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An Efficient Solution for Aligning Huge DNA Sequences 

 
ABSTRACT 

Recently, many parallel solutions were proposed in order to 

accelerate the exact methods of aligning huge DNA 

sequences. However, most of these solutions restrict the 

sequence’s sizes to be in kilobytes, in such a way that 

megabyte-scale genome comparison cannot be achieved. In 

addition, these solutions calculate only the alignment 

similarity score without finding the actual alignment. This 

paper presents an efficient solution to find the optimal 

alignment of the huge DNA sequences. This solution releases 

the condition of the sequence size to be in megabyte-scale 

instead of few kilobytes.  The fundamental innovation in this 

work is developing efficient, linear space complexity, parallel 

solution to achieve the optimum alignment with relatively 

good performance. The shared memory parallel architecture is 

the focus of this work and therefore we have considered off-

the-shelf systems like multi-core CPUs as well as advanced 

shared memory platforms. Experimental results show that, the 

proposed solution achieved high records compared to other 

solutions that targeted the same goal with less hardware 

requirements. 
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1. INTRODUCTION 
Sequence alignment is a fundamental operation in 

bioinformatics. It is a way of arranging DNA, RNA, or 

protein sequences to identify regions of similarity or 

difference. From a biological point of view, matches may turn 

out to be similar functions, e.g. homology pairs or conserved 

regions, while mismatches may detect functional differences 

e.g. Single Nucleotide Polymorphism (SNP). The alignment 

itself can be a global alignment (in which the complete 

sequences take part in the alignment) or a local alignment (in 

which only certain regions of each sequence that optimally 

align – are considered).  

Local alignment is often preferable, but can be more difficult 

to find because of an additional challenge of identifying the 

regions of similarity. 

The complexity due to the sheer number of possible 

combinations and searches makes the sequence alignment a 

very compute-intensive problem. Exact algorithms are based 

on dynamic programming. Needleman and Wunsch (NW) [1] 

presented the first global alignment algorithm. Smith and 

Waterman (SW) [2] improved this algorithm for local 

alignment to find the optimum common alignment according 

to a scoring function. These exact algorithms have a quadratic 

space and computational complexities with respect to the 

length of the two sequences. These quadratic complexities 

forbid their use for large-scale biological sequences. For 

example, aligning two sequences with one megabyte length 

each requires several terabytes of memory, which cannot be 

provided by most of the commodity computational resources. 

Therefore, most of the commercial applications use other 

algorithms based on heuristic approaches like Fasta [3] and 
Blast [4]. These heuristic approaches generally reduce the 

search space and make comparison of large genomic banks 

faster, but at the expense of a non-negligible reduction of 

algorithmic accuracy. 

 The challenge of quadratic space and time of the exact 

algorithms was addressed with many research groups along 

with the advent of High Performance Computing (HPC) 

revolution [5] [6]. There has been a plethora of new solutions 

that attempt to solve this problem. To comprehensively 

evaluate these contributions, we defined the problem 

challenges by the following metrics. 

1.1 Functionality 

Sequence alignment means calculating the maximum 

similarity score, then finding the actual alignment between 

sequences to detect the functional similarity or difference. It 

requires massive storage to be calculated for huge sequences. 

So, many solutions ignore finding the actual alignment to 

maximize the performance gain. 

1.2 Performance 

The quadratic complexity of the exact algorithms makes it a 

must to use parallelization to support larger sequences’ sizes 

with reasonable computational time. The speed of 

computation is measured in Mega Cell Updates per Seconds 

(MCUPS). MCUPS=
m*n

t
*10

6
Where m and n are the 

sequences sizes and t is the execution time. 

1.3 Storage 

Exact methods require quadratic space. Thus, for megabyte-

scale sequences, terabytes are needed. Supporting huge 

sequences enforces space complexity to be linear. 

1.4 Hardware Cost 

The cost of the parallel computing solution and its availability 

is also one of the main metrics, as sequence alignment is a 

fundamental problem that needs available, cheap and 

commodity hardware. Solutions based on supercomputers, 

large scale computing clusters, or specially designed hardware 

are quite expensive. 

The above four metrics can be considered as the main 

dimensions of the sequence alignment problem. The 

compromise between these metrics may lead to efficient 

solutions for the sequence alignment problem.  
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The remainder of this paper is organized as follows: Section-

II discusses the recent related work. Section-III reviews SW 

algorithm and its parallel formulation(s). Section IV describes 

the purposed solution. Section V presents the experimental 

results. Finally, Section VI provides the conclusions of this 

work and future work directions. 

2. RELATED WORK 
The problem of obtaining an efficient implementation of SW 

and NW algorithms has been pursued by many research 

groups [5] [6].  

