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ABSTRACT

A combination between an adaptive sliding mode observer and a
backstepping sliding mode controller is designed for a Lipschitz
nonlinear system. This combination guaranties the tracking of
trajectory, estimation of both the unmeasured state and the
unknown parameters. A parameter variation margin is defined
for that the combination is robust. The simulation results prove
the combination robustness when the parameters are constants or
varied in a defined margin.
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1. INTRODUCTION

The sliding mode technique is known as a robust technique in
presence of parameter uncertainties and perturbations ([1], [2],
[3]). For that it is applied to develop nonlinear observers and
controllers ([5], [6], [7]). In [4] the author proved that the
adaptive sliding mode observer is robust to estimate the state
and the unknown parameter when the parameter variations
verify a defined margin of variation.

The disadvantage of sliding mode control is the chattering
phenomenal. To eliminate this problem, some researchers have
extended the sliding mode to another form, like high order
sliding mode [8], or combined the sliding mode technique to
another algorithm such as backstepping ([9], [10]). The major
advantage of the backstepping controller is the feasibility to
construct the lyapunov function and the control law. The sliding
mode backstepping controller and its adaptive form showed a
best performance in trajectory tracking and in elimination of the
chattering phenomena for uncertain nonlinear systems
transformed in a semi strict feedback form ([11], [12]).

The constructed control laws depend on all the state. To improve
the controller performance an observer estimating the
unmeasured state is needed to be combined to a controller.

The Lipschtiz nonlinear systems are much studied to develop a
nonlinear observer. The observer convergence is guaranty under
some condition. When the parameter vector is unknown, the
nonlinear observer is extended to an adaptive form. The
adaptation law didn’t depend on observer architecture (only the
synthesis technique affect the adaptation law form).

In literature, the purpose of the combination between observer
and controller is to ensure the observer performance to estimate
the unmeasured state and the unknown input ([13], [14]). In [14]
sufficient conditions are determined to define the unknown input
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observer designed to lipschitz nonlinear systems which is the
same as the case of linear unknown input observer design.

The combination between controller and observer is considered
to guaranty a trajectory tracking and a convergence of the
unmeasured state. The study presented in ([15], [16]) show the
robustness of the observer based controller for a class of
nonlinear systems to tracking trajectory and estimate the
unmeasured state. In ([17], [18]), the combination between an
observer and a controller is designed to ensure the convergence
of the unmeasured state and the stabilization of the nonlinear
observer.

The unknown parameters affect the controller performance. The
unknown parameters are estimated by an adaptation law
determined trough out the controller or the observer.

In this work, an adaptive observer is combined to a backstepping
sliding mode controller. The adaptation law is determined
trough out the observer. The combination is studied for lipschitz
nonlinear systems. The combination is designed to guaranty the
robustness to estimate state and parameters and also to ensure
the trajectory tracking when the nominal parameters are
constants or varied in accordance with a defined margin
parameter variation. The combination robustness is tested trough
out an academic example.

2. ADAPTIVE SLIDING MODE
OBSERVERS

Many adaptation laws are constructed for lipschtiz nonlinear
systems. The adaptation laws depend only on the observer
analysis techniques. In literature, adaptive observers are more
studied in the case of classical approaches. Due to the robustness
of the sliding mode technique, the authors in [19] compared the
classical observer and the high order sliding mode adaptive
observer in the case of parameters varying constantly in time.
They concluded that the second architecture allow to converge
rapidly to the true state than the first one. A systematic approach
to synthesis adaptive observer is developed by [20] for Lipschitz
nonlinear systems.

In [4], the authors developed an adaptive sliding mode observer
for a class of lipschtiz nonlinear systems. The authors proved the
robustness of the proposed adaptive sliding mode observer when
the nominal constant unknown parameter vector varied linearly.

Consider the nonlinear systems:
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X = f
{x Ax+g(x)+ f(x,u)0+bu "

y=CX

With:
xeR";¢eR"; f =diag (f,,f,,--f)eR"";

feRP;ueR andye R"

Where ¢ and f are two Lipschitz matrices such that:
1T (xu)—f(Ru) | < [x=%|

¢ ()—4(%)

The architecture of the adaptive sliding mode observer is:

|<a, [x—%

X=AX+g(Xu)+ f (R,u)0+L(y—CR)—
y sign(e,) @
é:lfT(ﬁ,u)(y—c %)
Yo

This adaptive observer is stable and converges to the desired
state if:

L>y

with/ Le R", p=diag(p,, 0, - p,) and y €R"

are constants vectors.

