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ABSTRACT 

An analysis is carried out to study free convective flow and 

heat transfer of an viscous incompressible electrically 
conducting fluid over a stretching sheet. Using the similarity 
variable, the partial differential equations are reduced to 
ordinary differential equations by using R-K Gill method 
along with shooting technique. Numerical results of the local 
of the local skin friction coefficient and the local Nusselt 
number as well as the velocity and temperature profiles are 
presented through graphs for different physical parameters, 

such as the Prandtl number(Pr), Grashof number(Gr), 
permeability parameter(AP) and ratio of the free stream 
velocity to parallel wall parameter() and the radiation 
parameter(R). 
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1. INTRODUCTION 
There are many transport processes which occur naturally and 
artificially in which flow is modified or driven by density 
differences caused by temperature, chemical composition 
differences and gradients and material or phase constitution. 
The problem of steady flow and heat transfer over a stretching 
surface could be very practicable in many applications in the 
polymer technology and metallurgy. In particular, many 
metallurgical processes involve the cooling of continuous 
strips or filaments by drawing them though a quiescent fluid 

and that in the process drawing, these strips are sometimes 
stretched. Accurate knowledge of the overall convection heat 
transfer is important in many fields, including heat 
exchangers, hot water and stream pipes heaters, refrigerators 
and electrical conductors. Because of its industrial 
importance, this class of heat transfer has been the subject of 
many experimental and analytical studies (Bassam and Abu-
Hijleh, 2002) 

Chaudhary and Merkin (1994) discussed the free convection 
boundary layer flow on a vertical surface which results when 
there was an exothermic catalytic chemical reaction on that 
surface. The system was seen to be governed by the two 
dimensionless chemical parameters and which were 
measures of the activation energy and heat of reaction 
respectively, as well as the Prandtl and Schmidt numbers. A 
series solution was obtained valid near the leading edge of the 

plate and this was continued downstream by numerical 
solutions of the full equations. The numerical solutions 
indicate the criticality of the system by local rapid increases in 
reaction rate and were small. Asymptotic solutions 
valid at large distances downstream were obtained and these 
we shown to be essentially different in character between the 
cases when = 0 and when 0. A singularity was 
seen to developed at a finite distance downstream when both 

= 0 and = 0 and this was analyzed. Gupta and 
Mahapatra (2003) analyzed stagnation point flow towards a 
stretching surface. They reported in their research work that a 
boundary layer is formed when stretching velocity is less than 
the free stream velocity. As the stretching velocity exceeds the 

free stream velocity is less than an inverted boundary layer is 
formed. Kafoussians (1989) studied heat transfer flow through 
a very porous medium bounded by a semi infinite horizontal 
plate. He observed that when the permeability parameter k 
increased the temperature of the fluid increases. 
Sharma and Singh (2008) investigated the effects of variable 
thermal conductivity and heat source/sink on flow of a 
viscous incompressible electrically conducting fluid in the 

presence of uniform transverse magnetic field and variable 
free stream near a stagnation point on a non-conducting 
stretching sheet. The equations of continuity, momentum and 
energy were transformed into ordinary differential equations 
and solved numerically using shooting method. The velocity 
and temperature distributions were discussed numerically and 
presented through graphs. Skinfriction coefficient and the 
Nusselt number at the sheet were derived, discussed 

numerically and then numerical values of physical parameter 
were presented through tables. It was observed that fluid 
velocity decreases due to increase in the Hartmann number for 
< 1 while reverse effect is observed when > 1 and 
there was boundary layer formation when = 1. Prasad and 
Kulachi (1984) discussed numerical solutions for two-
dimensional steady, free convection for rectangular cavity 
with constant heat flux on one vertical wall, the other vertical 
wall being isothermally cooled. The horizontal walls were 

insulted. Results were presented in terms of streamlines and 
isotherms, local and average Nusselt numbers at the heated 
wall and the local heat flux at the cooled wall flow patterns 
were observed to be quite different from those in the case of a 
cavity with both vertical walls at constant temperatures. 
Specifically, symmetry in the flow field is absent and any 
increase in applied heat flux was not accompanied by linearly 
proportional increase in the temperature on the heated wall. 

