
International Journal of Computer Applications (0975 – 8887)

Volume 32– No.6, October 2011

1

An Efficient Solution for Aligning Huge DNA Sequences

ABSTRACT

Recently, many parallel solutions were proposed in order to

accelerate the exact methods of aligning huge DNA

sequences. However, most of these solutions restrict the

sequence’s sizes to be in kilobytes, in such a way that

megabyte-scale genome comparison cannot be achieved. In

addition, these solutions calculate only the alignment

similarity score without finding the actual alignment. This

paper presents an efficient solution to find the optimal

alignment of the huge DNA sequences. This solution releases

the condition of the sequence size to be in megabyte-scale

instead of few kilobytes. The fundamental innovation in this

work is developing efficient, linear space complexity, parallel

solution to achieve the optimum alignment with relatively

good performance. The shared memory parallel architecture is

the focus of this work and therefore we have considered off-

the-shelf systems like multi-core CPUs as well as advanced

shared memory platforms. Experimental results show that, the

proposed solution achieved high records compared to other

solutions that targeted the same goal with less hardware

requirements.

General Terms

Bioinformatics, High Performance Computing

Keywords

sequence alignment; space-efficient; parallel computing;

multi-core.

1. INTRODUCTION
Sequence alignment is a fundamental operation in

bioinformatics. It is a way of arranging DNA, RNA, or

protein sequences to identify regions of similarity or

difference. From a biological point of view, matches may turn

out to be similar functions, e.g. homology pairs or conserved

regions, while mismatches may detect functional differences

e.g. Single Nucleotide Polymorphism (SNP). The alignment

itself can be a global alignment (in which the complete

sequences take part in the alignment) or a local alignment (in

which only certain regions of each sequence that optimally

align – are considered).

Local alignment is often preferable, but can be more difficult

to find because of an additional challenge of identifying the

regions of similarity.

The complexity due to the sheer number of possible

combinations and searches makes the sequence alignment a

very compute-intensive problem. Exact algorithms are based

on dynamic programming. Needleman and Wunsch (NW) [1]

presented the first global alignment algorithm. Smith and

Waterman (SW) [2] improved this algorithm for local

alignment to find the optimum common alignment according

to a scoring function. These exact algorithms have a quadratic

space and computational complexities with respect to the

length of the two sequences. These quadratic complexities

forbid their use for large-scale biological sequences. For

example, aligning two sequences with one megabyte length

each requires several terabytes of memory, which cannot be

provided by most of the commodity computational resources.

Therefore, most of the commercial applications use other

algorithms based on heuristic approaches like Fasta [3] and
Blast [4]. These heuristic approaches generally reduce the

search space and make comparison of large genomic banks

faster, but at the expense of a non-negligible reduction of

algorithmic accuracy.

 The challenge of quadratic space and time of the exact

algorithms was addressed with many research groups along

with the advent of High Performance Computing (HPC)

revolution [5] [6]. There has been a plethora of new solutions

that attempt to solve this problem. To comprehensively

evaluate these contributions, we defined the problem

challenges by the following metrics.

1.1 Functionality

Sequence alignment means calculating the maximum

similarity score, then finding the actual alignment between

sequences to detect the functional similarity or difference. It

requires massive storage to be calculated for huge sequences.

So, many solutions ignore finding the actual alignment to

maximize the performance gain.

1.2 Performance

The quadratic complexity of the exact algorithms makes it a

must to use parallelization to support larger sequences’ sizes

with reasonable computational time. The speed of

computation is measured in Mega Cell Updates per Seconds

(MCUPS). MCUPS=
m*n

t
*10

6
Where m and n are the

sequences sizes and t is the execution time.

1.3 Storage

Exact methods require quadratic space. Thus, for megabyte-

scale sequences, terabytes are needed. Supporting huge

sequences enforces space complexity to be linear.

1.4 Hardware Cost

The cost of the parallel computing solution and its availability

is also one of the main metrics, as sequence alignment is a

fundamental problem that needs available, cheap and

commodity hardware. Solutions based on supercomputers,

large scale computing clusters, or specially designed hardware

are quite expensive.