The stability and robustness conditions are determined via the
following lyapunov function:

1 1 ==
V ==e'e+=p0T0
0T, 2/0

Which: @ =6—0 and e=X — X

3. BACKSTEPPING SLIDING MODE
CONTROLLER ALGORITHMS

A backstepping technique is a systematic method to construct a
lyapunov function and a controller law. The backstepping
controllers guaranty the trajectory tracking performance.

The sliding mode controller is known as a robust controller in
presence of uncertainties and perturbations its problem is the
chattering phenomenon. To eliminate this problem a
combination between the backstepping and sliding mode
technique is made. A new controller called a backstepping
sliding mode controller (BSMC), designed to uncertain
nonlinear systems transformed in a semi strict feedback form
(SSF), is présented. In ([11], [12]) the authors show that an
adaptive version of the BSMC studied to a SSF system is robust
to trajectory tracking. In this section, a BSMC is constructed for
a lipschtiz nonlinear system.
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The backstepping algorithm is described by the following step:

Step 1: Considering the variable error Ly =X =Y

Then

2y =% =X, + flT (x)9+ ¢1(X)_ )

Considering (3) as a subsystem which is stabilizable and the
lyapunov function is:

1,
Vl(zl’g) =54

2
The derivative of the lyapunov functionV1 is:
V,(z,,0)<—¢27 +2,2,
With C, is a positive constant.
Step2: Considering the variable error Z, = X, =Y, — ¢
with o, =—¢,2, — ¢, (X) - f,' (X)0

The Z, derivative is:

z, = Xz _yr "'(312.1_60(1 Xl _50!1 .r _8% ‘9
OX, oy, 00

ori,=12,—-Cz
Then

Z,=%X,—V, +C1(Zz _Clzl)_

Vz(22’9)=V1(2110)+%222

After derivation V2 becomes:

V2(22’0)2V1(21’9)+ 2,2,

V, (22 : 6’)3 —C,27 —C,25 + 2,2,

With:

Z,=X,— Y, —,
oo

a,=¢c2,-2,—(c, +¢ )z, — ] 0 +—Lx, +
oX,

oo

— g

0%,

T+ 0%y 0%y 00
ox oy 06

r

step i (1< i <N —1): Defining 7, = X, — ¢z, , — y'™

r
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i-1 i-2 ( k i-1 i-1 i-2
i1 K=jn i - - - J
(%, %,0)== "¢z, —(-1) Yclel g, Zy = chzi Ci—lZCjZi—l ZCZZM +
j=l k=1\_j=0 j=1 j=1 =
i-1 i-2 i-2 i-2( k i-2
+C IZC z +|Zc"z —IZ[Z —Ciz,, ]+ )Y Y ek e g+ [z, -2, |-
i1 j%ia1 24j+ i-1 jti-2 1 Y2 |k i-1 j%i-2
j=1 j=1 = k=1\_j=0 j=1
-1 -1
¢ ez, —6z — f, 9+Z ‘1(X,+1+¢)+ Z I AR A +Zax +g,(u+
j=0 j j=0 i=1
i-1 80{
1 i n-1 O
Z 0+ Z o+, (x)0+ 4, Z (Xia + ¢)— 0-
) ) i _
(4) 21 oo n-1 y(l) y(n) _21805 n-1 f 0
With C; > 0 and the variable error derivative Z; is: i1 ay(' ) i1 OX;
i—2 K (8)
' ® '1 k=i
Z; = +ZC Z; + ch C, %k Considering the lyapunov function:
k=1\_j=0
= Vv +12:157r5 )
= Vha
_Ci IZC Z ZC Z]+1+Z[le j IZ] " " 2 " 2
j=1 =1
i1 TheV, derivative is:
—1- -1
doeitlelz, +eiz + O z - (X1 +0;) - i Cl L
=0 =1 j . ) i1 i— ki ] i—
o . Hoa L o V, <->cz7 +(-1) >eiled 7,2, Olc;z -
e Y e Y f 0 td &0 (j) ¢ i=1 k=1\_j=0 j=1
EYERA .
j=1 69 j=1 8XJ ay i-1 i-2
(5) Ci—lzlcjzi ZC ZJ+1+Z[Z| -1 J Zi_ 2]
j= i=1
1 2 n-1
Vi _Vi*1+§Z' e/t ic)z  +clz, +g,()u+ fT(X)0+ ¢, +
D . j=0
Vi =V, +17;Z ®) 1 5o
: (n) Z n-1 n-1
. i C,Z, — Xy +0,)— Z .7 (x)0 -
2 n“n r i+1
V,<-> ¢z + 7,7, = ox, :
= = o N Oa, .
n-1,,0) _ n-1 O+ f
Step n: Z -1 Y + n(X))
P oy 00
Defining 2, = X, — &, ; — ygnfl) 7 (10)
. ; P u .
With @, , has the expression (4) when N = i ;I;)hr(renl.)acksteppmg sliding mode controller “ has the following
The derivative of Z, is: u=0u+sign(z,)(kz, + 1) (11)