Also, for low Prandtl number, the heat transfer rate based 
upon the mean temperature difference is higher as compared 
to experimental results for the isothermal case. Heat transfer 
results, further indicate that the average Nusselt number is 

correlated by a relation of the form Nu = constant 
nm

a AR  

where 
m

aR is the Rayleigh number and A the height to-width 

ratio of the cavity. Mahanti and Gaur (2009) investigated the 
effects of linearly varying viscosity and thermal conductivity 

on steady free convective flow of a viscous incompressible 
fluid along an isothermal vertical plate in the presence of heat 
sink. The governing equations of continuity, momentum and 
energy were transformed into coupled and non-linear ordinary 
differential equations using similarity transformation and then 
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solved using Runge-Kutta fourth order method with shooting 
technique. They showed that the velocity and temperature of 
the fluid decrease with the increase in Prandtl number. Skin- 
friction coefficient decrease while rate of heat transfer 
increases with the decrease in the heat sink. Mahapatra and 

Gupta (2001) reported MHD stagnation point flow towards 
isothermal stretching sheet and pointed that velocity 
decreases/increases with the increase in magnetic field 
intensity when free stream velocity is smaller/greater 
respectively than the stretching velocity. The radiation effect 
takes place at high temperature. Free convection heat transfer 
with radiation effect near the isothermal stretching sheet and 
over a flat sheet near the stagnation point have been 

investigated by Pop et al (2004). They found that a boundary 
layer thickness increases with radiation. The radiative effect 
on the heat transfer from an arbitrary stretching surface with 
non-uniform surface temperature in a porous medium has 
been studied by Rashad (2007). 

 

2. GOVERNING EQUATIONS 
Consider the steady free convective flow and heat transfer of a 
viscous, incompressible and electrically conducting fluid past 
a stretching surface coinciding with the plane    y = 0. 
Keeping the origin fixed two equal and opposite forces are 
applied along the x-axis which results in stretching of the 

sheet and hence, the flow is generated. Fluid is in a porous 
medium in the presence of buoyancy effect and volumetric 
rate of heat generation /absorption 
with radiation effect. The x-axis is taken along the wall and y-
axis is transverse to the parallel walls. The temperature of the 
ambient fluid is Tand that of the stretching surface is 
Tw(x). The fluid properties are assumed to be constant except 
the density in the buoyancy terms of the linear momentum 

equation which is approximated according to the Boussinesq’s 
approximation. Under the above assumptions, the boundary 
layer form of the governing equations can be written as 
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Here qr is approximated by Rosseland approximation, 

which gives  
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It is assumed that the temperature difference within the 

flow is so small that T4 can be expressed as a linear 

function of  T. This can be obtained by expanding T4 

in a Taylor series about T and neglecting the higher 

order terms. Thus we get 

43344 34)(4   TTTTTTTT  

 (5) 

Using (4) and (5), Equ. (3) reduces to 
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In free-stream velocity bxxuu  )(  where b is the 

free stream velocity parameter. Equation (2) becomes 
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The boundary conditions of the problem under 

consideration are 
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where u, v are the velocity components in the x and y 

direction respectively,  is the kinematic viscosity, p is the 

pressure,  is the density of the fluid, g is the acceleration due 

to gravity,  is the volumetric coefficient of thermal 

expansion, T and T are the temperature of the fluid inside the 

thermal boundary layer and the fluid temperature in the free 

stream respectively, K is the permeability of the porous 

medium, k is the thermal conductivity,  is the density of the 

fluid, cp is the specific heat capacity at constant pressure, Q is 

the volumetric heat flux, 1 is the Stefan-Boltzman constant, 

k1 is the mean absorption coefficient. 

