, workflow scheduling, inter-

dependent tasks, DAG, resource utilization. 

 

1. INTRODUCTION  
The Grid connects computers, databases, instruments, and 

people in a seamless web, supporting computation-rich 

application concepts such as distributed supercomputing, smart 

instruments and data-mining. Research on these topics has led to 

the emergence of a new paradigm known as Grid computing. To 

achieve the promising potentials of the large number of 

distributed resources, effective and efficient scheduling 

algorithms are highly essential. Workflow technology has been 

used to capture and automate a scientific process that helps 

scientists to perform their work in grid environment. In order to 

execute scientific workflow in grid, the task in a workflow needs 

to be allocated with resources. Scheduling is the problem of 

deciding the execution time and resource of each of the atomic 

task [2].  In grid computing, task execution time is depending on 

the resource to which it is assigned. 

 Scientific workflows are concerned with the 

automation processes of interdependent tasks. Workflow 

management system needs certain functionalities [3] such as  

 definition and composition of workflow components,  

 task mapping and scheduling during execution and   

 data movement between dependent tasks. 

The scheduling in the grid can be categorized as full-

ahead (static) and just-in-time (dynamic) algorithms. In the 

static mode every task is assigned once to a resource and its 

estimated cost of the computation can be made in advance for 

actual execution. On the other hand, dynamic scheduling is that 

the system need not be aware of the run-time behavior of the 

application before.  

The workflow task scheduling problem described by a 

Directed Acyclic Graph, called DAG scheduling is an 

optimization problem in the context of traditional homogeneous 

or heterogeneous parallel computing [4][5][6], but the grid 

environment is significantly different. Besides the heterogeneity 

and the possibly substantial communication overheads, there are 

issues related to the different administration domains that might 

be involved in providing resources for an application to run. All 

these issues may hinder the exploitation of parallelism [7]. There 

are new challenges for scheduling workflow applications in a 

grid environment are resources sharing on grids, competition for 

resources, etc [8]. To overcome these challenges the concept of 

reserving the resources in   advance through the resource 

brokers [9]. A resource broker is a common gate way to access 

grid resources.  

In the proposed EDOS algorithm, the planning of 

advanced reservation of resources for entire workflow is static 

but mapping of resources to a particular task is dynamic. In this 

algorithm the estimation of required resources is easier because 

the number of tasks in the DAG is known in advance. This 

algorithm has two stages, namely, task preference and resource 

mapping.  

The remainder of this paper is organized as follows. 

Section 2 describes the related works done; Section 3 specifies 

the problem statement and defines the terms used in the 

proposed algorithm. The proposed algorithm and its functional 

architecture are specified in Section 4. Section 5 compares 

results of the proposed algorithm with the existing scheduling 

algorithms. Section 6 provides the conclusion and future 

enhancement of the work. 

 

2. RELATED WORK 
List scheduling is the most commonly used scheduling 

algorithm by the researchers.  An ordered task list is constructed 

by setting priority for each task in list scheduling. Shoukat Ali et 

al [10], propose Min-Min algorithm which is based on Minimum 

Completion Time (MCT) of each task with respect to all 

resources. The task with the overall MCT is selected and 

assigned to the corresponding resource. Here every task has a 

good chance to select a suitable resource.  

 Topcuoglu et al [6] propose Heterogeneous Earliest 

Finish Time (HEFT) algorithm which uses rank function. The 

HEFT algorithm selects the task with the highest upward rank 

(an upward rank is defined as the maximum distance from the 

current task to the existing task, including the computation and 

communication time) at each step. The rank in HEFT is based 
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on dependency of tasks, that is, closer to the beginning of a 

workflow ranked higher and are scheduled first. 

List scheduling varies by the priorities assigned to the 

tasks. Two commonly used task priorities are b-level (bottom 

level) and t-level (top level) [4], which are calculated recursively. 