U : The backstepping sliding mode control law

The backstepping sliding mode controller is stable and robust if:

n
V, <-> ¢z
i=1

V. <-Z"MZ (12)
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withc, >0, = n-1 -2
i C.z,-C,,)Cz ,—>Clz.  +
M=[c, C,.....c.]", Z=[z Z,......2,T ,Z_;‘ : 1; Sk JZ_;‘ 2o
L2k i
_1)- -ipd
= The controller is : ( 1) = J_Z_(;Cl €2 P
[ n-1 n-1 n-2 T n-2 n-1 o
zcjzi _Cn—1z‘,cjzn-1_Z‘,CzjzmJr + [Zi—l_Cjzi—z]_zclnilijczjzn1"‘
1 = 1 1 = =
u=
1' —2 gn(x) n d T
( lI Z ZCK JC2 Clzl_zaixi_fn (X)‘9+
k=1\_j=0 i=1
n-2 n-1 ot 6(Zn a,
. Sz —cz,]- et ielz, 2 _l(X.+1+¢)+Z _1f (x)0 +
u= j=l j=0 i=1 l |
g,(x) n N 0% M 0y 4 (n)
CfZl—ZaiXi—fnT(X)0+ ;ay e T 20 60— S+ Yr
5 +(kz, + A4)sign(z
> g‘-l(x.+1+¢)+z T ()0 + o s 2)iont)
i-1  OX i Xi
”Z‘i 8a_n_1 yo oa, , - +y®
= oyt 00 | e The adaptive sliding mode observer is:
+(kz, + A)sign(z,) X = Ax+¢(x)+f(x u)0+bu+L(y CR)-ysign(e,)
(13) =;f (x,u)(y-CXx)
A =—Kz| (14)
4. COMBINED ADAPTIVE OBSERVER- The combinaison is robuste if:
CONTROLLER
In literature a controller based observer is presented to lipsctiz > L>y
nonlinear systems. The proposed controller is applied as a
system and observer input which the separation principal is not > A= —k|Z |
- 1

usually verified. To ensure a trajectory tracking and estimation
of unmeasured state and unknown constant parameters, an

adaptive observer-controller combination, designed for a lipchitz Proof:
nonlinear system which, is still robust for a defined parameter
variation margin. See Appendix

Theorem: For a Lipchitz nonlinear system, the adaptive sliding
. . . The combination robustness is tested throughout an academic
mode observer combined to the backstepping sliding mode

. . example.
controller is robust and stable if:

e  The backstepping sliding mode controller architecture

is:
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5. SIMULATION RESULTS

Considering the nonlinear system
X =X, =0, Xf
X, ==X, —60,exp(X)—2x, +u
y=X

A:{ 0 _12} L p(X)=0;

foouy=| 4O -e{ﬂ-mm
’ 0 -ep(x)|  [6] [l

€, :y_y;elle_)zl; €, :Xz_)’zz

The sliding mode observer is:

A A A o3 .
X, =X, =0, % + L, ey, sign(e,)

A A

R, =— %, —0,exp(%,) - 2%, + L, ey, sign(e,) +u

A

y=X

The adaptation law is:

1 .
. ——e %
0= P1
1 .
-—e, (X))
P2
The controller parameters are:
Ly =%=Y,

Z, = )A(z -Y, +62Z, _91)213

U=c’z, —(c, +¢,)z, + &, + 2%, + 6, exp(%,) +
3%°%,0, —3028%° + (kz, + A)sign(z, )+ ¥,
A<-kz,

The simulation parameters are:

L =LL,=1,7,=10";y, =1072;6,(0) = 0.3;

6,(0) =0.1;%,(0)=2; %, (0)=2; x,(0) =X, (0) = 0;

