
International Journal of Computer Applications (0975 – 8887)

Volume 33– No.1, November 2011

7

An Efficient Dual Objective Grid Workflow Scheduling
Algorithm

 D.I.George Amalarethinam F.Kurus Malai Selvi
 Director-MCA & Associate Professor of Assistant Professor of

Computer Science Computer Science
 Jamal Mohamed College, Tiruchirappalli Government College for Women,

 Tamilnadu, India Kumbakonam, India,

ABSTRACT - Grid computing is a mainstream technology

to integrate large scale distributed sharing resources. To achieve

the promising potentials of tremendous distributed resources,

effective and efficient scheduling algorithms are fundamentally

important. Most of the applications in grid computing fall into

interdependent task model called workflow application. Task

scheduling is a fundamental issue in achieving high performance

in grid computing systems. It is well known that the complexity

of a general scheduling problem is NP-Complete [1]. The grid

workflow task scheduling problem is described by a Directed

Acyclic Graph (DAG) or task graph. The graph represents the

dependency among tasks, their computation time and

communication time between them. In the management of

workflow execution scheduling, the key issues that impact on

the performance of the system is based on proper scheduling. In

this paper, a new algorithm, named Efficient Dual Objective

Scheduling (EDOS) is proposed to maximize the resource

utilization in a grid and to minimize makespan by reserving the

resources in advance and schedule the task on priority. The

proposed algorithm has been implemented for arbitrary task

graphs in a simulated environment. Finally, the results are

compared with the well known Min-Min and HEFT scheduling

algorithms and showing that the proposed algorithm is yielding

better results, that is, minimizing makespan and higher

utilization of resources.

Keywords: Grid computing, workflow scheduling, inter-

dependent tasks, DAG, resource utilization.

1. INTRODUCTION
The Grid connects computers, databases, instruments, and

people in a seamless web, supporting computation-rich

application concepts such as distributed supercomputing, smart

instruments and data-mining. Research on these topics has led to

the emergence of a new paradigm known as Grid computing. To

achieve the promising potentials of the large number of

distributed resources, effective and efficient scheduling

algorithms are highly essential. Workflow technology has been

used to capture and automate a scientific process that helps

scientists to perform their work in grid environment. In order to

execute scientific workflow in grid, the task in a workflow needs

to be allocated with resources. Scheduling is the problem of

deciding the execution time and resource of each of the atomic

task [2]. In grid computing, task execution time is depending on

the resource to which it is assigned.

 Scientific workflows are concerned with the

automation processes of interdependent tasks. Workflow

management system needs certain functionalities [3] such as

 definition and composition of workflow components,

 task mapping and scheduling during execution and

 data movement between dependent tasks.

The scheduling in the grid can be categorized as full-

ahead (static) and just-in-time (dynamic) algorithms. In the

static mode every task is assigned once to a resource and its

estimated cost of the computation can be made in advance for

actual execution. On the other hand, dynamic scheduling is that

the system need not be aware of the run-time behavior of the

application before.

The workflow task scheduling problem described by a

Directed Acyclic Graph, called DAG scheduling is an

optimization problem in the context of traditional homogeneous

or heterogeneous parallel computing [4][5][6], but the grid

environment is significantly different. Besides the heterogeneity

and the possibly substantial communication overheads, there are

issues related to the different administration domains that might

be involved in providing resources for an application to run. All

these issues may hinder the exploitation of parallelism [7]. There

are new challenges for scheduling workflow applications in a

grid environment are resources sharing on grids, competition for

resources, etc [8]. To overcome these challenges the concept of

reserving the resources in advance through the resource

brokers [9]. A resource broker is a common gate way to access

grid resources.

In the proposed EDOS algorithm, the planning of

advanced reservation of resources for entire workflow is static

but mapping of resources to a particular task is dynamic. In this

algorithm the estimation of required resources is easier because

the number of tasks in the DAG is known in advance. This

algorithm has two stages, namely, task preference and resource

mapping.

The remainder of this paper is organized as follows.

Section 2 describes the related works done; Section 3 specifies

the problem statement and defines the terms used in the

proposed algorithm. The proposed algorithm and its functional

architecture are specified in Section 4. Section 5 compares

results of the proposed algorithm with the existing scheduling

algorithms. Section 6 provides the conclusion and future

enhancement of the work.

