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ABSTRACT 

A combination between an adaptive sliding mode observer and a 

backstepping sliding mode controller is designed for a Lipschitz 

nonlinear system. This combination guaranties the tracking of 

trajectory, estimation of both the unmeasured state and the 

unknown parameters. A parameter variation margin is defined 

for that the combination is robust. The simulation results prove 

the combination robustness when the parameters are constants or 

varied in a defined margin. 
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1. INTRODUCTION 
The sliding mode technique is known as a robust technique in 

presence of parameter uncertainties and perturbations ([1], [2], 

[3]). For that it is applied to develop nonlinear observers and 

controllers ([5], [6], [7]). In [4] the author proved that the 

adaptive sliding mode observer is robust to estimate the state 

and the unknown parameter when the parameter variations 

verify a defined margin of variation.         

The disadvantage of sliding mode control is the chattering 

phenomenal. To eliminate this problem, some researchers have 

extended the sliding mode to another form, like high order 

sliding mode [8], or combined the sliding mode technique to 

another algorithm such as backstepping ([9], [10]). The major 

advantage of the backstepping controller is the feasibility to 

construct the lyapunov function and the control law. The sliding 

mode backstepping controller and its adaptive form showed a 

best performance in trajectory tracking and in elimination of the 

chattering phenomena for uncertain nonlinear systems 

transformed in a semi strict feedback form ([11], [12]).   

The constructed control laws depend on all the state. To improve 

the controller performance an observer estimating the 

unmeasured state is needed to be combined to a controller.  

The Lipschtiz nonlinear systems are much studied to develop a 

nonlinear observer. The observer convergence is guaranty under 

some condition. When the parameter vector is unknown, the 

nonlinear observer is extended to an adaptive form. The 

adaptation law didn’t depend on observer architecture (only the 

synthesis technique affect the adaptation law form). 

In literature, the purpose of the combination between observer 

and controller is to ensure the observer performance to estimate 

the unmeasured state and the unknown input ([13], [14]). In [14] 

sufficient conditions are determined to define the unknown input 

observer designed to lipschitz nonlinear systems which is the 

same as the case of linear unknown input observer design. 

The combination between controller and observer is considered 

to guaranty a trajectory tracking and a convergence of the 

unmeasured state. The study presented in ([15], [16]) show the 

robustness of the observer based controller for a class of 

nonlinear systems to tracking trajectory and estimate the 

unmeasured state.   In ([17], [18]), the combination between an 

observer and a controller is designed to ensure the convergence 

of the unmeasured state and the stabilization of the nonlinear 

observer.    

 The unknown parameters affect the controller performance. The 

unknown parameters are estimated by an adaptation law 

determined trough out the controller or the observer.  

In this work, an adaptive observer is combined to a backstepping 

sliding mode controller. The adaptation law is determined 

trough out the observer. The combination is studied for lipschitz 

nonlinear systems. The combination is designed to guaranty the 

robustness to estimate state and parameters and also to ensure 

the trajectory tracking when the nominal parameters are 

constants or varied in accordance with a defined margin 

parameter variation. The combination robustness is tested trough 

out an academic example.  

2. ADAPTIVE SLIDING MODE 

OBSERVERS 
Many adaptation laws are constructed for lipschtiz nonlinear 

systems. The adaptation laws depend only on the observer 

analysis techniques.  In literature, adaptive observers are more 

studied in the case of classical approaches. Due to the robustness 

of the sliding mode technique, the authors in [19] compared the 

classical observer and the high order sliding mode adaptive 

observer in the case of parameters varying constantly in time. 

They concluded that the second architecture allow to converge 

rapidly to the true state than the first one. A systematic approach 

to synthesis adaptive observer is developed by [20] for Lipschitz 

nonlinear systems. 

In [4], the authors developed an adaptive sliding mode observer 

for a class of lipschtiz nonlinear systems. The authors proved the 

robustness of the proposed adaptive sliding mode observer when 

the nominal constant unknown parameter vector varied linearly. 

 Consider the nonlinear systems:  
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 Where and f are two Lipschitz matrices such that:  
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The architecture of the adaptive sliding mode observer is: 
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 This adaptive observer is stable and converges to the desired 

state if: 
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are constants vectors. 

The stability and robustness conditions are determined via the 

following lyapunov function: 
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3. BACKSTEPPING SLIDING MODE 

CONTROLLER ALGORITHMS  
A backstepping technique is a systematic method to construct a 

lyapunov function and a controller law. The backstepping 

controllers guaranty the trajectory tracking performance. 

The sliding mode controller is known as a robust controller in 

presence of uncertainties and perturbations its problem is the 

chattering phenomenon. To eliminate this problem a 

combination between the backstepping and sliding mode 

technique is made. A new controller called a backstepping 

sliding mode controller (BSMC), designed to uncertain 

nonlinear systems transformed in a semi strict feedback form 

(SSF), is présented. In ([11], [12]) the authors show that an 

adaptive version of the BSMC studied to a SSF system is robust 

to trajectory tracking.  In this section, a BSMC is constructed for 

a lipschtiz nonlinear system. 

