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ABSTRACT 

This paper proposes an approach for enhancement and de-noising 

of the images having fine edges and homogeneous smooth regions 

by using singular value decomposition filtering technique on the 

diffused image subspaces. The existing singular value 

decomposition based image de-noising technique faces the 

problem of selecting the optimum threshold parameter for 

separation of noise subspace and noise-free image subspace. The 

proposed approach is a two stage process in which the diffused 

versions of the image are generated in the first stage using partial 

differential equation based linear isotropic diffusion to smooth the 

homogeneous regions and the inverse heat diffusion method for 

enhancement of the edge features. In the next stage, singular value 

decomposition is applied on the two oppositely featured diffused 

versions of the image with fixed threshold individually to remove 

noise. Experimental results were compared with respect to 

recently developed singular value decomposition method with 

minimum energy model and traditional block based singular value 

decomposition filtering method in terms of signal to noise ratio 

which shows that the proposed method is efficient for image 

enhancement as well as de-noising. 
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1. INTRODUCTION 
In image pre-processing, enhancement as well as de-noising of 

images is an important challenging issue. A comprehensive 

approach have been proposed by many researchers to enhance the 

important features of the image such as sharp edges, lines and 

boundaries with the elimination of noise. Recently, image 

enhancement based on partial differential equation (PDE) based 

nonlinear diffusion methods and singular value decomposition 

(SVD) based de-noising methods are becoming popular. Till now 

various image enhancement and de-noising algorithms based on 

above two methods have been independently developed [5][21]. 

 

Wavelet transform based SVD techniques [1][2][3] have recently 

gained a lot of attraction for enhancement and de-noising of 

scientific images. Foisal et al. [2] developed SVD filtering in 

contourlet transform [2] for the images containing mostly fine 

textures and contours. Zujun Hou [3] proposed an approach for 

image de-noising by performing SVD filtering in detailed sub-

bands of discrete wavelet domain which is quite suitable for the 

regions having abrupt changes. The electronic nose sensor array 

data analysis proposed by Jha and Yadava [4] demonstrated the 

usefulness of the SVD de-noising procedure. They showed that 

elimination of the lowest singular value components by rank 

reduction of the image matrix produces better results. However, in 

all of the above methods, the problem is to optimize the threshold 

parameter which is used to discriminate the noise free image 

subspace with that of the noisy image subspace in SVD which 

may not be properly achievable with a fixed threshold for the 

entire image subspace. In addition to this, the computational 

complexity for the operation to perform SVD on an 𝑛 × 𝑛 matrix 

is of 𝑂(𝑛3) [8]. However, in order to have cheaper 

implementation of the SVD algorithm, block based SVD have 

been developed by Konstantinides et al. [9] dividing the whole 

image matrix and filtering the noise from each sub-matrix by SVD 

individually. In order to obtain the optimal threshold, Yong-le et 

al. [6] adjusted the threshold parameter for SVD using 

mathematical relation between threshold and the empirical value 

of signal to noise ratio of the images. A particular method of 

sparse representation framework has been proposed by Priyam 

Chatterjee [7] using K-SVD algorithm which effectively removes 

the noise from the image. 

 

PDE based nonlinear diffusion methods [12][13][14][15] are the 

effective mathematical processes which has received much 

interest since the early work of Perona and Malik [10][11] in 

which image details are preserved by adding a high order 

nonlinear diffusive term to control the smoothing process near 

edge structures. Many researchers have investigated to develop 

improved version of Perona-Malik diffusion model such as a 

generalized diffusion model [12], a non-linear anisotropic 

diffusion equation based model [13] and a ramp preserving 

Perona-Malik model [14] etc. The diffusion coefficients are the 

functions of gradient magnitude and dynamic threshold of the 

image driven by a Poisson equation [11][15]. However, to 

generate a consistent diffusivity function and dynamic threshold 

to achieve better results was difficult. 

 

In order to obtain better image enhancement and de-noising, some 

approaches [16][17][18] utilizing the operation of SVD with PDE 

based diffusion methods has been proposed recently. Zhang et al. 