1 1

0,=11,0,=01,—=07;—=5,,=02;c, =107";

P1 P2
k=-8;1=9
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The reference signal is:

0.1 Si0<t<8s
y, =405 Si 8s<t<14s
1 sit>14s

If the nominal parameter is constant, the combination between
an adaptive sliding mode observer and a backstepping sliding
mode controller is robust to trajectory tracking (fig.1.a),
estimation the unmeasured state. The state variables converge to
the desired values after the a short time (fig.1.c,d). This
combination is also robust to estimate the unknown parameter
(fig.1.e, f). This is due to the control signal absolute amplitude
is the same for all the reference amplitude varied (fig.1.b).

Tracking trajectory

05h output y i

reference yr

15 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

time(s)

Fig.1.a The trajectory tracking

The control signal u
40 T T T

301

20

10

-10

-20

-30

-40

-50

60 . . . . . . . . .
0 2 4 6 8 10 12 14 16 18 20
time(s)

Fig.1.b The signal control u
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Estimate the state x1

-0.5

desired state
estimated state

15 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

time(s)

Fig.1.c Estimation of the state X;

Estimate the state x2

| desired state
estimated state 4

P S S S T
0 2 4 6 8 10 12 14 16 18 20

time(s)

Fig.1.d Estimation of the state X,

Estimated the 1st parameter
1.2 T T T T T

11y

091 i
0.8 N
0.71 N

desired parameter
estimated parameter b

0.6

051 N

0.4r N

031 N

0.2 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

time(s)

Fig.1.e Estimation of the parameter (91
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Estimate the 2nd parameter

35 b
3 ‘ desired parameter |
‘ estimated parameter
25 ﬂ N
|
|
2| 1
|
\
15| ]
1r J
05F \ 1
\
\__

0 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20

time(s)

Fig.1.f Estimation of the parameter 6,

Fig.1. Trajectory tracking and parameter and state estimation
with constants parameter

The combination between the backstepping sliding mode control
and the adaptive sliding mode observer is robust to state and
parameter estimation and trajectory tracking which is different
from literature works ([13], [14]) where the designed approaches
permit only to improve the state estimation performance and
build the unknown input.

6. CONCLUSION

In this paper, an adaptive sliding mode observer is combined to
a backstepping sliding mode controller for a class of lipschitz
nonlinear systems. This combination is designed to ensure the
trajectory tracking, estimation of the unmeasured state and the
unknown parameter when the parameters are constants or varied
linearly. The simulation results show that the adaptive sliding
mode observer combined to a backstepping sliding mode
controller is robust to trajectory tracking and the estimation of
state and parameters if the nominal parameter are constants.

7. APENDIX

Proof:

To study the combination robustness and stability, a lyapunov
function is considered as:

V=V, +V, (A1)
The derivative of V is:

V=V, +V, (A2)
Construction of the lyapunov function \/n

Step 1: Considering the variable error Z; = )A(l =Y,
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2, = ;1 =X, + flT ()A()é"' ¢1()A()_ Y (A3)
When @ is the estimate of &
We have: 7, = );(1 =%, + f,' ()?)é+ ¢1()A()— Y,
The subsystem (A.3) is stable and the lyapunov function is:

Vl(zl,é)zézf

After derivation, development and simplification, the expression

of V, becomes:
Vl(zl, é)s -z} + 27,2,

With C; is a positive constant

A .

L=%="Y—
a, =—Cz, -4 (R)— 1, ()0
The Z, derivative is:

2, = )A(z -V _Clz.l_ai(l )A(l_aal Y, _50@9*
aXl ayr 80

v, (zz,é)zvl(zl,é)+%z§
The lyapunov function V/ derivative is
V,(2,,0)=Vi(z,,6)+ 2,2,
V,(2,.0)< —c,22 — ¢, 22 + 2,2,

with: Z; =X, - Y, — ¢,
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a, =-12,+¢22,—(c, +¢,)z, — f, 0+

a‘ifl Az aal f é 6051 ¢1 80{1 ,r N
5X ﬁxl ayr
0
“o-9,
00
stepi(l<i<n-1):
Defining Z, =X, —¢; ; _yﬁifl)
R i-1 _
ai(f(l,...f(i,@)z—zcjzi —Cl'zl_
=
i—2
. Z zck JC Z, — Z[ZH—C,-ZFZ]+
k=1 j:]-