2. RELATED WORK
List scheduling is the most commonly used scheduling

algorithm by the researchers. An ordered task list is constructed

by setting priority for each task in list scheduling. Shoukat Ali et

al [10], propose Min-Min algorithm which is based on Minimum

Completion Time (MCT) of each task with respect to all

resources. The task with the overall MCT is selected and

assigned to the corresponding resource. Here every task has a

good chance to select a suitable resource.

 Topcuoglu et al [6] propose Heterogeneous Earliest

Finish Time (HEFT) algorithm which uses rank function. The

HEFT algorithm selects the task with the highest upward rank

(an upward rank is defined as the maximum distance from the

current task to the existing task, including the computation and

communication time) at each step. The rank in HEFT is based

International Journal of Computer Applications (0975 – 8887)

Volume 33– No.1, November 2011

8

on dependency of tasks, that is, closer to the beginning of a

workflow ranked higher and are scheduled first.

List scheduling varies by the priorities assigned to the

tasks. Two commonly used task priorities are b-level (bottom

level) and t-level (top level) [4], which are calculated recursively.

The t-level of a node ti is the length of the longest path (there can

be more than one longest path) from an entry node to ti

(excluding ti). Here, the length of a path is the sum of all the

nodes and edge weights along the path. The t-level value

corresponds to the earliest starting time of task ti. The b-level of

a task ti is the length of the longest path from ti to an exit node

including the weight of ti. Kwok and Ahmad [11] state that,

scheduling in ascending order of t-level tends to account for the

topological order of the DAG. The scheduling in descending

order of b-level tends to prioritize critical path activities. The t-

level and b-level calculations require all the tasks in the

workflow.

Dong and Akl [12] present a resource-Performance-

Fluctuation-Aware (PFAS) workflow scheduling algorithm for

grid computing. It updates task ranks and constructs the critical

path dynamically in the scheduling procedure according to the

change in performance of available resources. PFAS also adopts

a look-ahead approach to assign a critical task. It does not

consider the possibility or wrong performance prediction, which

is likely in the real situations.

Lee et.al. [13] propose Adaptive Dual Objective

Scheduling (ADOS) algorithm as a semi-dynamic heuristic,

which statically generates the initial schedule using an

evolutionary technique and adapts it dynamically as the

performance of resources changes; hence, the algorithm is semi-

dynamic. The dual objective functions are makespan and

resource usage. It achieves the objective function by combining

a static heuristic schedule scheme with a dynamic rescheduling.

Sheng Di and Cho-Li Wang [14] present Dynamic

Shortest Makespan First (DSMF) algorithm, which handles the

workflow with the shortest remaining makespan at any time and

priorities its tasks in the scheduling in Peer to Peer (P2P) grid

systems. It shows satisfactory average efficiency under dynamic

situations.

Except Min-Min algorithm, all the remaining

algorithms given in this section use the rank function as b-level

or t-level or both.

3. PROBLEM DEFINITION
Workflow scheduling models may be deterministic or non-

deterministic. In a deterministic model, the dependencies of

tasks and data are known in advance; whereas in non-

deterministic model, they are only known at run time. A parallel

program can be represented by a Directed Acyclic Graph (DAG)

[4] G = (V, E), where V is a set of v nodes and E is a set of e

directed edges. A node in the DAG represents a task which in

turn is a set of instructions which must be executed sequentially

without preemption in the same resource. The weight of a task ti

is called the computation time and is denoted by w(ti). The edges

in the DAG, each of which is denoted by (ti, tj), correspond to

the communication messages and precedence constraints among

the tasks. It is a predecessor of ti and tj is a successor of ti, that is,

ti < tj iff eij E. The weight of an edge is called the

communication cost/time of the edge and is denoted by c(ti, tj).

 A sample DAG is given in Figure 1. The source task of

an edge is called the parent task while the sink task is called the

child task. A task with no parent is called an entry task and a

task with no child is called an exit task. A child task can be

carried out only to receive all messages of its parent tasks. When

a task and its successor tasks are scheduled to the same resource,

the communication cost is zero.

 In the proposed algorithm two objective functions are

considered, namely, maximizing the resource utilization and

minimizing the total completion time (makespan) of a job.