[16] presents a PDE based minimum energy model for selecting 
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the proper singular values for signal and discarding those which 

represents noise in SVD process. Nikapour et al. [17] proposed a 

time domain approach and use of PDEs in time series for noise 

reduction in FM signals. The signal data matrix is divided into 

signal subspace and noise subspace using the SVD based 

approach introduced in [8] and then the noise from the singular 

vectors (SVs) is reduced by PDEs. Our initial study [22] was 

based on Nikapour’s approach [17]. But, the idea of taking a 

global threshold parameter in SVD for entire image is not quite 

effective for highly textured image data values. 

 

In the proposed approach, we further investigate the relation 

between PDE based nonlinear diffusion techniques and SVD 

filtering method to develop an efficient image enhancement 

method with maximum noise reduction and cheaper 

implementation. This can be accomplished by adopting the idea of 

smoothing and sharpening diffusion coefficient used in nonlinear 

anisotropic diffusion model [13]. The input noisy image is 

diffused by smoothing diffusion coefficient and sharpening 

diffusion coefficient to get smoothed version and sharpened (edge 

enhanced) version of the input image respectively and perform 

SVD filtering on each image version individually. Finally, the two 

SVD filtered images are linearly added to get the enhanced as 

well as noise reduced image. 

  

The rest of the paper is organized as follows. In Section 2, we 

briefly discuss the SVD method. Section 3 describes the proposed 

image enhancement and de-noising method based on PDE based 

diffusion and SVD filtering. The experimental results and 

performance comparisons are shown in Section 4. Finally, a 

conclusion is made in Section 5. 

 

2. SVD BASED IMAGE DE-NOISING  
SVD of a matrix is one of the most efficient mathematical tool 

used for solving the inverse problems [20]. In order to 

discriminate the noise from the signal using SVD [8][20], the 

image is converted into an observational data matrix and then the 

values of the matrix are decomposed into smaller matrices. For 

example, the SVD of matrix 𝐻 with size 𝑚 × 𝑛 is of the form: 

 

𝑀 = 𝑈𝑊𝑉𝑡 =  ∝𝑖
𝑛
𝑖=1 𝑢𝑖     𝑣𝑖

𝑡                                                            (1)                                                                                             

                                                                                                                                                  

where 𝑈 and 𝑉 are orthogonal matrices and 𝑊 is an  𝑟 × 𝑟 

diagonal matrix whose elements are known as singular values of 

𝑀 with components ∝𝑖𝑗   = 0 if 𝑖 ≠ 𝑗 and ∝𝑖𝑗  > 0 if  𝑖 = 𝑗. 

The columns of the orthogonal matrices 𝑈 and 𝑉 are called as the 

left and right singular vectors respectively. The noisy subspace 

and noise-free subspace separation introduced by Mohsen et al. 

[17] which is briefly expressed below: 

  𝑀 = 𝑈𝑊𝑉𝑡 =  𝑈𝑠   𝑈𝑛  
𝑊𝑠 0
0 𝑊𝑛

   
𝑉𝑠
𝑇

𝑉𝑛
𝑇                                                                

  𝐹𝑠 = 𝑈𝑠𝑈𝑠
𝑡𝑀 = 𝑀𝑉𝑠𝑉𝑠

𝑡                                                                                         

  𝑄𝑛 = 𝑈𝑛𝑈𝑛
𝑡𝑀 = 𝑀𝑉𝑛𝑉𝑛

𝑡                                                                                       

where 𝑊𝑠  and 𝑊𝑛  represents the noise-free image subspace and 

noisy image subspace respectively. A threshold point 𝑇ℎ  is to be 

determine in the 𝑊 matrix as can be seen from (1), where the 

lower singular values from the point can be categorized as noisy 

subspace and hence, should be set to zero [8][19]. This threshold 

point can be determined by calculating the gradient of the image 

at each pixel position. Based on the perturbation theory and 

statistical hyperthesis testing [19], the threshold was bounded by 

Konstantinides [9, 20] due to random noise as shown below: 

 

 𝑐𝜎 ≤   𝑇ℎ   ≤   𝑚𝑛𝜎                                                                                                                            

where 𝑐 is a parameter determined from the statistics of signal and 

noise, 𝜎 is the standard deviation of the noise. Konstantinides [20] 

demonstrated that the simple threshold  𝑇ℎ  = 3𝜎 perform most 

stably under different noise levels.  

3. PROPOSED IMAGE ENHANCEMENT        

AND DE-NOISING METHOD 
The proposed image enhancement and de-noising method is a two 

stage process. In the first stage, diffusion process has been carried 

out and in the second stage SVD filtering has been followed. 