The above four metrics can be considered as the main

dimensions of the sequence alignment problem. The

compromise between these metrics may lead to efficient

solutions for the sequence alignment problem.

Ahmad M Hosny
Faculty of Computer and

Information Sciences,
Ain Shams University

Howida A Shedeed
Faculty of Computer and

Information Sciences,
Ain Shams University

Ashraf S Hussein
Faculty of Computer and

Information Sciences,
Ain Shams University

Mohamed F Tolba
Faculty of Computer and

Information Sciences,
Ain Shams University

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.6, October 2011

2

The remainder of this paper is organized as follows: Section-

II discusses the recent related work. Section-III reviews SW

algorithm and its parallel formulation(s). Section IV describes

the purposed solution. Section V presents the experimental

results. Finally, Section VI provides the conclusions of this

work and future work directions.

2. RELATED WORK
The problem of obtaining an efficient implementation of SW

and NW algorithms has been pursued by many research

groups [5] [6].

A parallel framework with several multi-core implementations

is proposed in [7]. The maximum supported sequence size

was 1.25M * 0.2M. This framework adopted an intermediate-

grained parallelism by dividing the query and database

sequences among the cores. It calculates both score and

alignment using a heuristic approach, which limits the number

of processed cells to calculate the trace-back. Certainly, this

limitation affects the solution’s optimality.

Several implementations take advantage of the SIMD

technologies like SSE2, SSE3, instructions available on Intel

processors. Farrar [8] exploited the SSE2 instruction set to

compute the SW algorithm in a striped pattern, outperforming

the previous SIMD based SW implementations by Wozniak

[9] and Rognes [10]. The striped pattern follows fine-grained

parallelism in which, computations carried out in parallel in

different stripes to reduce the impact of some of the

computational dependencies. Farrar’s implementation was

then optimized by Rognes [11] to further enhancing the

performance. Rognes implemented the stripped algorithm on

SSE3 and Linux 64 bit. The experiments were scaled to

include different databases which enhanced the overall

performance. The different SIMD implementations achieved

massive performance enhancement using the off the self

processor. However, the maximum supported sequence size

did not exceed a few kilobytes. Also this excellent

performance is degrading with increasing the query size.

Finally none of these SIMD implementations could calculate

the trace-back, due to the followed stripped pattern.

Several parallel implementations using computer clusters

were developed in [12], [13], [14] and [15]. These solutions

divided the DP matrices into sets of columns or rows, which

are assigned on a per-node basis. A set of multiple clusters is

used in [12]; however, a maximum of 800K sequence is

supported. A maximum of 1.1M sequence is supported in

[13], using a cluster of 60 nodes with poor performance. A

heuristic solution to align two 400K sequences is introduced

in [14], but without any guarantee for the optimality and with

somewhat weak performance. A parallel exact solution to

produce local alignment is proposed in [15]. It can align up to

3 MB sequences using a cluster of 16 processors.

 Hirschberg reported the first global alignment algorithm with

linear space complexity [16]. Hirschberg’s algorithm is

improved in [17] by recording some rows and columns to

reduce the re-computations. Improved implementation is

proposed in [18] by recording a limited number of cached

columns or anti diagonals (a maximum of 16). Due to this

limitation, the recomputed areas were huge and the maximum

query supported was only 300K

Recently, the main trend is to use hardware accelerators to

implement SW algorithm like Field Programmable Gate

Arrays (FPGAs) and Graphics Processing Units (GPUs).

FPGAs have been used to implement SW in many solutions

(such as [19] and [20]). They presented impressive speedups

over software implementations. However, they are still not

considered to be commodity hardware and their programming

interface is rather complex. Due to the limited storage, FPGAs

cannot produce the alignment for huge sequences.

GPUs have a massively parallel architecture. With GPUs,

impressive speedups can be achieved using a programming

model that is simpler than the one required for FPGAs. The

on-chip memory of the GPU is limited. The main memory or

the hard disk cannot be used as an alternative because the

communication with the CPU is too expensive in terms of the

communication time. These limitations make GPUs

impractical to be used in case of large scale sequences

alignment. Thus, most of the recent works based on them

(such as [21] and [22]) were enforced to use coarse-grained

parallelization with small query sizes and without finding the

alignment.