Formally it can be defined as:

 Minimization of makespan:

{max ()}iMin FT t

where FT(t i) is the finish time of task ti.

Figure1. A sample DAG

 Maximizing the resource utilization of the Grid system

is another important objective. The execution time and idle time

of a resource are known from the scheduled list is used to

calculate the utilization of resources. Resource utilization

(RU(Ri)) of resource Ri is calculated as

1

k

i j i

j

RU R Makespan Idletime R

where

1

()
k

j i

j

Idletime R

 is the sum of all idle time slots of

resource Ri.

The average resource utilization (ARU) of all

resources gives the overall utilization percentage of the grid

resources is specified as:

1

 *100

p

i

i

RU R

ARU
p

where p is the total number of resources.

3.1. Terminologies

ti
n

Task no.

Computation time.

m Communication cost

t2

4

t3

5

t1

3

t5

1

t6

3

t4
2

1

t7

6

t8

4

t9

5

2
3

4

2

4

3

5

3

2

4 3

2

International Journal of Computer Applications (0975 – 8887)

Volume 33– No.1, November 2011

9

The proposed algorithm prioritizes the tasks to be scheduled on

the basis of a value computed by a Rank Function (RF). The RF

is calculated for each task by level-wise is explicitly specified

the ith level in jth task. To compute RF the Ratio of Actual

Communication Time (RACT) and computation time of each task

is required.

 RF(tij)= RACT(tij)*w(tij)

where i refers to number of levels and j refers to the number of

tasks in a level

max(((),))

,
()

ij ij

ij

c pred t t
RACT t

LCT i
 where tij

is the ith level in jth task,

max(c(pred(tij), tij)) is maximum communication time between

the pred(tij) tasks and task tij, that is, the edge between all parent

tasks of tij. RACT(tij) is calculated for n number of tasks, Level-

wise Computation Time LCT(i) is calculated as follows

()

ik,
1

(t) , 1,2,..
l i

ik

k

LCT i c pred t i m

 -

number of levels,

where l(i) is the total number of task in a ith level.

 The expected computation time (ECT) of task tij is the actual

time required to execute the task in resource rk is expressed as

ECT(tij,rk)= w(tij)/speed of resource(k).

4. AN EDOS ALGORITHM
The proposed EDOS algorithm has two stages, namely, task

preference in static mode and resource mapping in dynamic

mode. The problem is represented in the form of Directed

Acyclic Graph (DAG). The computation of RF is done in task

preference stage in static mode because the calculation of RF of

a task requires computation and communication time from the

DAG. The task is assigning to the resource during run time, that

is, dynamic mode. This algorithm reserves resources in advance

[15]. Advance reservation of resources requires maximum limit

of reserving resources. The maximum number of resources

required to schedule the task graph is at most the maximum

number of tasks in any level of a DAG [6]. After reserving the

resources the task preference stage can commence its operation.

In the EDOS algorithm two queues are required; the

Ready Task Queue (RTQ) is used to keep ready the tasks to be

given assignment of resources; After their assignment, they may

be shifted to another queue, namely, Finished Task Queue

(FTQ).

Figure 2.Functional Architecture of EDOS Algorithm

4.1. The Algorithm

Procedure EDOS

{

Initialize RTQ and FTQ ={ }, CCT=0 \\ where CCT is the

cumulative communication time

1. Calculate

()

ik,
1

(t) , 1,2,..
l i

ik

k

LCT i c pred t i m

2. Compute

max(((),))

,
()

ij ij

ij ij

c pred t t
RACT t t n

LCT i

3. Find RF(tij)= RACT(tij)*w(tij)

4. Reserve m number of resources from Grid Resource Broker

and place it in Resource

 Available List (RAL)

5. While all tasks are not scheduled do

6. RTQ <----- tij, when parent tasks finished

7. Sort RTQ in an ascending order of RF

8. While (RTQ!=empty) do

9. if tij is an entry task or an exit task

10. rk<---- MinECT(tij,rk)

// if the task tij has more (descendent) nodes to reach end

node means schedule it in high speed resources i.e. long path.

If it has less number of resources then schedule it in slow

speed devices from the RAL//
11. else

12. if RAL=even number of resources then

13. tij<--- maximum RF(tij) task from RTQ.