During the first stage, the input noisy image corrupted by additive 

Gaussian noise is diffused by using anisotropic diffusion 

technique which was first proposed by Perona-Malik [10][11] for 

scale space description of images. The nonlinear anisotropic 

diffusion [12][13] is given as: 

 
𝜕

𝜕𝑡
𝑓𝑡 𝑥, 𝑦 = div 𝑐𝑡 𝑥, 𝑦 ∇𝑓𝑡 𝑥, 𝑦                                               (2) 

   

where 𝑓𝑡 𝑥, 𝑦  is a two dimensional image 𝑓 𝑥, 𝑦  at iteration 𝑡 
with 𝑓0 𝑥, 𝑦  be the original image. 𝑐𝑡 𝑥, 𝑦  is the diffusion 

coefficient at iteration 𝑡, ∇ is the gradient operator operator and  

div is the divergence operator. The idea of anisotropic diffusion is 

to vary the diffusion coefficient 𝑐𝑡 𝑥, 𝑦  in different iterations at 

each pixel position so that the noisy homogeneous regions can be 

smoothed out with preservation of edges and fine structures. The 

diffusion coefficient 𝑐𝑡 𝑥, 𝑦  is the function of image gradient 

magnitude ∇𝑓 𝑥, 𝑦  at different pixel positions which is given as: 

 

𝑐𝑡 𝑥, 𝑦 = 𝑐𝑡 ∇𝑓 𝑥, 𝑦  =
1

1+ 
 ∇𝑓 

𝑘
 

2                                             (3) 

 

which implies that the diffusion coefficient is a decreasing 

function of the image gradient magnitude results in slow diffusion 

in high gradient regions like edges and fine structures whereas fast 

diffusion in low gradient homogeneous regions. The parameter 𝑘 

acts as a threshold between the two gradient strengths whose high 

value over-diffuse the entire image and results in a blurred image 

or otherwise if its value is kept low then the diffusion process will 

stop and restored the original image as an output image. It can be 

observed that for a fixed value of 𝑘 in (3), the corresponding 

diffusion function 𝑐𝑡 𝑥, 𝑦  falls continuously and approaches to 

approximately zero in accordance with increasing gradient 

magnitudes ∇𝑓 of the image. In our experimentation, we observed 

that, at the portions of the image having lot of fine boundaries and 

edge structures, the gradient magnitude attains its maximum 

position with ∇𝑓 > 5𝑘 where the diffusion stops to recover the 

high gradient features of the image and at the position when |∇𝑓| = 

𝑘, a fast diffusion occurs which gives maximum smoothing effect 
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because the diffusion function 𝑐𝑡 𝑥, 𝑦   in (3) gets changed to a 

constant diffusion parameter 𝑐𝑡  =1/2 as shown below:  

 

𝑐𝑡 𝑥, 𝑦 = 𝑐𝑡 ∇𝑓 𝑥, 𝑦  =
1

1+ 1 2
  

 

𝑐𝑡 𝑥, 𝑦 = 𝑐𝑡 ∇𝑓 𝑥, 𝑦  =
1

2
  or 𝑐𝑡  =

1

2
   

 

which gives the linear isotropic diffusion equation with non-

homogeneous diffusivity as shown below: 

 
𝜕

𝜕𝑡
𝑓𝑡 𝑥, 𝑦 = div 𝑐𝑡  ∇𝑓𝑡 𝑥, 𝑦                                                     (4) 

 

Such type of diffusion is equivalent to convolving the image with 

Gaussian smoothing filter. This linear non-homogeneous isotropic 

diffusivity suits our requirement of getting the first diffused image 

in the form of smoothed version of the image 𝑓𝑠(𝑥, 𝑦). Then, we 

need to have an edge enhanced image as the second diffused 

image which we achieved from inverse heat diffusion equation 

[13] which is as follows: 

 
𝜕

𝜕𝑡
𝑓𝑡 𝑥, 𝑦 = −∆𝑓 = −(𝑓𝑥𝑥 + 𝑓𝑦𝑦 )                                          (5)                                             