The t-level of a node ti is the length of the longest path (there can 

be more than one longest path) from an entry node to ti 

(excluding ti). Here, the length of a path is the sum of all the 

nodes and edge weights along the path.  The t-level value 

corresponds to the earliest starting time of task ti. The b-level of 

a task ti is the length of the longest path from ti to an exit node 

including the weight of ti. Kwok and Ahmad [11] state that, 

scheduling in ascending order of t-level tends to account for the 

topological order of the DAG. The scheduling in descending 

order of b-level tends to prioritize critical path activities. The t-

level and b-level calculations require all the tasks in the 

workflow. 

Dong and Akl [12] present a resource-Performance-

Fluctuation-Aware (PFAS) workflow scheduling algorithm for 

grid computing. It updates task ranks and constructs the critical 

path dynamically in the scheduling procedure according to the 

change in performance of available resources. PFAS also adopts 

a look-ahead approach to assign a critical task.  It does not 

consider the possibility or wrong performance prediction, which 

is likely in the real situations. 

Lee et.al. [13 ] propose Adaptive Dual Objective 

Scheduling (ADOS) algorithm as a semi-dynamic heuristic, 

which statically generates the initial schedule using an 

evolutionary technique and adapts it dynamically as the 

performance of resources changes; hence, the algorithm is semi-

dynamic. The dual objective functions are makespan and 

resource usage. It achieves the objective function by combining 

a static heuristic schedule scheme with a dynamic rescheduling.  

Sheng Di and Cho-Li Wang [ 14] present Dynamic 

Shortest Makespan First (DSMF) algorithm, which handles the 

workflow with the shortest remaining makespan at any time and 

priorities its tasks in the scheduling in Peer to Peer (P2P) grid 

systems. It shows satisfactory average efficiency under dynamic 

situations. 

Except Min-Min algorithm, all the remaining 

algorithms given in this section use the rank function as b-level 

or t-level or both.  

 

3. PROBLEM DEFINITION 
Workflow scheduling models may be deterministic or non-

deterministic. In a deterministic model, the dependencies of 

tasks and data are known in advance; whereas in non-

deterministic model, they are only known at run time. A parallel 

program can be represented by a Directed Acyclic Graph (DAG) 

[4] G = (V, E), where V is a set of v nodes and E is a set of e 

directed edges. A node in the DAG represents a task which in 

turn is a set of instructions which must be executed sequentially 

without preemption in the same resource. The weight of a task ti 

is called the computation time and is denoted by w(ti). The edges 

in the DAG, each of which is denoted by (ti, tj), correspond to 

the communication messages and precedence constraints among 

the tasks. It is a predecessor of ti and tj is a successor of ti, that is, 

ti < tj   iff eij  E. The weight of an edge is called the 

communication cost/time of the edge and is denoted by c(ti, tj). 

 A sample DAG is given in Figure 1. The source task of 

an edge is called the parent task while the sink task is called the 

child task. A task with no parent is called an entry task and a 

task with no child is called an exit task. A child task can be 

carried out only to receive all messages of its parent tasks. When 

a task and its successor tasks are scheduled to the same resource, 

the communication cost is zero.   

 In the proposed algorithm two objective functions are 

considered, namely, maximizing the resource utilization and 

minimizing the total completion time (makespan) of a job. 

Formally it can be defined as: 

                

      Minimization of makespan: 

{max ( )}iMin FT t  

where FT(t i) is the finish time of task ti. 

                                             

 
 

                                                       

 
                                                                  

Figure1. A sample DAG 

  

 Maximizing the resource utilization of the Grid system 

is another important objective. The execution time and idle time 

of a resource are known from the scheduled list is used to 

calculate the utilization of resources. Resource utilization 

(RU(Ri)) of resource Ri is calculated as       
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where p is the total number of resources. 
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The proposed algorithm prioritizes the tasks to be scheduled on 

the basis of a value computed by a Rank Function (RF). The RF 

is calculated for each task by level-wise is explicitly specified 

the ith level in jth task. To compute RF the Ratio of Actual 

Communication Time (RACT) and computation time of each task 

is required.   