DAG Initializer

Computation of RF

Task Preference Stage

Update the RTQ

and FTQ
Assignment of

resources to tasks

Decision on

Nature of task

Advance reservation of

resources

Resource

Broker

Resource Mapping Stage

Schedule

Complete

International Journal of Computer Applications (0975 – 8887)

Volume 33– No.1, November 2011

10

14. else

15. take first task tij from the RTQ .i.e. RF value is

minimum (RTQ is already arranged in an ascending order)

select resource rk which has MinECT(tij,rk)

16. schedule tij in rk i.e. rk <--- tij

17. endif

18. endif

19. if tij and pred(tij)are scheduled in a same resource then

communication time

 is zero

20 CCT=CCT+0

21. else

22 CCT=CCT+c(pred(tij), tij)

23. endif

24. Update RTQ, FTQ and RAL //(i.e. remove tij from RTQ and

append tij to FTQ,

 remove resource rk from RAL)//

25. endwhile

26. endwhile

27. Makespan = Actual Finish Time (exit task)

28.
1

k

i j i

j

RU R Makespan Idletime R

29.

1

 *100

m

i

i

RU R

ARU
m

30. Display makespan, CCT, Resource Utilization time, CCR

value of DAG

}

4.2. Functional Architecture of an EDOS

Algorithm.
 The functional architecture of EDOS architecture has

two major modules, namely, Task Preference Stage and

Resource Mapping Stage. The Task Preference Stage has two

modules, viz., Initializer and Computation of RF which are

executed sequentially. However, the Resource Mapping Stage

has three modules, viz., Decision on nature of task, Assignment

of resources to tasks and finally Update the RTQ and FTQ is as

shown in Figure 2.

The parallel program modeled as DAG is given as

input to the Initializer module where the Queues, Ready Task

Queue (RTQ) and Finished Task Queue (FTQ) are initialized as

empty and Cumulative Communication Time (CCT) is set to

zero. The available number of resources reserved in advance

through Resource Broker are placed in Resource Available List

(RAL). After these initialization, the Rank Function (RF) is

calculated for each task by computing LCT and RACT.

Based on RF, the decision is made on the nature of the

task is found, namely, entry task, exit task or neither of the two.

The main function of Decision on nature of task module is to

select a task from RTQ for scheduling based on its nature, i.e.,

the entry task(s) is scheduled, followed by a normal tasks, and

finally the exit task(s).

After selecting the tasks from RTQ to schedule, the

assignment of resources to them for their execution is done by

Assignment of resources to tasks module from the RAL. After

the assignment of resource to a task, the RTQ and FTQ are

updated. The Resource Mapping Stage process is repeated till all

the

tasks are scheduled in DAG.

5. RESULTS AND DISCUSSION
For the simulation study the number of tasks in the arbitrary task

graphs considered is 20, 25 and 30. The maximum number of

resources is required to reserve in advance at most the maximum

number of tasks in any level of a DAG. Therefore the number of

resources reserved is 4, 6 and 8 to favor all specified tasks. A

resource is a basic computational device or service where tasks,

jobs and applications are scheduled, allocated and processed

accordingly. Resources have their own characteristics such as

CPU characteristics, memory, etc. One of the CPU characteristic

is the speed of the resource considered for this simulation. The

speed is varied as 1, 1.25, 1.5 and 1.75. The experiment is

conducted for each set of tasks, that is, fixed number of tasks

with 4, 6 and 8 resources having different speed with Min-Min,

HEFT and EDOS algorithm separately. The possible

combinations of experiments are conducted with fixed number

of tasks while varying number of resources and vice-versa. The

results are tabulated after conducting the experiments. In grid

scheduling the three metrics, namely, makespan, communication

cost and resource utilization are considered for comparison.

5.1. Makespan
The main performance measure of a scheduling algorithm is the

makespan of its schedule. Makespan comparison among Min-

Min, HEFT and EDOS algorithm are carried out and tabulated

the results in Table 1. In all cases the makespan of EDOS

algorithm is minimized. The proposed EDOS algorithm gives

makespan for 20 tasks with 4 resources is 63.12, but the Min-

Min algorithm and HEFT algorithm give 81.26 and 75.867

respectively. The same trend is observed in other cases also.