From the above survey we can conclude that, most of the

relevant research work contributes only to a subset of the four

metrics, defined in Section I, at the expense of the remaining

ones. This paper presents an optimum solution for aligning

huge DNA sequences, which compromises between all the

four metrics. Thus, an efficient, linear space complexity,

parallel solution is developed to achieve the optimum

alignment for huge DNA sequences with a relatively good

performance.

3. SMITH–WATERMAN ALGORITHM
The algorithm used to calculate the optimal local alignment is

the Smith–Waterman (SW) algorithm with the Gotoh (1982)

improvements for handling multiple sized gap penalties. SW

is an exact method based on dynamic programming to obtain

the best local alignment between two sequences in quadratic

time and space.

3.1 The Algorithm
Consider two sequences Q and D of length m and n. The

individual residues for Q and D are q1, q2 … qm and d1, d2 …

dn, where 1 ≤ i ≤ m and 1 ≤ j ≤ n. A scoring matrix P (qi, dj) is

defined for all residue pairs. A constant value may be

assigned to gaps. The penalties for opening and extending a

gap are defined as: Ginit and Gext. The algorithm is divided into

two phases: Calculating the dynamic programming matrices

and finding the best local alignment.

3.1.1 Phase 1
Calculating the Dynamic Programming (DP) Matrices, at the

beginning, the first row and column are filled with zeroes. The

remaining elements of H are obtained from equations (1), (2)

and (3) The values for Hi, j, Ei, j and Fi, j are defined as 0

where i < 1 or j < 1.The similarity score between sequences Q

and D is the highest value in H and the position (i, j) of its

occurrence represents the end of the alignment. In order to

calculate the trace-back, only the arrows’ directions need to be

stored in the matrix cells. A left arrow in Hi, j indicates the

alignment of Q[i] with a gap in D. An up arrow represents the

alignment of D[j] with a gap in Q. Finally, an oblique arrow

indicates that Q[i] is aligned with D[j].

3.1.2 Phase 2
Finding the best alignment, In order to find the best local

alignment, the algorithm starts from the cell that contains the

highest score value and follows the arrows until a zero-valued

cell is reached.

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.6, October 2011

3

𝐻𝑖 ,𝑗 = 𝑚𝑎𝑥

0

𝐸𝑖 ,𝑗

𝐹𝑖 ,𝑗

𝐻𝑖−1,𝑗−1 − 𝑃 𝑖, 𝑗

 (1)

𝐸𝑖 ,𝑗 = 𝑚𝑎𝑥

𝐸i,j-1 − 𝐺𝑒𝑥𝑡

𝐻𝑖 ,𝑗−1 − 𝐺𝑓𝑖𝑟𝑠𝑡

(2)

𝐹𝑖 ,𝑗 = 𝑚𝑎𝑥

𝐸i-1,j − 𝐺𝑒𝑥𝑡

𝐻𝑖−1,𝑗 − 𝐺𝑓𝑖𝑟𝑠𝑡

(3)

3.2 The Algorithm Data Dependency and

Parallelization
The challenge in implementing parallelism at the similarity

matrix is the data dependency. Any cell of the alignment

matrix can be computed only after computing the values of

the Northern, Western, and North-Western cells. The access

pattern presented by the matrix calculation is non-uniform.

So, the traditionally used parallelization strategy, in this kind

of problems, is the wave front method [6]. In this manner,

cells can be only processed in parallel if they are on the same

anti-diagonal in a wave front pattern as depicted in Figure 1.

t1 t1 t2

t2

t3

t3

t3

t2

t2

t1

Fig 1: Wave front execution. Each step of these three steps

calculates a diagonal

4. THE PROPOSED SOLUTION
This research work is concerned with the development of a

solution that can produce the optimum local score and

alignment between two megabyte-scale sequences with a

relatively good performance. Shared memory parallel

architecture is the focus of this work, and therefore we have

considered off-the-shelf systems like multi-core CPUs as well

as advanced shared memory platforms.

To put the challenges in perspective, consider producing the

optimal alignment between a pair of 5M sequences using SW

algorithm. Assume that each matrix cell is two bits; it holds a

direction (that can be up, left, oblique or none). Thus, 25

terabytes of memory are required, which are not normally

available in any commodity hardware. Therefore, linear

memory solution is a must, in addition to the huge runtime

that should be parallelized.