 

where ∆ is the Laplacian operator which incorporates 𝑓𝑥𝑥  and 𝑓𝑦𝑦  

which are the second derivative of the image function at 

horizontal and vertical direction respectively. The inverse heat 

diffusion equation [13] enhances the edges and fine structures of 

the image but also enhances the flat regions of the image. Thus, it 

is not in favour of detecting and extracting the edges and fine 

structures. In order to get more sharp edge enhanced image, either 

we may use the Canny edge detection operator [23] on the image 

diffused by inverse heat diffusion equation [13] or simply we may 

subtract the smoothed version of the image (first diffused image) 

from the original image. For better sharpness of edges and fine 

boundaries, we utilizes Canny edge detection operator [23] on the 

image diffused by inverse heat diffusion equation [13] which 

fulfilled our requirement of getting the second diffused image in 

the form of sharp edge enhanced image 𝑓𝑒(𝑥, 𝑦). The two 

diffused images are having just opposite features to each other. 

One is having smooth area of very low gradient values and other 

is having edge structures with high gradient values. After 

diffusion process, some undesirable blurred region and edges 

were still found in the two diffused images respectively. To 

further de-noise and enhance the diffused images, SVD filtering is 

applied to the two diffused images individually in the next stage.  

 

Traditionally, the effectiveness of SVD filtering algorithm 

depends on the accuracy of the estimate of the fixed threshold  𝑇ℎ  . 
To perform SVD on image matrix, the singular values lower than 

predefined threshold  𝑇ℎ   are set to zero which represents noise. If 

we choose very small  𝑇ℎ  , then some noise will be removed but 

most of them will be retained or otherwise, if we choose very 

high   𝑇ℎ  , then most of the singular values will set to zero and 

entire image will be smooth out. To overcome this drawback of 

SVD filtering, we fixed the threshold   𝑇ℎ  to a high value for the 

first diffused image (smoothed version) 𝑓𝑠(𝑥, 𝑦) so that the 

singular values lower than the threshold representing the over-

smoothed portion of the image will get cancel out and gives a flat 

smoothed image with homogeneous structures. Reversibly, we set 

a low threshold  𝑇ℎ   for the second diffused image (edge enhanced 

image) 𝑓𝑒(𝑥, 𝑦) so that the high gradient edges become more 

sharp and low gradient undesirable spots will be removed. In this 

way, we have two similar but totally opposite featured images 

𝑓𝑠
′ 𝑥, 𝑦  and 𝑓𝑒

′ 𝑥, 𝑦  whose linear combination gives us a well 

enhanced and noise reduced image as follows: 

 

𝑓𝑜 𝑥, 𝑦 = 𝑝𝑓𝑠
′ 𝑥, 𝑦 + 𝑞𝑓𝑒

′ 𝑥, 𝑦                                     (6) 

 
         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: The functional block diagram of the proposed method 

 

where 𝑓𝑜 𝑥, 𝑦  is the resultant image. The best result can be 

obtained by choosing the optimized values of the two constants 𝑝 

and 𝑞 in (6). We compared the results on various test images for 

different combinations of the two constant values in accordance 

with increasing noise variance in terms of signal to noise ratio 

whose observation is shown in Section 4.  

        

The complete functional block diagram of the proposed image 

enhancement and de-noising method by diffusion based SVD 

filtering is shown in Fig. 1. The functional steps of proposed 

diffusion based SVD filtering algorithm for image enhancement 

as well as de-noising are as follows: 

1) Diffuse the input noisy image 𝑓(𝑥, 𝑦) into flat 

smoothed image 𝑓𝑠(𝑥, 𝑦) by using linear non-

homogeneous isotropic diffusion equation (4). 

2) Diffuse the image 𝑓(𝑥, 𝑦) into sharp edge enhanced 

image 𝑓𝑒(𝑥, 𝑦) by using inverse heat diffusion equation 

(5) followed by Canny edge detection operator. 

Input Noisy Image 

𝑓(𝑥, 𝑦) 

 

First 

Diffused 

Image 

𝑓𝑠(𝑥, 𝑦) 𝑓𝑒(𝑥, 𝑦) 

Second 

Diffused 

Image 

 

 

 

  

 
𝑓𝑠
′ 𝑥, 𝑦  

SVD filtered 

Image with 

high 𝜖 

 

𝑓𝑒
′ 𝑥, 𝑦  

SVD filtered 

Image with 

low 𝜖 

 + 
+ 
+ Output Enhanced 

and De-noised 

Image 𝑓𝑜 𝑥, 𝑦  

𝑝 𝑞 
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3) Apply SVD filter to the image 𝑓𝑠 𝑥, 𝑦  with a high 

threshold 𝜖 and set the singular values to zero which are 

smaller than the threshold  𝑇ℎ  to get the image 𝑓𝑠
′ 𝑥, 𝑦 . 

