
International Journal of Computer Applications (0975 – 8887)

Volume 32– No.1, October 2011

26

An Efficient Modified Shuffled Frog Leaping Optimization
Algorithm

Mohammad Pourmahmood
Aghababa

Department of Electrical
Engineering, Ahar Branch, Islamic

Azad University, Ahar, Iran

Mohammd Esmaeel Akbari
Department of Electrical

Engineering, Ahar Branch, Islamic
Azad University, Ahar, Iran

Amin Mohammadpour
Shotorbani

Department of Electrical Engineering,
Azerbaijan University, E. Azerbaijan,

Iran

ABSTRACT

In this paper, a modified shuffled frog leaping (MSFL) algorithm

is proposed to overcome drawbacks of standard shuffled frog

leaping (SFL) method. The MSFL approach is based on two

major modifications on the conventional SFL method: (1) an

adaptive accelerated position changing of frogs and (2) sweeping

between randomly selected frogs (called superseding frogs). The

first modification causes a fast convergence rate and consequently

achieving a rapid adaptive algorithm, while the second one causes

a better diversification and consequently escaping from local

optimum traps. The MSFL algorithm performance is validated

using benchmark functions. Simulation results indicate the

superiority of MSFL to that of the original SFL in terms of

optimal precision and fast convergence rate.

Keywords

Shuffled frog leaping algorithm, Optimization approach,

Convergence rate, Escaping local optimum.

1. INTRODUCTION
The objective of optimization is to seek values for a set of

parameters that maximize or minimize objective functions subject

to certain constraints. In recent years, many optimization

algorithms are introduced. Some of these algorithms are

traditional optimization algorithms. Traditional optimization

algorithms use exact methods to find the best solution. The idea is

that if a problem can be solved, then the algorithm should find the

global best solution. As the search space increases the objective

value of these algorithms increases. Therefore, when the search

space complexity increases the exact algorithms can be slow to

find the global optimum. Linear and nonlinear programming,

brute force or exhaustive search and divide and conquer methods

are some of the exact optimization methods.

Calculus provides the tools and elegance for finding the optimum

value of many objective functions. It quickly finds a single

optimum but requires a search scheme to find the global optimum.

Continuous functions with analytical derivatives are necessary

(unless derivatives are taken numerically, which results in even

more function evaluations plus a loss of accuracy). If there are too

many variables, then it is difficult to find all the extrema. The

gradient of the objective function serves as the compass heading

solution to the steepest downhill path. It works well when the

optimum is nearby, but cannot deal with cliffs or boundaries,

where the gradient cannot be calculated.

Other optimization algorithms are stochastic algorithms, consisted

of intelligent, heuristic and random methods. Stochastic

algorithms have several advantages compared to other algorithms

as follows:

1) Stochastic algorithms are generally easy to implement.

2) They can be used efficiently in a multiprocessor environment.

3) They do not require the problem definition function to be

continuous.

4) They generally can find optimal or near-optimal solutions.

Nowadays, artificial intelligence techniques have found many

successful applications in science and engineering (for example

see Refs. [1-10] for intelligent PID controller design).

Evolutionary algorithms (EAs) are stochastic optimization

methods that mimic the metaphor of natural biological evolution

and/or the social behavior of species. Shuffled Frog Leaping

(SFL) [11, 12] is one of the new EAs that has been proposed by

Eusuff and Lansey for determining optimal discrete pipe sizes for

new pipe networks and for network expansions [11]. It is based on

evolution of memes carried by the interactive individuals and a

global exchange of information among themselves. The SFL

works based on memetic evolution (transformation of frogs) and

information exchange in the population. Frogs which are the hosts

of memes (consisting memotype like gene in chromosome in GA)

search the particle with the highest amount of food in a swamp by

improving their memes. This characteristic can be used in an

intelligent manner in control systems.

This paper proposes the MSFL technique as a new optimization

algorithm. The proposed method is applied for determining the

optimal values for some benchmark functions. The advantages of

this methodology are that it is a simple method with less

computation burden, high-quality solution and stable convergence

specifications.

The rest of this paper is organized as follows. In section 2, an

overview of SFL algorithm is given. In Section 3, the modified

version of SFL is introduced. Using some benchmark functions,

the efficiency of the proposed MSFL is illustrated in Section 4.

Finally, the paper ends with some conclusions in section 5.

2. SFL ALGORITHM
SFL algorithm, introduced by Eusuff and Lansey for water

distribution system optimization, is a metaheuristic for solving

optimization problems [11]. SFL is a population based

cooperative search metaphor inspired by natural memetics. The

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.1, October 2011

27

algorithm uses memetic evolution in the form of influencing of

ideas from one individual to another in a local search.