The tabulated results shown in Table 1 are

diagrammatically represented in Figure 3 for 6 resources.

Table 1. Makespan: Fixed number of resources

with varying number of tasks

Figure 3. Makespan versus number of tasks

 Resources - 6

0

10

20

30

40

50

60

70

80

20 25 30

Number of Tasks

M
ak

es
pa

n MinMin

HEFT

EDOS

Resources Tasks Makespan

 Min-Min HEFT EDOS

 20 81.26 75.867 63.12

4 25 90.6 84.4 64.73

 30 95.42 90.238 71.77

 20 57.1 55.41 53.72

6 25 59.62 46.99 45.48

 30 73.58 61.26 53.53

 20 58.38 52.12 51.21

8 25 52.38 47.38 44.03

 30 73.96 62.98 56.68

International Journal of Computer Applications (0975 – 8887)

Volume 33– No.1, November 2011

11

5.2. Communication Cost
The communication cost plays a vital role in a scheduling

algorithm. The communication cost is high in all cases of EDOS

algorithm when scheduling with minimum number of resources.

As shown in Table 2, the EDOS gives communication cost 90

for 20 tasks with 4 resources, but for the same the Min-Min and

HEFT gives 70 and 49 respectively. This tendency is continued

in almost all other cases also. The tabulated results shown in

Table 2 are diagrammatically represented in Figure 4 for 20

tasks.

Table 2. Communication Cost: Fixed number of tasks with

varying number of resources

Figure 4. Communication cost versus number of resources

Figure 5. Resource Utilization versus number of resources

The main focusing of EDOS algorithm is to minimize

makespan and maximize resource utilization.

5.3. Resource Utilization
Essentially, advance reservation facilitates to schedule the tasks

on various resources. The resources, which have been reserved

in advance, are available till the completion of the execution of

the last task. As shown in Table 3 the EDOS algorithm has given

better resource utilization than the Min-Min and HEFT

algorithms in almost all cases. The tabulated results shown in

Table 3 are diagrammatically represented in Figure 5 for 30

tasks

Table 3. Resource utilization: Fixed number of

tasks with varying number of resources

The Table1, Table 2 and Table 3 confirm that the

proposed EDOS algorithm minimizes the makespan and

maximizes resource utilization in all the experiments.

6. CONCLUSION AND FUTURE WORK
This paper presents an EDOS workflow scheduling algorithm to

maximize the resource utilization in a grid and to minimize

makespan by reserving the resources in advance. This algorithm

integrates the static (task preference stage) and dynamic

(resource mapping stage) modes for solving parallel programs

which are represented as DAG. In EDOS algorithm the task with

its level are enough to calculate the rank function whereas, the

priority based algorithm like HEFT requires all tasks from the

beginning to the end to calculate the RF. The scheduling of this

algorithm is not only based on RF, but the available number of

resources are also considered to utilize them optimally. The

tabulated results and its figures have implied that an EDOS

algorithm fulfilled the dual objective functions.

In future this algorithm is to be focused to reduce the

communication cost. Here all the experiments have been

conducted with arbitrary task graphs. Real world problems are

well balanced and highly parallel are more suitable to schedule

using an EDOS algorithm. The applicability of this algorithm is

to be extended to study in real world workflow applications like

Gauss elimination algorithm, Fast Fourier Transformation and a

molecular dynamics code. This algorithm does not consider the

failure of any task or resource during scheduling and these

factors will also be focused in future.