4) Apply SVD filter to the image  𝑓𝑒 𝑥, 𝑦  with a low 

threshold 𝜖 and set the singular values to zero which are 

smaller than the threshold  𝑇ℎ  to get the image 𝑓𝑒
′ 𝑥, 𝑦 . 

5) Linearly combine the two SVD filtered images 𝑓𝑠
′ 𝑥, 𝑦  

and  𝑓𝑒
′ 𝑥, 𝑦  as shown in (6) to get the enhanced and 

de-noised ouput image 𝑓𝑜 𝑥, 𝑦 .  
 

 

4. EXPERIMENTAL RESULTS  
The proposed method for image enhancement and de-noising 

using diffusion based SVD filtering (DSVD) has been 

experimentally analyzed and validated by applying it on various 

test images. Matlab version 2009b has been used for 

implementation of the proposed method. The two representative 

images of moon and cameraman taken from image processing 

toolbox of Matlab version 2009b are shown in Fig. 2 for 

demonstration. Out of these two images, the image of moon is 

having a large homogeneous background with sharp moving curve 

where as the image of cameraman is highly textured with 

homogeneous background of sky and blurred ground region. The 

two images are of size 512 × 512 pixels and are represented by 8-

bits per pixel. Both the images are corrupted by additive Gaussian 

noise 𝑁(0, 𝑣) with mean = 0, variance 𝑣 varying from 0.005 to 

0.03. The performance of the proposed method is very much 

dependent on the two constants 𝑝 and 𝑞 in (6). During the 

experimentation, we calibrated different combinations of the two 

constants 𝑝 and 𝑞 in (6) for different values of signal to noise ratio 

at different noise levels for the two test images of moon and 

cameraman which are shown in Table 1 and Table 2 respectively. 

 

   
 

Fig 2: The two original test images of moon and cameraman 

 

Table 1: SNR of restored images of moon at different 

combinations of 𝒑, 𝒒 and noise variance 𝒗 = 0.01, 0.02 and 

0.03 respectively. 

 

p q 𝑣 = 0.01 𝑣 = 0.02 𝑣 = 0.03 
1 1   29.14                28.81                 28.43 

1 1.5   32.13   31.08    30.55 

2 2.5   34.67   33.55    33.07 

2 3.5   36.42   36.13    35.47 

3 4.5   41.20   39.89        39.05 

4  4.5   38.80   37.68    37.09 

4 5   38.97   37.88    37.13 

 

Table 2: SNR of restored images of cameraman at different 

combinations of 𝒑, 𝒒 and noise variance 𝒗 = 0.01, 0.02 and 

0.03 respectively. 

 

p q 𝑣 = 0.01 𝑣 = 0.02 𝑣 = 0.03 
1 1   26.32    26.11           25.23 

1 1.5   28.03    27.78   27.15 

2 2.5   32.77    32.05   31.47 

2 3.5   35.20    34.32   33.57 

3 4.5   38.60    37.79   37.02 

4 4.5   37.80    37.27   36.49 

4 5   37.57    36.98   36.15 

 

This observation signifies that the effectiveness of the proposed 

method is based on the following three features: 

 

(a) If  𝑝 = 𝑞, then both the SVD filtered images 𝑓𝑠
′ 𝑥, 𝑦  and 

𝑓𝑒
′ 𝑥, 𝑦  irrespective of the threshold  𝑇ℎ   will be linearly 

superimposed over each other to give the output image 

𝑓𝑜 𝑥, 𝑦  having high smoothing effect and edge blurring with low 

SNR value.  