Conceptually, the local search is similar to particle swarm

optimization. A shuffling strategy allows the exchange of

information among local searchers, leading them toward a global

optimum [11].

In SFL, the population consists of a set of frogs (solutions)

partitioned into subsets, referred to as memeplexes. Different

memeplexes are considered as different cultures of frogs, each

performing a local search. Within each memeplex, the individual

frogs hold ideas, that can be influenced by the ideas of other frogs,

and evolve through a process of memetic evolution. After a

defined number of memetic evolution steps, ideas are passed

among memeplexes in a shuffling process [12]. The local search

and the shuffling processes continue until some predefined

convergence criteria are satisfied [11].

In general, a SFL works as follows. First, an initial population

of P frogs is created randomly. Afterwards, the frogs are sorted in

a descending order according to their fitness. Then, the entire

population is divided into m memeplexes, each containing n frogs.

In this process, the first frog goes to the first memeplex, the

second frog goes to the second memeplex, frog m goes to the mth

memeplex, and frog m+1 goes back to the first memeplex and so

on. Within each memeplex, the frogs with the best and the worst

fitnesses are identified as Xb and Xw, respectively. Also, the frog

with the global best fitness is identified as Xg. Then, a process is

applied to improve only the frog with the worst fitness (not all

frogs) in each cycle.

Accordingly, the position of the frog with the worst fitness is

adjusted as follows [11]:

Chang frog position:

Di=rand × (Xb - Xg) (1)

New position:

Xi+1 =Xi +Di where -Dmax ≤Di ≤ Dmax, (2)

where rand is a random number between 0 and 1, and Dmax is the

maximum allowed change in a frog’s position. If this process

produces a better solution, it is replaced for the worst frog.

Otherwise, the calculations in equations (1) and (2) are repeated

but with respect to the global best frog (i.e. Xb is replaced by Xg).

If no improvement is possible, then a new solution is randomly

generated to replace the worst frog. Hence, the calculations

continue for a specific number of iterations [11]. Accordingly, the

main parameters of SFL are: number of frogs P; number of

memeplexes; number of generation for each memeplex before

shuffling; number of shuffling iterations; and maximum step size.

3. MODIFIED SHUFFLED FROG

LEAPING ALGORITHM
The main drawback of SFL algorithm is slow convergence,

closely related to the lack of adaptive acceleration terms in the

position updating formula. In equation (1), rand determines the

movement step sizes of frogs through the Xb and Xw positions. In

the standard SFL, these step sizes are random numbers between 0

and 1 for all frogs.

In each cycle, the value of the objective function is a criterion

that presents the relative improvement of a frog movement with

respect to the previous one. Thus the difference between the

values of the objective function in consequent iterations can

represent the frog acceleration. Therefore, position changing

formulae turns to the following form.

Di = rand × C × (f(Xb) - f(Xw)) × (Xb - Xw) (3)

New position:

Xi+1 = Xi + Di (4)

where C(0,Cmax] is a constant, Cmax is a case dependant upper

limit, f(Xb) and f(Xw) are the best and the worst fitness functions

that are found by the frogs in each memeplexs. Similar to the

original SFL, if the process produces a better solution, the worst

frog is replaced by the better one. Otherwise, the calculations in

equations (3) and (4) are repeated with respect to the global best

frog instead (i.e. Xg and f(Xg) replace Xb and f(Xb), respectively).

If no improvement is possible, then a new solution is randomly

generated to replace the worst frog.

The proposed modification term, (f(Xb) - f(Xw)), called

adaptive coefficient, causes an adaptive movement. In each

iteration, the modification term defines the movement step size,

adaptively. Therefore, the adaptive coefficient decreases/

increases the movement step size relative to being closer/farther

from the optimum point, respectively. By means of this method,

position changing can be updated adaptively instead of being

fixed or changed linearly. Therefore, using the adaptive

coefficient, the convergence rate of the algorithm will be

increased rather than being performed by proportional large or

short steps. So, the above modification accelerates the

convergence of the algorithm.

Another modification can be defined to help escaping from

local optima and increasing the diversification ability of the

algorithm (the other drawback of SFL). Similar to the mutation

procedure in genetic algorithms, an extra process can be added to

the algorithm as follows. When new positions are determined for

each memeplex using equations (3) and (4), one frog of each

memeplex is selected randomly and it is replaced by another

random frog as a new solution. This process is repeated in each

iteration, for all memeplexes. The new frog is named the

superseding frog. Increasing exploitation and exploration power

of the algorithm, the superseding frogs introduce new solutions

that help to better diversification and escaping from local optima,

without any extra function evaluation.