 

                                              RF(tij)= RACT(tij)*w(tij) 

where i refers to number of levels and j refers to the number of 

tasks in a level 

 

            
max( ( ( ), ))

,
( )

ij ij

ij

c pred t t
RACT t

LCT i
  where tij 

is the ith level in jth task,  

max(c(pred(tij), tij)) is maximum communication time between 

the pred(tij) tasks and task tij, that is, the edge between all parent 

tasks of tij. RACT(tij) is calculated for n number of tasks,  Level-

wise Computation Time LCT(i) is calculated as follows 

           

   
( )

ik,
1

( t ) , 1,2,..
l i

ik

k

LCT i c pred t i m


   - 

number of levels,  

where l(i) is the total number of task in a ith level.  

    The expected computation time (ECT) of task tij  is the actual 

time required to execute the task in resource rk is expressed as 

ECT(tij,rk)= w(tij)/speed of resource(k).  

 

4. AN EDOS ALGORITHM 
The proposed EDOS algorithm has two stages, namely, task 

preference in static mode and resource mapping in dynamic 

mode. The problem is represented in the form of Directed 

Acyclic Graph (DAG). The computation of RF is done in task 

preference stage in static mode because the calculation of RF of 

a task requires computation and communication time from the 

DAG. The task is assigning to the resource during run time, that 

is, dynamic mode. This algorithm reserves resources in advance 

[15]. Advance reservation of resources requires maximum limit 

of reserving resources. The maximum number of resources 

required to schedule the task graph is at most the maximum 

number of tasks in any level of a DAG [6]. After reserving the 

resources the task preference stage can commence its operation. 

In the EDOS algorithm two queues are required; the 

Ready Task Queue (RTQ) is used to keep ready the tasks to be 

given assignment of resources; After their assignment, they may 

be shifted to another queue, namely, Finished Task Queue 

(FTQ).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.Functional Architecture of EDOS Algorithm 
 

4.1.  The Algorithm  
 
Procedure EDOS 

{ 

Initialize  RTQ and FTQ ={ }, CCT=0 \\ where CCT is the 

cumulative communication time  

1. Calculate 
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3. Find RF(tij)= RACT(tij)*w(tij) 

4. Reserve m number of resources from Grid Resource Broker 

and place it in Resource    

         Available List (RAL) 

5. While all tasks are not scheduled do 

6.     RTQ <----- tij, when parent tasks finished 

7.     Sort RTQ in an ascending order of RF 

8.    While (RTQ!=empty) do 

9.        if tij is an entry task or an exit task 

10.         rk<----  MinECT(tij,rk) 

// if  the task tij has more ( descendent ) nodes to reach end 

node means schedule it in high speed resources i.e. long path.  

If it has less number of resources then schedule it in slow 

speed devices from the RAL// 
11.     else 

12.        if RAL=even number of resources then      

13.             tij<--- maximum RF(tij) task from RTQ. 
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14.       else 

15.               take first task tij from the RTQ .i.e.  RF value is 

minimum (RTQ is already  arranged in an ascending order) 

select resource rk which has MinECT(tij,rk) 

16.     schedule tij in  rk    i.e. rk <--- tij  

17.     endif 

18.    endif 

19.  if tij and pred(tij)are scheduled in a same resource then 

communication time  

               is zero 

20         CCT=CCT+0 

21.     else 

22          CCT=CCT+c(pred(tij), tij) 

23.    endif 

24.    Update RTQ, FTQ and RAL //(i.e. remove tij from RTQ and 

append tij to FTQ,  

                                                  remove resource rk from RAL)// 

25. endwhile 

26. endwhile 

27.  Makespan = Actual Finish Time (exit task) 

28.    
1

 
k

i j i

j

RU R Makespan Idletime R


   

29. 