Introducing the stream function (x,y) as defined by 
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Such that the continuity equ. (1) is satisfied automatically. To 

avoid the fluid properties appearing explicitly in the 

coefficient of the equations we have the following similarity 

transformation  
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Substituting equs. (10), (11), (12) into equs. (6) and (8) 

we finally obtain a system of non-linear ordinary 

differential equation with appropriate boundary 

conditions: 
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The corresponding boundary conditions are 
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 The quantities of physical interest in this 

problem are the local skin friction coefficient and the 

local Nusselt number, which are defined by 
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2.1 Numerical Methods for Solution 

Eqs. (13) and (14) constitute a highly non-linear coupled 

boundary value problem of third and second order. So we 

develop most effective numerical shooting technique with R-

K Gill method. To select  we begin with some initial guess 

value and solve the problem with some particular set of 

parameters to obtain  0''f  and ).0(' The solution 

process is replaced with another larger value of  until two 

successive values of  0''f and )0(' differ only desired 

digit signifying the limit of the boundary along . The last 

value of  is chosen as appropriate value for that particular 

set of parameters. Eqs. (13) and (14) of third order in f and 

second order in  has been reduced to a system of five 

simultaneous equations of first order for five unknowns 

following the method of superposition [13]. To solve this 

system we require initial conditions whilst we have only two 

initial conditions )0('f and )0(f on ,f one initial 

condition on  . Still there are two initial conditions )0(''f

and )0(' which are not prescribed. Now, we employ 

numerical shooting technique where these two ending 

boundary conditions are utilized to produce two known initial 

conditions at  = 0. In this calculation, the step size  = 

0.001 is used while obtaining the numerical solution with max 

= 13 and four decimal accuracy as the criterion for 

convergence. 

2.2  Results and Discussion 

The system of similarity Eqs.(13) and (14) with boundary 

conditions are solved numerically by using shooting technique 

with R-K Gill method similar to that described by Na[13]. In 

order to get a clear insight of the physical problem, the 

velocity 
'f and the temperature  have been discussed by 

assigning numerical values to the parameters encountered in 

the problem. To be realistic, the values of Prandtl number are 

chosen as 0.71,1,5,10 (especially for air Pr = 0.71 at which 

represents 20C and one atmospheric pressure). Due to free 

convection problem local Grashof number for heat transfer 

takes value 0.001, 0.002, 0.003 and the permeability 
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parameter takes value as 0.1,0.2,0.3, the ratio of free stream 

velocity parameter to parallel wall parameter  = 0.1,0.2,0.3 

and the radiation parameter takes value as 1,2,3. 

Table 1. Results of )0(''f and )0(' for various 

values of Gr (Pr= 0.71,  = 0.1, AP=0.1, R=0.05, 

S=0.05) 

Gr )0(''f  )0('  

0.001 0.0422 0.0740 

0.002 0.0461 0.0701 

0.003 0.0499 0.0663 

Table 2. Results of )0(''f and )0(' for various 

values of Pr (Gr= 0.001,  = 0.1, AP=0.1, R=0.05, 

S=0.05) 

Pr )0(''f  )0('  

1 0.0421 0.0766 

5 0.0417 0.0338 

10 0.0416 -0.0635 

Table 3. )0(''f and )0(' for various values of    

(Pr= 0.71, Gr = 0.001, AP=0.1, R=0.05, S=0.05) 

 )0(''f  )0('  

0.1 0.0422 0.0740 

0.2 0.1134 0.0633 

0.3 0.2059 0.0420 

Table 4. )0(''f and )0(' for various values of AP 

(Gr=0.001, Pr= 0.71,  = 0.1, R=0.05, S=0.05) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. )0(''f and )0(' for various values of R 

(Gr=0.001, Pr= 0.71,  = 0.1, AP=0.1, S=0.05) 

R )0(''f  )0('  

1 0.0684 0.0809 

2 0.0684 0.0940 

3 0.0684 0.0999 

 

Table 1-5; exhibit the behavior of the skin friction coefficient 

)0('f and the local Nuselt number )0(' for 

representative values of different controlling parameters. 