A parallel framework with several multi-core implementations 

is proposed in [7]. The maximum supported sequence size 

was 1.25M * 0.2M. This framework adopted an intermediate-

grained parallelism by dividing the query and database 

sequences among the cores. It calculates both score and 

alignment using a heuristic approach, which limits the number 

of processed cells to calculate the trace-back. Certainly, this 

limitation affects the solution’s optimality. 

Several implementations take advantage of the SIMD 

technologies like SSE2, SSE3, instructions available on Intel 

processors. Farrar [8] exploited the SSE2 instruction set to 

compute the SW algorithm in a striped pattern, outperforming 

the previous SIMD based SW implementations by Wozniak 

[9] and Rognes [10]. The striped pattern follows fine-grained 

parallelism in which, computations carried out in parallel in 

different stripes to reduce the impact of some of the 

computational dependencies. Farrar’s implementation was 

then optimized by Rognes [11] to further enhancing the 

performance. Rognes implemented the stripped algorithm on 

SSE3 and Linux 64 bit. The experiments were scaled to 

include different databases which enhanced the overall 

performance. The different SIMD implementations achieved 

massive performance enhancement using the off the self 

processor. However, the maximum supported sequence size 

did not exceed a few kilobytes. Also this excellent 

performance is degrading with increasing the query size. 

Finally none of these SIMD implementations could calculate 

the trace-back, due to the followed stripped pattern. 

Several parallel implementations using computer clusters 

were developed in [12], [13], [14] and [15]. These solutions 

divided the DP matrices into sets of columns or rows, which 

are assigned on a per-node basis. A set of multiple clusters is 

used in [12]; however, a maximum of 800K sequence is 

supported. A maximum of 1.1M sequence is supported in 

[13], using a cluster of 60 nodes with poor performance. A 

heuristic solution to align two 400K sequences is introduced 

in [14], but without any guarantee for the optimality and with 

somewhat weak performance. A parallel exact solution to 

produce local alignment is proposed in [15]. It can align up to 

3 MB sequences using a cluster of 16 processors. 

 Hirschberg reported the first global alignment algorithm with 

linear space complexity [16]. Hirschberg’s algorithm is 

improved in [17] by recording some rows and columns to 

reduce the re-computations. Improved implementation is 

proposed in [18] by recording a limited number of cached 

columns or anti diagonals (a maximum of 16). Due to this 

limitation, the recomputed areas were huge and the maximum 

query supported was only 300K 

Recently, the main trend is to use hardware accelerators to 

implement SW algorithm like Field Programmable Gate 

Arrays (FPGAs) and Graphics Processing Units (GPUs). 

FPGAs have been used to implement SW in many solutions 

(such as [19] and [20]). They presented impressive speedups 

over software implementations. However, they are still not 

considered to be commodity hardware and their programming 

interface is rather complex. Due to the limited storage, FPGAs 

cannot produce the alignment for huge sequences. 

GPUs have a massively parallel architecture. With GPUs, 

impressive speedups can be achieved using a programming 

model that is simpler than the one required for FPGAs. The 

on-chip memory of the GPU is limited. The main memory or 

the hard disk cannot be used as an alternative because the 

communication with the CPU is too expensive in terms of the 

communication time. These limitations make GPUs 

impractical to be used in case of large scale sequences 

alignment. Thus, most of the recent works based on them 

(such as [21] and [22]) were enforced to use coarse-grained 

parallelization with small query sizes and without finding the 

alignment. 

From the above survey we can conclude that, most of the 

relevant research work contributes only to a subset of the four 

metrics, defined in Section I, at the expense of the remaining 

ones. This paper presents an optimum solution for aligning 

huge DNA sequences, which compromises between all the 

four metrics. Thus, an efficient, linear space complexity, 

parallel solution is developed to achieve the optimum 

alignment for huge DNA sequences with a relatively good 

performance. 

3.  SMITH–WATERMAN ALGORITHM 
The algorithm used to calculate the optimal local alignment is 

the Smith–Waterman (SW) algorithm with the Gotoh (1982) 

improvements for handling multiple sized gap penalties. SW 

is an exact method based on dynamic programming to obtain 

the best local alignment between two sequences in quadratic 

time and space. 

3.1 The Algorithm 
Consider two sequences Q and D of length m and n. The 

individual residues for Q and D are q1, q2 … qm and d1, d2 … 

dn, where 1 ≤ i ≤ m and 1 ≤ j ≤ n. A scoring matrix P (qi, dj) is 

defined for all residue pairs. A constant value may be 

assigned to gaps. The penalties for opening and extending a 

gap are defined as: Ginit and Gext. The algorithm is divided into 

two phases: Calculating the dynamic programming matrices 

and finding the best local alignment. 