 
1

 *100

m

i

i

RU R

ARU
m



 
 
 


 

30. Display makespan, CCT, Resource Utilization time, CCR 

value of DAG 

}

4.2. Functional Architecture of an EDOS 

Algorithm. 
 The functional architecture of EDOS architecture has 

two major modules, namely, Task Preference Stage and 

Resource Mapping Stage. The Task Preference Stage has two 

modules, viz., Initializer and Computation of RF which are 

executed sequentially. However, the Resource Mapping Stage 

has three modules, viz., Decision on nature of task, Assignment 

of resources to tasks and finally Update the RTQ and FTQ is as 

shown in Figure 2. 

The parallel program modeled as DAG is given as 

input to the Initializer module where the Queues, Ready Task 

Queue (RTQ) and Finished Task Queue (FTQ) are initialized as 

empty and Cumulative Communication Time (CCT) is set to 

zero. The available number of resources reserved in  advance 

through Resource Broker are placed in Resource Available List 

(RAL). After these initialization, the Rank Function (RF) is 

calculated for each task by computing LCT and RACT. 

Based on RF, the decision is made on the nature of the 

task is found, namely, entry task, exit task or neither of the two. 

The main function of Decision on nature of task module is to 

select a task from RTQ for scheduling based on its nature, i.e., 

the entry task(s) is scheduled, followed by a normal tasks, and 

finally the exit task(s). 

After selecting the tasks from RTQ to schedule, the 

assignment of resources to them for their execution is done by 

Assignment of resources to tasks module from the RAL.  After 

the assignment of resource to a task, the RTQ and FTQ are 

updated. The Resource Mapping Stage process is repeated till all 

the 

tasks are scheduled in DAG. 

 

5. RESULTS AND DISCUSSION 
For the simulation study the number of tasks in the arbitrary task 

graphs considered is 20, 25 and 30. The maximum number of 

resources is required to reserve in advance at most the maximum 

number of tasks in any level of a DAG. Therefore the number of 

resources reserved is 4, 6 and 8 to favor all specified tasks. A 

resource is a basic computational device or service where tasks, 

jobs and applications are scheduled, allocated and processed 

accordingly. Resources have their own characteristics such as 

CPU characteristics, memory, etc. One of the CPU characteristic 

is the speed of the resource considered for this simulation. The 

speed is varied as 1, 1.25, 1.5 and 1.75. The experiment is 

conducted for each set of tasks, that is, fixed number of tasks 

with 4, 6 and 8 resources having different speed with Min-Min, 

HEFT and EDOS algorithm separately. The possible 

combinations of experiments are conducted with fixed number 

of tasks while varying number of resources and vice-versa. The 

results are tabulated after conducting the experiments.  In grid 

scheduling the three metrics, namely, makespan, communication 

cost and resource utilization are considered for comparison. 
 

5.1. Makespan 
The main performance measure of a scheduling algorithm is the 

makespan of its schedule. Makespan comparison among Min-

Min, HEFT and EDOS algorithm are carried out and tabulated 

the results in Table 1. In all cases the makespan of EDOS 

algorithm is minimized. The proposed EDOS algorithm gives 

makespan for 20 tasks with 4 resources is 63.12, but the Min-

Min algorithm and HEFT algorithm give 81.26 and 75.867 

respectively. The same trend is observed in other cases also. 

The tabulated results shown in Table 1 are 

diagrammatically represented in Figure 3 for 6 resources.  

 

Table 1.  Makespan: Fixed number of resources 

with varying number of tasks 

 

 
Figure 3. Makespan versus number of tasks 
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5.2. Communication Cost 
The communication cost plays a vital role in a scheduling 

algorithm. The communication cost is high in all cases of EDOS 

algorithm when scheduling with minimum number of resources. 