7. REFERENCES
[1] H. El-Rewini, T. Lewis, and H..Ali, Task Scheduling in

Parallel and Distributed Systems, ISBN: 0130992356, PTR

Prentice Hall, 1994

[2] Yves Robert, Frederic Vivien, “Algorithms and Theory of

computation Hand Book”, Chapman and Hall CRC,

pp.29.29, November, 2009

0

20

40

60

80

100

120

140

160

4 6 8

C
o

m
m

u
n

ic
a
ti

o
n

 C
o

s
t

Number of Resources

Tasks 30

MinMin

HEFT

EDOS

 Tasks 30

0 10 20 30 40 50 60 70 80

4

6

8

N
u

m
b

e
r

o
f

R
e
s
o

u
rc

e
s

Percentage of Resource Utilization

EDOS

HEFT

MinMin

Tasks Resources Communication cost

 Min-Min HEFT EDOS

 4 70 49 90

20 6 65 87 74

 8 68 76 70

 4 107 88 113

25 6 123 140 153

 8 134 149 141

 4 77 84 121

30 6 104 146 146

 8 137 134 133

Tasks Resources Resource Utilization %

 Min-Min HEFT EDOS

 4 42.93 46.31 55.38

20 6 33.6 36.7 35.37

 8 26.34 29.1 30.91

 4 51.27 58.64 69.31

25 6 40.54 54.33 54.16

 8 37.7 39.65 44.62

 4 53.23 56.78 70.52

30 6 46.56 58.8 59.52

 8 35.81 44.51 50.55

International Journal of Computer Applications (0975 – 8887)

Volume 33– No.1, November 2011

12

[3] María M. López, Elisa Heymann, Miquel A. Senar,”

Analysis of Dynamic Heuristics for Workflow Scheduling

on Grid Systems” The Fifth International Symposium on

Parallel and Distributed Computing(ISPDC’06), pp .199-

207, July 2006

[4] Y.-K. Kwok and I. Ahmad. Static Scheduling Algorithms for

Allocating Directed Task Graphs. ACM Computing Surveys,

31(4):pp. 406-471, 1999

[5] R.Sakellariou and H. Zhao. A Hybrid Heuristic for DAG

Scheduling on Heterogeneous Systems. In Proceedings of

13th Heterogeneous Computing Workshop (HCW 2004),

Santa Fe, New Mexico, USA ,pp. 26-30, April 2004

[6] H. Topcuoglu, S. Hariri, and M. Wu. Performance-effective

and low-complexity task scheduling for heterogeneous

computing. IEEE Transactions on Parallel and Distributed

Systems, 13(3):pp. 260–274, March 2002

[7] Henan Zhao and Rizos Sakellariou, “Advance Reservation

Policies for Workflows”, E. Frachtenberg and U.

Schwiegelshohn (Eds.): JSSPP 2006, LNCS 4376,

Springer-Verlag Berlin Heidelberg, pp. 47–67, 2007

[8] Jia Yu and Rajkumar Buyya, “Workflow Scheduling

Algorithms for Grid Computing”, Studies in Computational

Intelligence, Meta-heuristics for scheduling in Distributed

Computing Environments, Vol.146,pp. 173-214, 2008

[9]. W. Smith, I. Foster, and V.Taylor.Scheduling with

Advanced Reservations. In Proceedings of International

Parallel and Distributed Processing Symposium (IPDPS),

pp. 127-132, May 2000

[10] Muthucumaru Maheswaran, Shoukat Ali, Howard Jay

Siegel, Debra Hensgen and Richard.F.Freund, “Dynamic

Matching and Scheduling of a Class of Independent Tasks

onto Heterogeneous Computing Systems”, Heterogeneous

Computing Workshop(HCW’99), pp. 30-44, 1999

[11] Y.-K. Kwok and I. Ahmad, “Benchmarking and

comparison of the task graph scheduling algorithms, ”

Journal of Parallel and Distributed Computing, vol. 59,

no. 3, pp. 381-422, 1999

[12] Fangpeng Dong and Selim G. Akl, “PFAS: A Resource-

Performance-Fluctuation-Aware Workflow Scheduling

Algorithm for Grid Computing”, IEEE, pp.1-9, 2007

[13] Young Choon Lee, Riky Subrata, and Albert Y. Zomaya,

“On the Performance of a Dual-Objective Optimization

Model for Workflow Applications on Grid Platforms”,

IEEE Transactions on Parallel and Distributed Systems,

Vol. 20, No. 9, pp. 1273-1284, 2009

[14] Sheng Di, Cho-Li Wang, “Dual- Phase Just –in –time

Workflow Scheduling in P2P Grid Systems”,39th

International Conference on Parallel Processing , pp. 238-

247, 2010

[15] Joerg Decker, Joerg Schneider, “Heuristic Scheduling of

Grid Workflows Supporting Co-Allocation and Advance

Reservation”, Seventh IEEE International Symposium on

Cluster Computing and the Grid (CCGrid07), pp. 335-342,

2007 .