 

(b) If 𝑝 > 𝑞, then the first SVD filtered image 𝑓𝑠
′  𝑥, 𝑦  with high 

threshold 𝜖 will be superimposed over second SVD filtered image 

𝑓𝑒
′ 𝑥, 𝑦  with low threshold to give the output image 𝑓𝑜 𝑥, 𝑦  with 

high smoothing effect and poor sharpening of the edges because a 

high value of 𝑝 is weighted with first SVD filtered image 𝑓𝑠
′ 𝑥, 𝑦  

as compared to the low value of 𝑞 for the second SVD filtered 

image 𝑓𝑒
′ 𝑥, 𝑦 . Conclusively, SNR of the output image 𝑓𝑜 𝑥, 𝑦  

falls because of the high smoothing effect and poor sharpening of 

the edges with reduced Gaussian noise. 

 

(c) If 𝑝 < 𝑞, then the first SVD filtered image 𝑓𝑠
′  𝑥, 𝑦  with high 

threshold 𝜖 will be superimposed over second SVD filtered image 

𝑓𝑒
′ 𝑥, 𝑦  with low threshold to give the output image 𝑓𝑜 𝑥, 𝑦  with 

low smoothing effect and better sharpening of the edges because a 

low value of 𝑝 is weighted with first SVD filtered image 𝑓𝑠
′  𝑥, 𝑦  

as compared to the high value of 𝑞 for the second SVD filtered 

image 𝑓𝑒
′ 𝑥, 𝑦 . Conclusively, SNR of the output image 𝑓𝑜 𝑥, 𝑦  

increases because of the low smoothing effect and better 

sharpening of the edges with reduced Gaussian noise. 

 

During the experimental observation, we varied the value of the 

two constants 𝑝 and 𝑞 in (6) from 1 to 5. This observation gives 

the optimal combination for 𝑝 = 3 and 𝑞 = 4.5 and shown in the 

bold fonts in Tables 1 and Table 2.  

 

The another important parameter in the proposed method is the 

optimum choice of the constant diffusion coefficient 𝑐𝑡  in (4) as a 

function of gradient magnitude ∇𝑓 𝑥, 𝑦  at each pixel positions 

for the generation of first diffused (smoothed version) image. The 

graph in Fig 3 shows the variation of the diffusion 

function  𝑐𝑡 𝑥, 𝑦  with respect to the ratio of the gradient 

magnitude  ∇𝑓  to the edge threshold parameter 𝑘 as shown in (3) 
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Fig 3: Graph between noise diffusion function 𝒄𝒕 𝒙, 𝒚  and the 

ratio of gradient magnitude  𝛁𝒇  to the edge threshold 𝒌 

 
 

Fig 4: 1st row: Noisy images of moon with  𝑣 = 0.01 and 0.02 

respectively; 2nd row: First diffused images respectively; 3rd 

row: Second diffused images respectively; 4th row: SVD 

filtered images of first diffused images respectively; 5th row: 
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SVD filtered images of second diffused images respectively; 6th 

row: Output images respectively. 

 
 

Fig 5: 1st row: Noisy images of cameraman with  𝑣 = 0.01 and 

0.02 respectively; 2nd row: First diffused images respectively; 

3rd row: Second diffused images respectively; 4th row: SVD 

filtered images of first diffused images respectively; 5th row: 

SVD filtered images of second diffused images respectively; 6th 

row: Output images respectively. 

   
 

 
 

Fig 6: 1st row: Output moon images by BSVD at noise 

variance  𝑣 = 0.01 and 0.02 respectively; 2nd row: Output 

moon images by SVDMEM at noise variance 𝑣 = 0.01 and 0.02 

respectively; 3rd row: Output moon images by DSVD at noise 

variance 𝑣 = 0.01 and 0.02 respectively. 

 

Table 3: SNR of restored images of moon by the three 

methods: BSVD, SVDMEM and DSVD 

 

Noise 

Variance(𝑣) 
BSVD[9] SVDMEM[16]  DSVD 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

38.22 

37.52 

37.14 

36.86 

35.29 

35.02 

39.42 

38.32 

37.54 

36.97 

36.06 

35.11 

41.23 

40.12 

39.03 

38.44 

37.94 

37.67 
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Fig 7: 1st row: Output cameraman images by BSVD at noise 

variance  𝑣 = 0.01 and 0.02 respectively; 2nd row: Output 

cameraman images by SVDMEM at noise variance 𝑣 = 0.01 

and 0.02 respectively; 3rd row: Output cameraman images by 

DSVD at noise variance 𝑣 = 0.01 and 0.02 respectively. 