From table1, it is observed that the Grashof number (Gr > 0) 

tends to increase the local skin friction. The local Nusselt 

number decreases as the Grashof number increases. From 

table 2, it is seen that the increase in the value of Prandtl 

number results in decreases the skin friction as well as the 

Nusselt number. From table 3, it is observed that the increase 

in the ratio of free stream velocity parameter to parallel wall 

parameter increases the skin friction but the Nusselt number 

decreases. Table 4, predicts that increase in permeability 

parameter results increase in skin friction but it decreases the 

Nusselt number. From table 5, it is observed that the radiation 

parameter has no significant influence on the skin friction 

whereas the increase in radiation parameter increases the rate 

of heat transfer. 

Figs. 1-2 depict the velocity and the temperature profiles for 

different values of Buoyancy parameter. It is observed that the 

velocity component decreases by increasing the buoyancy 

parameter and also the temperature profile decreases with 

increase in Buoyancy parameter. Figs. 3-4 depict the velocity 

and the temperature profiles for different values of Prandtl 

number. The increase in Prandtl number for this problem has 

no noticeable effect on the entire velocity profile and thermal 

boundary layers growth. Increase in values of Prandtl number 

produces decrease in the temperature of the fluid. From Fig. 5, 

it is observed that the increase in the ratio of free stream 

velocity parameter to parallel wall parameter decreases the 

AP )0(''f  )0('  

0.1 0.0518 0.0584 

0.2 0.0607 0.0521 

0.3 0.0684 0.0442 
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temperature distribution. Figs. 6 and 7 depict the velocity and 

the temperature profiles for different values of permeability 

parameter. The increase in the permeability parameter 

decreases the fluid velocity and the temperature of the fluid. 

Figs. 8 and 9 depict the velocity and the temperature profiles 

for different values of radiation parameter. This parameter has 

no significant influence on the velocity distribution as well as 

on the temperature distribution. 

2.3 Conclusion 

 In this paper, we discuss thermal radiation, 

Buoyancy and heat generation effects on flow and heat 

transfer over a stretching sheet in porous medium. The set of 

governing equations and the boundary conditions are reduced 

to ordinary differential equations with appropriate boundary 

conditions. Furthermore, the similarity equations are solved 

numerically by using R-K Gill method along with shooting 

technique. Effects of Grashof number Gr, Prandtl number Pr, 

the ratio of free stream velocity parameter to parallel wall 

parameter , permeability parameter AP and the radiation 

parameter on free convective flow and heat transfer have been 

examined and discussed in detail. From the present numerical 

investigation we conclude that: 

 The fluid velocity decreased as either of the Grashof 

number, permeability parameter, ratio of free stream 

velocity parameter to parallel wall parameter are 

increased 

 The fluid temperature decreased as either the 

Grashof number, permeability parameter, ratio of 

free stream velocity parameter to parallel wall 

parameter are increased 

 Skin friction increases owing to an increase in the 

Grashof number, the ratio of free stream velocity 

parameter to parallel wall parameter, Prandtl 

number and the permeability parameter 

 Buoyancy parameter, Prandtl number, permeability 

parameter and ratio of the free stream velocity 

parameter to wall parameter has significant impact 

in controlling the rate of heat transfer in the 

boundary layer. 

 

Fig 1. Velocity profile versus  when =0.1, AP=0.01, 

R=0.05, S=0.05 

 
 

Fig 2. Temperature distribution versus 

 when =0.1, AP=0.01, R=0.05, S=0.05 

 

 
 

Fig 3. velocity distribution versus  

when  = 0.1, AP=0.01, Gr=0.001, R=0.05, S=0.05 

 
 

 

 
 

Fig 4. Temperature distribution versus  
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Fig 5. Temperature distribution versus  

 

 
Fig 6. Velocity distribution versus  

 
 
 

 
Fig 7. Temperature distribution versus  

 

 
 

Fig 8. Velocity distribution versus 

 

 

Fig 9. Temperature distribution versus  
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