In the proposed solution, the computation adopts an affine

gap. So, we need to compute the three matrices E, F and H.

These three matrices are logically grouped into a single matrix

M. Each cell Mi, j contains the three values Hi, j, Ei, j and Fi,

j, where each is declared as an unsigned integer (4 bytes), to

support huge sequence sizes. Two additional bits are added to

store the directions then the total cell's size is 12.25 bytes.

In order to reduce this huge memory requirement, it is

important to point out that calculating any anti-diagonal in the

logical matrix M is dependent only on the values of the

previous two anti-diagonals. We define a Key Anti-Diagonal

(KAD) as a pair of consecutive anti-diagonals in M whose

cells values are saved. Let x be the number of such KADs.

The proposed solution is based on saving x KADs that are

normally distributed all over the M matrix. These x KADs can

be used to recalculate any needed cell. Recalculation starts

from the cell with maximum score to the nearest KAD then

continues towards the alignment start cell. Increasing x

reduces the recalculated area till reaching the target cell. In

order to increase x, we can store KADs on the HDD (instead

of main memory). The phases of the proposed solution can be

divided into forward and backward phases that will be

explained in the next subsections.

4.1 Forward Phase
In this phase, the wavefront method is applied to iterate in

parallel over all cells in every anti-diagonal at M. The pseudo-

code of this phase is shown in Algorithm 1. The x KADs are

calculated and saved to the HDD. All anti-diagonals’ indices

that contribute to one of these x KADs are saved in the main

memory. For each anti-diagonal, all cores compute all cells’

values in parallel. If the anti-diagonal index is one of the x

KADs, then its M values and directions will be saved to the

HDD (see Fig. 2). During the iteration process, the cell with

maximum H score and its coordinates will be updated.

4.2 Backward Phase

This phase executes a trace-back function to find the actual

alignment. The pseudo-code of this phase is shown in

Algorithm 2. It starts from the end of the forward phase, from

the cell with the maximum score at H and moves backwards

to find the alignment’s starting point. The areas containing the

trace-back points are to be recalculated using KADs saved to

the HDD before. Because we can move only left, up or left-

up, the recalculated area always forms a triangle (or maybe a

trapezoid, if cut by a border) whose apex is the maximum

point, and whose base lies on the nearest next KAD. This

triangle is recomputed in parallel, starting from its base

towards its apex, using the wavefront method. After that, the

trace-back continues from the maximum score, found on the

base of the previous triangle, till it intersects with a point on

the nearest saved KAD (The base of the current triangle). This

process is repeated until the trace-back reaches the endpoint

(The first encountered cell with a zero value). See Fig. 3 for a

depiction of this process.

ALGORITHM 1 FORWARD PHASE
Procedure Produce KADs (Q, D)

1: define AD1 and AD2 buffers for latest pair of anti-diagonals
2: For each anti-diagonal AD in Matrix H
3: Start dynamic balanced parallel for each
4: For each cell C(i,j) in AD do
5: Get Previous Values from AD1 and AD2;
6: Calculate values H(i,j) ,E(i,j) , F(i,j) and directions;
7: Update max score H(i,j)
8: end parallel for each
9: update AD1 and AD2;
10: if AD1 and AD2 are one of x KADs
11: start asynchronous task
12: Save AD1 and AD2 to HDD;
13: end for each
14: return max score coordinates

 END Procedure

ALGORITHM 2 BACKWARD PHASE
Procedure Trace-back ()

1: define Current Cell with the max score cell

2: start loop till Current Cell equals null

3: define triangle buffer t;

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.6, October 2011

4

4: t apex is the CurrentCell and base is on the nearest KAD
5: THREADS:= Get All workers

6: Start dynamic balanced parallel foreach with THREADS
7: For each anti-diagonal AD in t
8: Start dynamic balanced parallel for each with threads
9: For each cell C(i,j) in AD do
10: get previous values from t;
11: calculate the direction for C(i,j);

12: end parallel for each
13: end for each
14: start trace-back from Current Cell to the base of t
15: Current Cell equals the intersected cell with t base.