The backstepping algorithm is described by the following step: 

Step 1: Considering the variable error r11 yxz 
 

Then 

    r

T yxxfxxz   11211       (3)                            

Considering (3) as a subsystem which is stabilizable and the 

lyapunov function is:  
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The derivative of the lyapunov function 1V  is: 
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With 1c  is a positive constant. 

Step2: Considering the variable error 122  ryxz   
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The 2z   derivative is: 
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 With 0ic  and the variable error derivative  iz  is: 
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Step n:  

Defining 
 1

1



  n
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With 1n  has the expression (4) when in    .  

The derivative of nz  is: 
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Considering the lyapunov function: 
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The nV  derivative is: 
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The backstepping sliding mode controller u  has the following 

form: 

    ))(( 11  kzzsignuu                                       (11)                                                                  

u    :  The backstepping sliding mode control law                                                                                 

The backstepping sliding mode controller is stable and robust if: 
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 The controller is : 
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4. COMBINED ADAPTIVE OBSERVER-

CONTROLLER  
In literature a controller based observer is presented to lipsctiz 

nonlinear systems. The proposed controller is applied as a 

system and observer input which the separation principal is not 

usually verified. To ensure a trajectory tracking and estimation 

of unmeasured state and unknown constant parameters, an 

adaptive observer-controller combination, designed for a lipchitz 

nonlinear system which, is still robust for a defined parameter 

variation margin. 

Theorem: For a Lipchitz nonlinear system, the adaptive sliding 

mode observer combined to the backstepping sliding mode 

controller is robust and stable if: 

 The backstepping sliding mode controller architecture 

is: 
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 The adaptive sliding mode observer is: 
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The combinaison is robuste if: 
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Proof: 

See Appendix 

The combination robustness is tested throughout an academic 

example. 
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5. SIMULATION RESULTS 
Considering the nonlinear system 
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The sliding mode observer is:  
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The adaptation law is:  
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The controller parameters are:  
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The reference signal is: 
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If the nominal parameter is constant, the combination between 

an adaptive sliding mode observer and a backstepping sliding 

mode controller is robust to trajectory tracking (fig.1.a), 

estimation the unmeasured state. The state variables converge to 

the desired values after the a short time (fig.1.c,d). This 

combination is also robust to estimate the unknown parameter 

(fig.1.e, f).   This is due to the control signal absolute amplitude 

is the same for all the reference amplitude varied (fig.1.b). 

 

Fig.1.a The trajectory tracking                                       

 

 

Fig.1.b The signal control u  
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Fig.1.c Estimation of the state 1x                      

 

Fig.1.d Estimation of the state 2x  

 

Fig.1.e Estimation of the parameter 1                

 

Fig.1.f Estimation of the parameter 2  

Fig.1. Trajectory tracking and parameter and state estimation 

with constants parameter 

The combination between the backstepping sliding mode control 

and the adaptive sliding mode observer is robust to state and 

parameter estimation and trajectory tracking which is different 

from literature works ([13], [14]) where the designed approaches 

permit only to improve the state estimation performance  and 

build the unknown input. 

6. CONCLUSION 
In this paper, an adaptive sliding mode observer is combined to 

a backstepping sliding mode controller for a class of lipschitz 

nonlinear systems. This combination is designed to ensure the 

trajectory tracking, estimation of the unmeasured state and the 

unknown parameter when the parameters are constants or varied 

linearly. The simulation results show that the adaptive sliding 

mode observer combined to a backstepping sliding mode 

controller is robust to trajectory tracking and the estimation of 

state and parameters if the nominal parameter are constants. 

7. APENDIX        
Proof: 

To study the combination robustness and stability, a lyapunov 

function is considered as: 
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The derivative of V is: 

no VVV                                                                  (A.2) 
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With 0ic  and the variable error iz derivative is: 
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Step n:  

Defining 
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With 1n is the same as the equation (A.4) when in   .  

The derivative of the variable nz  is: 

   

   

 







 

 

























 




















































1

1

1

1
1

1

1
1

1

2

1

21

2

1 0

21

1

1

1

1

2

1

211

1

1

ˆ
ˆ

ˆ
ˆ

)ˆ(
ˆ

ˆˆ

1

n

i

T

i

i

n

n

r
n

n

i

ii

i

n

n

T

nn

n

i

ii

n

j

njnk

n

k

k

j

jjkn

j

n

j

n

j

j

ijn

n

j

njn

f
x

yx
x

xfuxgxa

zczzcc

zczcczcz


















                                                                                                                                                       

                                                                                         (A.8) 

Considering the lyapunov function: 
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The nV  derivative is: 
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         (A.10)                 

For the observer, choosing the following Lyapunov function: 
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Where  ˆ~
  and xxe ˆ   

The dynamical error is: 
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The derivative of the function V is then: 
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Introducing the equation (A.12) and (A.10) into the expression 

(A.2), it becomes: 
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The backstepping sliding mode controller u  has the following 

form: 
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To satisfy, the Lyapunov condition  0V  , we can just write:  
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3) The backstepping sliding mode controller is  
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