Therefore, the two mentioned modifications are added to the

standard SFL algorithm. This new version is called modified SFL

(MSFL). The main characteristics of MSFL algorithm are: having

adaptive movements, fast convergence, better diversification

ability and escaping from local optima. Finally, the proposed

MSFL is still a general optimization algorithm that can be applied

to any real world continuous optimization problems. The

pseudocode for MSFL algorithm is presented in Appendix A.

4. SIMULATION RESULTS
The efficiency of MSFL is tested using a set of benchmark

functions (listed in Appendix B) and the results are compared to

that of standard SFL. To avoid any misinterpretation of the

optimization results, related to the choice of any particular initial

parameters, we performed each test 50 times, starting from

various randomly selected solutions, inside the hyper rectangular

search domain specified in the usual literature.

To evaluate the efficiency of the proposed MSFL algorithm,

we retained the following criteria summarizing results from 50

minimizations per function: the rate of successful minimizations

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.1, October 2011

28

(RATESM), the average of the objective function evaluation

numbers (AVERAGEOBJEN) and the average error

(AVERAGEERROR). These criteria are defined precisely below.

When at least one of termination tests is verified, MSFL stops

and provides the coordinates of a located solution, and the

objective function value “OBJN.O” of this solution. We compared

this result with the known analytical minimum “OBJANAL” and

we considered this result to be “successful” if the following

inequality held:

|OBJN.O - OBJANAL| < rel |OBJINIT| + abs,

where rel =10-3, rel =10-5 and OBJINIT is an empirical

average of the objective function value, calculated during

typically 50 solutions, randomly selected inside the search domain

before running the algorithm. The average of the objective

function evaluation numbers is evaluated in relation to only the

successful minimizations and it shows the convergence rate of the

algorithm. In fact, this criterion measures the speed of the

algorithm and shows whether it is fast or slow. The average error

is defined as the average of OBJ gaps between the best successful

solution found and the known global optimum. This criterion

shows the accuracy of the algorithm in finding the global

optimum.

A population of 50 frogs, 5 memeplexes, and 5 iterations per

memeplex were found suitable to obtain good solutions, for both

SFL and MSFL algorithms. The maximum iteration of all

experiments is considered equal to 500. Table 1 shows the results

of MSFL and SFL method for test functions.

As Table 1 shows, when the search space is more

complicated, the rate of successful minimization is decreased.

Though, MSFL has better successful minimization than SFL

method. This means that MSFL can escape from local minima

trap rather than SFL algorithm. MSFL and SFL algorithms,

starting from the same point, are compared in Figure 1 for H6,4

function. After 115 iterations, SFL is trapped into a local

minimum (0.232, 0.413, 0.830, 0.373, 0.100, 0.999) and the value

of function is equal to -1.509, while MSFL algorithm has escaped

from local minima (H6,4 function has four local minima) and after

170 iteration has achieved the global minima (0.201, 0.150, 0.476,

0.275, 0.311, 0.675) and the value of function is equal to -3.322. It

can be inferred, MSFL possesses escaping property from local

optima because of superseding frogs.

Comparing the average of the objective function evaluation

numbers (Table 1.), as a criterion of algorithm speed, it can be

seen that MSFL algorithm is faster than SFL. The high speed of

MSFL method is achieved by adding adaptive terms to the

position changing formula (Eqs. 3 and 4). Figure 2 shows a

typical diagram of two algorithms convergence rates for SH

function, starting from the same initial point. It is obvious that

although both algorithms can find the optima, MSFL is faster than

SFL dramatically. Therefore, in many real world applications that

real time computations and less CPU time consumption are

needed, MSFL can work better than SFL algorithm. For the

successful minimizations, average errors of both algorithms are

approximately similar and are less than 0.01, revealing that both

algorithms have good accuracies in finding solutions. This

accuracy is acceptable for many real world optimization

problems. As a conclusion, the results shown in Table 1 indicate

that MSFL algorithm not only has great advantage of fast

convergence, but also it obtains both better and more robust

results over standard SFL algorithm.