16: end loop

END Procedure

Fig 2: Forward Phase. Cells are processed in a wavefront pattern. x = 8 KADs. Black anti-diagonals represent KADs that are

saved to the HDD. White anti-diagonals are discarded during iterating

Fig 3: Backward phase. It starts from the cell with the maximum score and recalculates the triangle (dark-gray cells), Then the

trace-back continue till the intersection with the next KAD (black cells represent the actual trace-back). These two steps are

repeated till finding an empty cell, which is taken to be the end point

5. RESULTS AND DISCUSSION
The proposed solution was implemented using C++ and

OpenMP and tested using an 8-core CPU of 1.6 MHz and

4MB cache, with 4 GB RAMS running on Windows Server

2007. Visual studio 2010 was used as a development

environment. In order to evaluate the scalability of the present

solution, nucleotides of exact sizes ranging from 32K to 5M

long were generated for measuring the scalability using

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.6, October 2011

5

precise figures. The SW score parameters used in the tests

were: +1 for match; –1 for mismatch; –2 for first gap; and –1

for gap extension. The used user-configured HDD storage is

50 GB. Query and database sequences with the best MCUPS

obtained for different numbers of CPU cores are shown in

Fig. 4.The performance raised with increasing the sequence

size and the number of cores because the huge number of

parallel items allowed a better load balancing between the

cores and reduced the communication time.

We measured the average load for each working processor

during aligning 5M x 5M sequences on 8 cores the results are

shown in Fig. 5. Dynamic load balancing is used in allocating

the parallel iterations to the processors. However, the loads

may not be symmetric because there is a parallel task that

writes the KADs to the HDD and the number of items varies

from iteration to the other. Fig.6 shows the variations of the

speedup achieved when the number of working processors

increases from 1 to 8. The results show that the proposed

solution, with the proposed parallel design, scales linearly

with the number of working processors.

The proposed solution achieved excellent MCUPS records

which surpassed other exact solutions that targeted the same

goal with less hardware requirements. This can be inferred by

comparing our results to the results in table I. We can align

pairs of up to 5M sequences and can support more with

upgrading the hardware.

Fig 4: Resulting performance in MCUPS obtained from

the experiment with different sequence sizes

Fig 5: The load balance for aligning 5M x 5M sequences

on 8 cores

Fig 6: Resulting speedup and efficiency obtained for the parallel

execution with different number of workers

6. CONCLUSIONS AND FUTURE

WORK
In this paper, we proposed and evaluated a multi-core-

accelerated implementation of the Smith-Waterman (SW)

algorithm with affine gap that compares two megabyte-scale

genomic sequences. As opposed to the previous solutions

based on SW optimum algorithm, the proposed solution does

not impose severe restrictions on the size of the largest

sequence. Thus experimental results show that we can support

up to 5M sequence using our simple hardware configuration,

with a relatively very good performance. Larger sequences

can also be supported by a small upgrading of the hardware.

7. REFERENCES
[1] C.D. Wunsch S.B. Needleman, "A general method

applicable to the search for similarities in the amino acid

sequence of two proteins," Journal of Molecular Biology,

vol. 48, no. 3, pp. 443-453 , March 1970.

[2] M.S. Waterman T.F. Smith, "Identification of common

molecular subsequences," Journal of Molecular Biology,

vol. 147, no. 1, pp. 195-197, March 1981.

[3] William R. Pearson, "Searching protein sequence

libraries: Comparison of the sensitivity and selectivity of

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.6, October 2011

6

the Smith-Waterman and FASTA algorithms,"

Genomics, vol. 11, no. 3, pp. 635-650, November 1991.

[4] Altschul SF, "Gapped BLAST and PSI-BLAST: “A new

generation of protein database search programs”,"

Nucleic Acids Res, vol. 25, no. 17, pp. 3389-3402, 1997.

[5] T. Majumder, A. Kalyanaraman, P. Pande S. Sarkar,

"Hardware accelerators for biocomputing: A survey ,"

Circuits and Systems (ISCAS), Proceedings of 2010

IEEE International Symposium on, pp. 3789-3792, 2010.