As shown in Table 2, the EDOS gives communication cost 90 

for 20 tasks with 4 resources, but for the same the Min-Min and 

HEFT gives 70 and 49 respectively.  This  tendency is continued 

in almost all other cases also.  The tabulated results shown in 

Table 2 are diagrammatically represented in Figure 4 for 20 

tasks.  

 

Table 2. Communication Cost: Fixed number of tasks with 

varying number of resources 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4. Communication cost versus number of resources 

 

 
Figure 5. Resource Utilization versus number of resources 

 

The main focusing of EDOS algorithm is to minimize 

makespan and maximize resource utilization.  

 

 

 

5.3. Resource Utilization 
Essentially, advance reservation facilitates to schedule the tasks 

on various resources. The resources, which have been reserved 

in advance, are available till the completion of the execution of 

the last task. As shown in Table 3 the EDOS algorithm has given 

better resource utilization than the Min-Min and HEFT 

algorithms in almost all cases. The tabulated results shown in 

Table 3 are diagrammatically represented in   Figure 5 for 30 

tasks 

 

Table 3. Resource utilization: Fixed number of 

tasks with varying number of resources 

 

 

The Table1, Table 2 and Table 3 confirm that the 

proposed EDOS algorithm minimizes the makespan and 

maximizes resource utilization in all the experiments. 

      

6. CONCLUSION AND FUTURE WORK 
This paper presents an EDOS workflow scheduling algorithm to 

maximize the resource utilization in a grid and to minimize 

makespan by reserving the resources in advance. This algorithm 

integrates the static (task preference stage) and dynamic 

(resource mapping stage) modes for solving parallel programs 

which are represented as DAG. In EDOS algorithm the task with 

its level are enough to calculate the rank function whereas, the 

priority based algorithm like HEFT requires all tasks from the 

beginning to the end to calculate the RF.  The scheduling of this 

algorithm is not only based on RF, but the available number of 

resources are also considered to utilize them optimally. The 

tabulated results and its figures have implied that an EDOS 

algorithm fulfilled the dual objective functions.  

In future this algorithm is to be focused to reduce the 

communication cost. Here all the experiments have been 

conducted with arbitrary task graphs. Real world problems are 

well balanced and highly parallel are more suitable to schedule 

using an EDOS algorithm. The applicability of this algorithm is 

to be extended to study in real world workflow applications like 

Gauss elimination algorithm, Fast Fourier Transformation and a 

molecular dynamics code. This algorithm does not consider the 

failure of any task or resource during scheduling and these 

factors will also be focused in future. 

 

7.   REFERENCES 
[1] H. El-Rewini, T. Lewis, and H..Ali, Task Scheduling in 

Parallel and Distributed Systems, ISBN: 0130992356, PTR 

Prentice Hall, 1994 

[2] Yves Robert, Frederic Vivien, “Algorithms and Theory of 

computation Hand Book”, Chapman and Hall CRC, 

pp.29.29, November, 2009 

0

20

40

60

80

100

120

140

160

4 6 8

C
o

m
m

u
n

ic
a
ti

o
n

 C
o

s
t

Number of Resources

Tasks 30

MinMin

HEFT

EDOS

 Tasks 30

0 10 20 30 40 50 60 70 80

4

6

8

N
u

m
b

e
r 

o
f 

R
e
s
o

u
rc

e
s

Percentage of Resource Utilization

EDOS

HEFT

MinMin

Tasks Resources Communication cost 

    Min-Min HEFT EDOS 

  4 70 49 90 

20 6 65 87 74 

  8 68 76 70 

  4 107 88 113 

25 6 123 140 153 

  8 134 149 141 

  4 77 84 121 

30 6 104 146 146 

  8 137 134 133 

Tasks Resources Resource Utilization % 

    Min-Min HEFT EDOS 

  4 42.93 46.31 55.38 

20 6 33.6 36.7 35.37 

  8 26.34 29.1 30.91 

  4 51.27 58.64 69.31 

25 6 40.54 54.33 54.16 

  8 37.7 39.65 44.62 

  4 53.23 56.78 70.52 

30 6 46.56 58.8 59.52 

  8 35.81 44.51 50.55 



International Journal of Computer Applications (0975 – 8887) 