Table 1. Results of MSFL and SFL methods for test functions

RATESM (%) AVERAGEOBJEN AVERAGEERROR

Algorithm MSFL SFL MSFL SFL MSFL SFL

Function

SH 100 91 483 584 0.001 0.003

H3,4 100 87 599 694 0.004 0.004

S4,5 99 86 620 773 0.005 0.004

S4,7 99 83 665 821 0.001 0.003

S4,10 98 79 690 791 0.002 0.003

R5 97 82 1202 1745 0.003 0.001

Z5 97 83 1312 1678 0.002 0.002

H6,4 96 81 1508 1982 0.0064 0.005

R10 95 75 1917 2634 0.0053 0.007

Z10 94 75 1902 2558 0.0077 0.008

Figure 1. Convergence rate of MSFL and SFL algorithms for

H6, 4 function

5. CONCLUSIONS
In this paper, a new modified SFL algorithm (MSFL) was

proposed. Two major modifications were accomplished making

MSFL possesses excellent properties, i.e., avoiding the premature

convergence problem effectively, escaping from local optima, and

also having good optimization performance and better

diversification ability compared to the standard SFL algorithm.

Different benchmarks were used to illustrate the mentioned

advantages.

0 50 100 150 200 250 300 350 400 450 500
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Iteration

O
b
je

c
ti
v
e
 f

u
n
c
ti
o
n
 v

a
lu

e

Convergence rate diagram

MSFL

SFL

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.1, October 2011

29

Figure 2. Convergence rate of MSFL and SFL algorithms for

SH function

6. APPENDICES

6.1 Appendix A. The Pseudocode for MSFL

Algorithm
Begin;

1. Set initial values such as size of the population, the number

of memeplexes m, random population of P frogs, maximum

number of iterations, etc;

2. For each individual calculate objective value;

3. Sort the population P in descending order of their objective

values;

4. Divide P into m memeplexes;

5. For each memeplex:

Do:

Sort the frogs in descending order of their objective value;

Determine the best and worst frogs;

Improve the worst frog position using Eq. (4).

Repeat for a specific number of iterations;

End;

6. In each memeplex, replace a frog with another random frog

(superseding frog);

7. Combine the evolved memeplexes;

8. Sort the population P in descending order of their objective

value;

9. Check if termination condition is true then stop, otherwise

go to step 3;

End;

6.2 Appendix B. Some Well-known

Benchmark Functions of Optimization

Problems

6.2.1 Shubert (SH) (2 variables)

SH(x1, x2) =  ]Jx)1jcos[(j
5

1j 1  
 ×

 ]Jx)1jcos[(j
5

1j 2  

Search domain: -10< xj <10, j=1, 2;

760 local minima;

18 global minimum;

SH((x1, x2)*) = -186.7309;

6.2.2 Hartmann (H3, 4) (3 variables)

H3, 4(x1, x2, x3) = ])px(aexp[c
3

1j

2
ijjij

4

1j i  
 ;

Search domain: 0< xj <1, j=1, 2, 3;

4 local minima: Pi = (pi1, pi2, pi3) = ith local minimum

approximation;

H3, 4 (Pi)  -ci;

1 global minimum: X*= (0.11, 0.555, 0.855);

H3, 4 ((x1, x2, x3)*) = -3.86278;

6.2.3 Shekel (S4, n) (3 variables)

S4, n (X) = - 1
ii

T
i

n

1j
]c)aX()aX([




X = (x1, x2, x3, x4)
T;

ai = (
1
ia ,

2
ia ,

3
ia ,

4
ia)T;

3 functions were considered: S4, 5, S4, 7 and S4, 10;

Search domain: 0< xj <10, j=1, 2, 3, 4;

n local minima: ai = ith local minimum approximation;

S4, n (ai
T)  -1/ci;

1 global minimum for each function;

S4, 5(X) = -10.1532, S4, 7(X) = -10.40294, S4, 10(X) = -10.53641

Table 2. Test function parameters

i ai
T
 ci

1 4.0 4.0 4.0 4.0 0.1

2 1.0 1.0 1.0 1.0 0.2

3 8.0 8.0 8.0 8.0 0.2

4 6.0 6.0 6.0 6.0 0.4

5 3.0 7.0 3.0 7.0 0.4

6 2.0 9.0 2.0 9.0 0.6

7 5.0 5.0 3.0 3.0 0.3

8 8.0 1.0 8.0 1.0 0.7

9 6.0 2.0 6.0 2.0 0.5

10 7.0 3.0 7.0 3.6 0.5

6.2.4 Hartmann (H6, 4) (6 variables)

H6, 4 (x1, x2, x3) =  ])px(aexp[c
6

1j

2
ijjij

4

1j i  


Search domain: 0< xj <1, j = 1,…, 6;

4 local minima: Pi = (pi1,…, pi6) = ith local minimum

approximation;