1
¢ clz . ¢9+Z _1(XH1+¢)+
j=0

ilaa

% f.Té—gzﬁi +
=i 00 :

i-1

i-2
i
Ci—lij Ziy t Zcz Zig
1

= j=

(A4)

With C; > O and the variable error Z; derivative is:

i—1 i-1

L= D CiZ +C 1chz, 1+Zc z.,
=1

i i=

><)

i— i—2

|1 kj j [ ]
C; Zk_zzi—l_cjzi—z +
j=1
zla
-1

iﬁa_l 70+,

7 X

A

et 4y)- 2 S0

(A5)
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Vi=Viy +12|2
2

vi :vi—1 +12;2, (A.6)
i
> ¢,z +7,2.,
j=1
Step n:
Defining Z, = X, —ct, , —y"™? (A7)
With ¢, _, is the same as the equation (A.4) when N = i.

The derivative of the variable Z is:

n—. n—.

Z, —chzn C, 1chz, . ZczzJ+1
j=1 j=1 =
n 1n 2( k .
D¢ lel zk+Z[znl jZH]+
k=1\_j=0 j=1
Za X+ 1 (R)9+g, -
04 n-1
= S
;g; 6Xi ( i+1 ¢ ) 69 y
n-1 6
Py A
o OX
(A.8)
Considering the lyapunov function:
1,
V, =V, +EZ” (A.9)

The V, derivative is:
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n n-1
V, < —Zcizﬁ + zn(chzn -
i-1 =1

n-1 n-2
CHZCJZH_ZC;ZH"'
=t j=1
n-2
—1)y ZC“ JC‘Jz +
k=1\_ j=0
Z[Zn—l CiZy z]+g (Xu + (A.10)
-1
fT(R)0+4, +c,2, —y™ -
“oa,
2o (Rt )

n-1 é?(l L
e )0 —
Za (X)

i=1 i

n -1 69
+ f.(X))
0
For the observer, choosing the following Lyapunov function:

1 1 ==
V =Ze'e+=p0'0 A1l
075 2,0 (A.11)

Where @ =0 —6 and e=X — X

The dynamical error is:

E=AX—X)+d(X)—p(X)+ f(x,u)@— f (ﬁ,u)é—
L(y-CX)+y sign(e,)

The derivative of the function V is then:

=V, =eTé—,oéT 6

V, =e" Ae+e’ (#(X)—g(R)+e" (f(x,u)0—f(X,u)8)—
e'LCe+e y sign(ey)—péTg
or e,=Ce and sign(e,)=Csign(e)

V,=e"Ae+e’ (#(x)—p(R))+e" (f(x,u)0-
f(%,U)(0—08))—e"LCe+e"y Csign(e)— pO' &
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V. <e"Ae+e' a,e+e’ o ef+e’ f(Xu)6 -

e'LCe+e'y Csign(e)—péT 0

sign(e)zé

Thatis @' =
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leT f(X,u) or i is a scalar

Than B= L £ 7 (R,u)e

3) The backstepping sliding mode controller is

<e"(A—LC+a,+a, 0+y C)e +e f(Xu)d -

péT 0
(A12)

Introducing the equation (A.12) and (A.10) into the expression
(A.2), it becomes:

-1 -2( k
V < —Zn:cizf +zn(anjzn +(_1)an D ocile) 7, -
i1 =1 =0

Mn-1 n-1

n-2
D¢z, =Cy D .CiZ,y— Y C)

=L =L =

-2 k
CO S >eke) by +
k=1\_ j=0

Zj+1+

n-2 n
A T(a\A
k=1 1 Z[Zn—l —-C Zn—Z]_ZaiXi - fn (X)9+
n-1 u= = =
CMZC z,. ZCZZJ+1+Z[Zn1 CiZ,. 2]+g (R)u + 9,(%)| 12 ¢ L
j=1 Z (X|+l + ¢ ) +
L = OX
(n) n-1
f (X)9+¢ +CZ z oR ( i+1 ¢)_ nzlﬁanlf ()9+z (|)
L oK i or (. = yVr
-1 5 . i=1 i
n-1 Oy o
y =t = fT(R)0-—"L0+f (R)+ 805_10 b+ yo
i=1 i
_ . 00 4
T Te(o AT » .
€ (A— LC+0€2+6¥19+}/C)€ +€ f(X,U)H—pH o +(kzl+,1)s|gn(zl)
A=Kz,
The backstepping sliding mode controller U has the following
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