Volume 33– No.1, November 2011 

 

12 

[3] María M. López, Elisa Heymann, Miquel A. Senar,” 

Analysis of Dynamic Heuristics for Workflow Scheduling 

on Grid Systems” The Fifth International Symposium on 

Parallel and Distributed Computing(ISPDC’06), pp .199-

207, July 2006 

[4] Y.-K. Kwok and I. Ahmad. Static Scheduling Algorithms for 

Allocating Directed Task Graphs. ACM Computing Surveys, 

31(4):pp. 406-471, 1999 

[5] R.Sakellariou and H. Zhao. A Hybrid Heuristic for DAG 

Scheduling on Heterogeneous Systems. In Proceedings of 

13th Heterogeneous Computing Workshop (HCW 2004), 

Santa Fe, New Mexico, USA ,pp. 26-30, April 2004 

[6] H. Topcuoglu, S. Hariri, and M. Wu. Performance-effective 

and low-complexity task scheduling for heterogeneous 

computing. IEEE Transactions on Parallel and Distributed 

Systems, 13(3):pp. 260–274, March 2002 

[7] Henan Zhao and Rizos Sakellariou, “Advance Reservation 

Policies for Workflows”, E. Frachtenberg and U. 

Schwiegelshohn (Eds.): JSSPP 2006, LNCS 4376, 

Springer-Verlag Berlin Heidelberg, pp. 47–67, 2007 

[8] Jia Yu and Rajkumar Buyya, “Workflow Scheduling 

Algorithms for Grid Computing”, Studies in Computational 

Intelligence, Meta-heuristics for scheduling in Distributed 

Computing Environments, Vol.146,pp. 173-214, 2008 

[9]. W. Smith, I. Foster, and V.Taylor.Scheduling with 

Advanced Reservations. In Proceedings of International 

Parallel and Distributed Processing Symposium (IPDPS), 

pp. 127-132, May 2000 

[10] Muthucumaru Maheswaran, Shoukat Ali, Howard Jay 

Siegel, Debra Hensgen and Richard.F.Freund, “Dynamic 

Matching and Scheduling of a Class of Independent Tasks 

onto Heterogeneous Computing Systems”, Heterogeneous 

Computing Workshop(HCW’99), pp. 30-44, 1999 

[11] Y.-K. Kwok and I. Ahmad, “Benchmarking and 

comparison of the task graph scheduling algorithms, ” 

Journal of  Parallel and  Distributed Computing,  vol. 59,  

no. 3, pp. 381-422, 1999 

[12] Fangpeng Dong and Selim G. Akl, “PFAS: A Resource-

Performance-Fluctuation-Aware Workflow Scheduling 

Algorithm for Grid Computing”, IEEE, pp.1-9, 2007 

[13] Young Choon Lee, Riky Subrata, and Albert Y. Zomaya, 

“On the Performance of a  Dual-Objective Optimization 

Model for Workflow Applications on Grid Platforms”, 

IEEE Transactions on Parallel and Distributed Systems, 

Vol. 20, No. 9, pp. 1273-1284, 2009 

[14] Sheng Di, Cho-Li Wang, “Dual- Phase Just –in –time 

Workflow Scheduling in P2P Grid Systems”,39th 

International Conference on Parallel Processing , pp. 238-

247, 2010 

[15] Joerg Decker, Joerg Schneider, “Heuristic Scheduling of 

Grid Workflows Supporting Co-Allocation and Advance 

Reservation”, Seventh IEEE International Symposium on 

Cluster Computing and the Grid (CCGrid07), pp. 335-342, 

2007 . 

  