3.1.1 Phase 1  
Calculating the Dynamic Programming (DP) Matrices, at the 

beginning, the first row and column are filled with zeroes. The 

remaining elements of H are obtained from equations (1), (2) 

and (3) The values for Hi, j, Ei, j and Fi, j are defined as 0 

where i < 1 or j < 1.The similarity score between sequences Q 

and D is the highest value in H and the position (i, j) of its 

occurrence represents the end of the alignment. In order to 

calculate the trace-back, only the arrows’ directions need to be 

stored in the matrix cells. A left arrow in Hi, j indicates the 

alignment of Q[i] with a gap in D. An up arrow represents the 

alignment of D[j] with a gap in Q. Finally, an oblique arrow 

indicates that Q[i] is aligned with D[j]. 

3.1.2 Phase 2  
Finding the best alignment, In order to find the best local 

alignment, the algorithm starts from the cell that contains the 

highest score value and follows the arrows until a zero-valued 

cell is reached. 
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3.2 The Algorithm Data Dependency and 

Parallelization 
The challenge in implementing parallelism at the similarity 

matrix is the data dependency. Any cell of the alignment 

matrix can be computed only after computing the values of 

the Northern, Western, and North-Western cells. The access 

pattern presented by the matrix calculation is non-uniform. 

So, the traditionally used parallelization strategy, in this kind 

of problems, is the wave front method [6]. In this manner, 

cells can be only processed in parallel if they are on the same 

anti-diagonal in a wave front pattern as depicted in Figure 1. 

t1 t1 t2

t2

t3

t3

t3

t2

t2

t1

Fig 1: Wave front execution. Each step of these three steps 

calculates a diagonal 

4. THE PROPOSED SOLUTION 
This research work is concerned with the development of a 

solution that can produce the optimum local score and 

alignment between two megabyte-scale sequences with a 

relatively good performance. Shared memory parallel 

architecture is the focus of this work, and therefore we have 

considered off-the-shelf systems like multi-core CPUs as well 

as advanced shared memory platforms. 

To put the challenges in perspective, consider producing the 

optimal alignment between a pair of 5M sequences using SW 

algorithm. Assume that each matrix cell is two bits; it holds a 

direction (that can be up, left, oblique or none). Thus, 25 

terabytes of memory are required, which are not normally 

available in any commodity hardware. Therefore, linear 

memory solution is a must, in addition to the huge runtime 

that should be parallelized.  

In the proposed solution, the computation adopts an affine 

gap. So, we need to compute the three matrices E, F and H. 

These three matrices are logically grouped into a single matrix 

M. Each cell Mi, j contains the three values Hi, j, Ei, j and Fi, 

j, where each is declared as an unsigned integer (4 bytes), to 

support huge sequence sizes. Two additional bits are added to 

store the directions then the total cell's size is 12.25 bytes. 

In order to reduce this huge memory requirement, it is 

important to point out that calculating any anti-diagonal in the 

logical matrix M is dependent only on the values of the 

previous two anti-diagonals. We define a Key Anti-Diagonal 

(KAD) as a pair of consecutive anti-diagonals in M whose 

cells values are saved. Let x be the number of such KADs. 

The proposed solution is based on saving x KADs that are 

normally distributed all over the M matrix. These x KADs can 

be used to recalculate any needed cell. Recalculation starts 

from the cell with maximum score to the nearest KAD then 

continues towards the alignment start cell. Increasing x 

reduces the recalculated area till reaching the target cell. In 

order to increase x, we can store KADs on the HDD (instead 

of main memory). The phases of the proposed solution can be 

divided into forward and backward phases that will be 

explained in the next subsections. 

4.1 Forward Phase 
In this phase, the wavefront method is applied to iterate in 

parallel over all cells in every anti-diagonal at M. The pseudo-

code of this phase is shown in Algorithm 1. The x KADs are 

calculated and saved to the HDD. All anti-diagonals’ indices 

that contribute to one of these x KADs are saved in the main 

memory. For each anti-diagonal, all cores compute all cells’ 

values in parallel. If the anti-diagonal index is one of the x 

KADs, then its M values and directions will be saved to the 

HDD (see Fig. 2). During the iteration process, the cell with 

maximum H score and its coordinates will be updated. 

4.2 Backward Phase 

This phase executes a trace-back function to find the actual 

alignment. The pseudo-code of this phase is shown in 

Algorithm 2. It starts from the end of the forward phase, from 

the cell with the maximum score at H and moves backwards 

to find the alignment’s starting point. The areas containing the 

trace-back points are to be recalculated using KADs saved to 

the HDD before. Because we can move only left, up or left-

up, the recalculated area always forms a triangle (or maybe a 

trapezoid, if cut by a border) whose apex is the maximum 

point, and whose base lies on the nearest next KAD. This 

triangle is recomputed in parallel, starting from its base 

towards its apex, using the wavefront method. After that, the 

trace-back continues from the maximum score, found on the 

base of the previous triangle, till it intersects with a point on 

the nearest saved KAD (The base of the current triangle). This 

process is repeated until the trace-back reaches the endpoint 

(The first encountered cell with a zero value). See Fig. 3 for a 

depiction of this process. 