[6] Sanjay Kumar Pandey ,Digvijay Pandey Binay Kumar

Pandey, "A Survey of Bioinformatics Applications on

Parallel Architectures," International Journal of

Computer Applications, vol. 23, no. 4, pp. 21-25, 2011.

[7] Nuno Filipe Valentim Roma Tiago José Barreiros

Martins de Almeida, "A Parallel Programming

Framework for Multi-core DNA Sequence Alignment,"

in International Conference on Complex, Krakow,

Poland , 2010, pp. 907-912.

[8] Michael Farrar, "Striped Smith–Waterman speeds

database searches six times over other SIMD

implementations," Bioinformatics, vol. 23, no. 2, pp.

156–161, 2007.

[9] A. Wozniak, "Using video-oriented instructions to speed

up sequence comparison," Comput Appl Biosci, vol. 13,

no. 2, pp. 145–150, 1997.

[10] Erling Seeberg Torbjørn Rognes, "Six-fold speed-up of

Smith–Waterman sequence database searches using

parallel processing on common microprocessors,"

Bioinformatics, vol. 16, no. 8, pp. 699–706, 2000.

[11] Rognes Torbjørn, "Faster Smith-Waterman database

searches with inter-sequence SIMD parallelisation,"

BMC Bioinformatics, vol. 12, no. 1, p. 221, 2011.

[12] B. Schmidt C. Chen, "Computing Large-Scale

Alignments on a Multi-Cluster," Fifth IEEE International

Conference on Cluster Computing (CLUSTER'03), pp.

38 - 45, 2003.

[13] S. Aluru S. Rajko, "Space and time optimal parallel

sequence alignments," vol. 15, no. 12, pp. 1070-1081,

2004.

[14] Alba Cristina Magalhaes Alves de Melo, Mauricio

Ayala-Rincon , Thomas M. Santana Azzedine

Boukerche, "Parallel Smith-Waterman Algorithm for

Local DNA Comparison in a Cluster of Workstations," in

Experimental and Efficient Algorithms. Berlin :

Springer, 2005, vol. 3503, pp. 131-144.

[15] A. Boukerche, , A. C. Melo R. B. Batista, "A parallel

strategy for biological sequence alignment in restricted

memory space," Journal of Parallel and Distribituted

Computing, vol. 68, no. 4, pp. 548-561, April 2008.

[16] D.S. Hirschberg, "A linear space algorithm for

computing longest common subsequences,"

Communications of the ACM, vol. 18, no. 6, pp. 341-

343, June 341- 43.

[17] C. Xu, T. Wang, L. Jin and Y. Zhang E. Li, "Parallel

Linear Space Algorithm for Large-Scale Sequence

Alignment," in Euro-Par 2005 Parallel Processing.

Berlin: Springer, 2005, vol. 3648, pp. 644-644.

[18] D. Fan, W. Lin X. Ye, "A fast linear-space sequence

alignment algorithm with dynamic parallelization

framework," in IEEE Ninth International Conference on

Computer and Information, 2009, pp. 274-279.

[19] H. K. Tsoi, W. Luk Y. Yamaguchi, "FPGA-Based

Smith-Waterman Algorithm: Analysis and Novel

Design," in Reconfigurable Computing: Architectures,

Tools and Applications. Berlin: Springer, 2011, vol.

6578, pp. 181-192.

[20] P. Zhang, N. Sun, X. Jiang, X. Liu. L. Xu, "A

reconfigurable accelerator for smith-waterman

algorithm," Circuits and Systems II: Express Briefs,

IEEE Transactions on, vol. 54, no. 12, pp. 1077 - 1081 ,

December 2007.

[21] Valle Giorgio Manavski Svetlin, "CUDA compatible

GPU cards as efficient hardware accelerators for Smith-

Waterman sequence alignment," BMC Bioinformatics,

vol. 9, no. 2, pp. 1-9, March 2008.

[22] Schmidt Bertil, Maskell Douglas Liu Yongchao,

"CUDASW++2.0: enhanced Smith-Waterman protein

database search on CUDA-enabled GPUs based on

SIMT and virtualized SIMD abstractions," BMC

Research Notes, vol. 3, no. 1, pp. 1-12, 2010.