0 50 100 150 200 250 300 350 400 450 500
-200

-150

-100

-50

0

50

Iteration

O
b
je

c
ti
v
e
 f

u
n
c
ti
o
n
 v

a
lu

e

Convergence rate diagram

SFL

MSFL

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.1, October 2011

30

H6, 4 (Pi)  -ci;

1 global minimum: X* = (0.201, 0.150, 0.476, 0.275, 0.311,

0.657);

H6, 4 ((x1, x2, x3)*) = -3.3223;

6.2.5 Rosenbrock (Rn) (n variables)

];)1x()xx(100[)X(R 2
j

2
1j

2
j

n

1jn  

Search domain: -5< xj <10, j = 1,…, n;

Several local minima (exact number unspecified in usual

literature);

1 global minimum: X* = (1,…, 1);

Rn (X*) = 0;

6.2.6 Zakharov (Zn) (n variables)

  4n

1j

2n

1j

n

1j

2
jn)jxj5.0()jxj5.0(x)x(Z  



Search domain: -5<xj<10, j = 1, …, n;

Several local minima;

 1 global minimum: X* = (1,…, 1);

Zn (X*) = 0;

Table 3. Test function parameters

i aij ci pij

1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673

2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470

3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547

4 0.1 10.0 35.0 3.2 0.0381 0.5743 0.8828

7. REFERENCES
[1] Z.L. Gaing, A Particle Swarm Optimization Approach for

Optimum Design of PID controller in AVR system, IEEE

Transactions on Energy Conversion, Vol 9(2), 2003, pp. 384-

391.

[2] Z.Y. Zhao, M. Tomizuka, and S. Isaka, Fuzzy gain

scheduling of PID controllers, IEEE Trans. System, Man,

and Cybernetics, Vol. 23, No. 5, 1993, pp. 1392-1398.

[3] A. Visioli, Fuzzy logic based set-point weight tuning of PID

controllers, IEEE Trans. System, Man, and Cybernetics –

Part A: System and Humans, Vol. 29, No. 6, 1999, pp. 587-

592.Tavel, P. 2007 Modeling and Simulation Design. AK

Peters Ltd.

[4] S.Y. Chu, C.C. Teng, Tuning of PID controllers based on

gain and phase margin specifications using fuzzy neural

network, Fuzzy Sets and Systems, Vol. 101(1), 1999, pp. 21-

30.

[5] G. Zhou and J. D. Birdwell, Fuzzy logic-based PID autotuner

design using simulated annealing, Proceedings of the

IEEE/IFAC Joint Symposium on Computer-Aided Control

System Design, 1994, pp. 67 – 72.

[6] D. P. Kwok and F. Sheng, Genetic algorithm and simulated

annealing for optimal robot arm PID control, Proc IEEE

Conf. Evolutionary Computation, 1994, pp. 707–713.

[7] R. A. Krohling and J. P. Rey, Design of optimal disturbance

rejection PID controllers using genetic algorithm, IEEE

Trans. Evol. Comput., Vol. 5, 2001, pp. 78–82,.

[8] P. Wang and D.P. Kwok, Optimal design of PID process

controllers based on genetic algorithms, Control Engineer

Practice, Vol. 2, No. 4, 1994, pp.641-648.

[9] D. H. Kim, Tuning of a PID controller using a artificial

immune network model and local fuzzy set, Proceedings of

the Joint 9th IFSA World Congress and 20th NAFIPS

International Conference, Vol.5, 2001, pp. 2698 – 2703.

[10] Y.T. Hsiao, C.L. Chuang, and C.C. Chien, Ant colony

optimization for designing of PID controllers, Proceedings of

the 2004 IEEE Conference on Control Applications/

International Symposium on Intelligent Control/International

Symposium on Computer Aided Control Systems Design,

Taipei, Taiwan, , 2004.

[11] MM. Eusuf, KE. Lansey, Optimization of water distribution

network design using the shuffled frog leaping algorithm. J

Water Resour Plan Manage, Vol 129(3), 2003, pp. 210–225.

[12] S. Y. Liong, Md. Atiquzzaman., Optimal design of water

distribution network using shuffled complex evolution. J Inst

Eng, Singapore, Vol 44(1), 2004, pp. 93–107.

Table 4. Test function parameters

i aij ci pij

1 10.0 3.00 17.0 3.5 1.70 8.00 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.05 10.0 17.0 0.1 8.00 14.0 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 3.00 3.50 1.70 10 17.0 8.00 3.0 0.2348 0.1451 0.35522 0.2883 0.3047 0.6650

4 17.0 8.00 0.05 10 0.10 14.0 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