 

Table 4: SNR of restored images of cameraman by the three 

methods: BSVD, SVDMEM and DSVD 

 

Noise 

Variance(𝑣) 
BSVD[9]  SVDMEM[16]  DSVD 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

36.30 

36.04 

35.37 

34.83 

34.13 

33.72 

36.69 

36.14 

35.68 

35.03 

34.45 

34.07 

38.81 

38.27 

38.11 

37.67 

37.58 

37.21 

 

 

 

 

 

 

 

 
 

Fig 8: Graph between noise variance and SNR for moon 

image 

 
 

Fig 9: Graph between noise variance and SNR for cameraman 

image 

 

which gives the optimal value of constant diffusion parameter 

𝑑 = 1/2 in (4) for the two representative images. 

 

 The noisy images of moon and cameraman with noise variance 𝑣 

= 0.01 and 0.02 and their restored images at each step of DSVD 

with 𝑝 = 3 and 𝑞 = 4.5 are shown in Fig. 4 and 5 respectively. It is 

observed from the experimental results that, DSVD performs well 

in homogeneous regions but slightly blurs the edges and fine 

structures for both the test images. On increasing the noise 

variance 𝑣 beyond 0.03, the blurriness in the output image 

increases because of the use of high threshold during SVD 

filtering in the smoothed version (1st diffused image) of the noisy 

image which tends to make output image more smooth. However, 

the low threshold in the edge enhanced image (2nd diffused image) 
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with high value of 𝑞 is advantageous to get more sharpened edge 

enhanced image as in the case of cameraman image which have 

lot of edge structures. The method gives acceptable results for low 

edge abundant image like moon image but with the adjustment of 

the two constants 𝑝 and 𝑞, diffusion coefficient 𝑐𝑡  in addition with 

proper selection of thresholds for the two SVD filter may give a 

better results for high edge abundant images. 

 

4.1 Performance Comparison  
The proposed method (DSVD) has been experimentally compared 

with traditional block based SVD (BSVD) [9] and SVD based 

image de-noising with minimum energy model (SVDMEM) [16] 

in terms of signal to noise ratio (SNR). The comparison images 

are shown in Fig. 6 and 7. Fig. 6 shows the resultant images 

obtained by the three methods (BSVD, SVDMEM and DSVD) of 

noisy moon image with variance 𝑣 = 0.01 and 0.02 respectively. 

Fig. 7 shows the same for cameraman image.  For better noise 

reduction algorithm, the value of SNR should be very high. Table 

3 and Table 4 respectively summarize the SNR values of restored 

images by the three methods for the two test images used in this 

validation. The graphs in Fig. 8 and 9 show the variation of SNR 

for the three methods with respect to the variation in noise 

variance of the two images respectively. It is observed from Fig. 

6-7, Table 3-4 and the graphs of Fig. 8 and 9 that, the proposed 

method has attained maximum SNR as compared to othere two 

methods. In SVDMEM [16], the edges become slightly more 

blurred before the noise variance reaches to 0.03 in both of the 

test images where as in the case of BSVD [9], there is a sudden 

variation of SNR for noise variance varying between 0.02 to 0.025 

in moon image. Furthermore, it is visible from Fig. 5 and 6 that 

the proposed method (DSVD) works as better noise limiter as well 

as edge enhancement filter as compared to SVDMEM [16] and 

BSVD [9] in low noisy conditions of the images having a large 

homogeneous area with edge structures. 

 

5. CONCLUSION  
The paper proposed a method of image enhancement and de-

noising by applying traditional singular value decomposition on 

partial differential equation based diffused images. Linear non-

homogeneous isotropic diffusion and inverse heat diffusion 

method has been applied in the first stage of the proposed process 

to generate the diffused versions of the original noisy image in the 

form of smoothed image and edge enhanced image respectively. 

Singular value decomposition is then applied to each of the two 

diffused versions of the image with a fixed threshold individually 

which leads to the enhancement of sharp features of the image as 

well as noise reduction. The proposed method may be considered 

as the solution of the problem of optimized threshold in singular 

value decomposition. The method performs well in low noisy 

images when compared with recently developed singular value 

decomposition method with minimum energy model and 

traditional block based singular value decomposition in terms of 

signal to noise ratio.  

Some undesirable edge blurring effect in highly edge abundant 

images is the problem when high accuracy is important which 

needs to be improve in the future work with taking the account of 

proper selection of the parameters involved in the method. 
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