 

ALGORITHM 1 FORWARD PHASE 
Procedure Produce KADs (Q, D)  

1:      define AD1 and AD2 buffers for latest pair of anti-diagonals 
2:      For each anti-diagonal AD in Matrix H 
3:   Start dynamic balanced parallel for each  
4:   For each cell C(i,j) in  AD  do  
5:       Get Previous Values from AD1 and AD2; 
6:       Calculate values H(i,j) ,E(i,j) , F(i,j) and directions; 
7:       Update max score  H(i,j) 
8:  end parallel for each  
9:  update AD1 and AD2; 
10:  if AD1 and AD2 are one of x KADs 
11:      start asynchronous task 
12:          Save AD1 and AD2 to HDD; 
13: end for each 
14: return max score coordinates  

 END Procedure 

ALGORITHM 2 BACKWARD PHASE 
Procedure Trace-back () 

1: define  Current Cell with the max score cell 

2: start loop till Current Cell equals null 

3:    define triangle buffer t; 
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4:    t apex is the CurrentCell and base is on the nearest KAD 
5:    THREADS:=  Get All workers 

6:    Start dynamic balanced parallel foreach with THREADS 
7:     For each anti-diagonal AD in t 
8:         Start dynamic balanced parallel for each with threads 
9:         For each cell C(i,j) in  AD  do  
10:             get previous values from t; 
11:             calculate the direction for C(i,j);       

12:         end parallel for each 
13:     end for each 
14:     start trace-back from Current Cell to the base of t 
15:     Current Cell equals the intersected cell with t base. 

16:  end loop  

END Procedure 

 

 

Fig 2: Forward Phase. Cells are processed in a wavefront pattern. x = 8 KADs.  Black anti-diagonals represent KADs that are 

saved to the HDD. White anti-diagonals are discarded during iterating 

 

Fig 3: Backward phase. It starts from the cell with the maximum score and recalculates the triangle (dark-gray cells), Then the 

trace-back continue till the intersection with the next KAD (black cells represent the actual trace-back). These two steps are 

repeated till finding an empty cell, which is taken to be the end point 

5. RESULTS AND DISCUSSION 
The proposed solution was implemented using C++ and 

OpenMP and tested using an 8-core CPU of 1.6 MHz and 

4MB cache, with 4 GB RAMS running on Windows Server 

2007. Visual studio 2010 was used as a development 

environment. In order to evaluate the scalability of the present 

solution, nucleotides of exact sizes ranging from 32K to 5M 

long were generated for measuring the scalability using 
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precise figures. The SW score parameters used in the tests 

were: +1 for match; –1 for mismatch; –2 for first gap; and –1 

for gap extension. The used user-configured HDD storage is 

50 GB. Query and database sequences with the best MCUPS 

obtained for different numbers of CPU cores are shown in 

Fig. 4.The performance raised with increasing the sequence 

size and the number of cores because the huge number of 

parallel items allowed a better load balancing between the 

cores and reduced the communication time. 

We measured the average load for each working processor 

during aligning 5M x 5M sequences on 8 cores the results are 

shown in Fig. 5. Dynamic load balancing is used in allocating 

the parallel iterations to the processors. However, the loads 

may not be symmetric because there is a parallel task that 

writes the KADs to the HDD and the number of items varies 

from iteration to the other. Fig.6 shows the variations of the 

speedup achieved when the number of working processors 

increases from 1 to 8. The results show that the proposed 

solution, with the proposed parallel design, scales linearly 

with the number of working processors. 

The proposed solution achieved excellent MCUPS records 

which surpassed other exact solutions that targeted the same 

goal with less hardware requirements. This can be inferred by 

comparing our results to the results in table I. We can align 

pairs of up to 5M sequences and can support more with 

upgrading the hardware. 

 

Fig 4: Resulting performance in MCUPS obtained from 

the experiment with different sequence sizes 

 

Fig 5: The load balance for aligning 5M x 5M sequences 

on 8 cores 

 

Fig 6: Resulting speedup and efficiency obtained for the parallel 

execution with different number of workers 

6. CONCLUSIONS AND FUTURE 

WORK 
In this paper, we proposed and evaluated a multi-core-

accelerated implementation of the Smith-Waterman (SW) 

algorithm with affine gap that compares two megabyte-scale 

genomic sequences. As opposed to the previous solutions 

based on SW optimum algorithm, the proposed solution does 

not impose severe restrictions on the size of the largest 

sequence. Thus experimental results show that we can support 

up to 5M sequence using our simple hardware configuration, 

with a relatively very good performance. Larger sequences 

can also be supported by a small upgrading of the hardware. 
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