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ABSTRACT 

In this paper, a modified shuffled frog leaping (MSFL) algorithm 

is proposed to overcome drawbacks of standard shuffled frog 

leaping (SFL) method. The MSFL approach is based on two 

major modifications on the conventional SFL method: (1) an 

adaptive accelerated position changing of frogs and (2) sweeping 

between randomly selected frogs (called superseding frogs). The 

first modification causes a fast convergence rate and consequently 

achieving a rapid adaptive algorithm, while the second one causes 

a better diversification and consequently escaping from local 

optimum traps.  The MSFL algorithm performance is validated 

using benchmark functions. Simulation results indicate the 

superiority of MSFL to that of the original SFL in terms of 

optimal precision and fast convergence rate.   

Keywords 
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1. INTRODUCTION 
The objective of optimization is to seek values for a set of 

parameters that maximize or minimize objective functions subject 

to certain constraints. In recent years, many optimization 

algorithms are introduced. Some of these algorithms are 

traditional optimization algorithms. Traditional optimization 

algorithms use exact methods to find the best solution. The idea is 

that if a problem can be solved, then the algorithm should find the 

global best solution. As the search space increases the objective 

value of these algorithms increases. Therefore, when the search 

space complexity increases the exact algorithms can be slow to 

find the global optimum. Linear and nonlinear programming, 

brute force or exhaustive search and divide and conquer methods 

are some of the exact optimization methods. 

Calculus provides the tools and elegance for finding the optimum 

value of many objective functions. It quickly finds a single 

optimum but requires a search scheme to find the global optimum. 

Continuous functions with analytical derivatives are necessary 

(unless derivatives are taken numerically, which results in even 

more function evaluations plus a loss of accuracy). If there are too 

many variables, then it is difficult to find all the extrema. The 

gradient of the objective function serves as the compass heading 

solution to the steepest downhill path. It works well when the 

optimum is nearby, but cannot deal with cliffs or boundaries, 

where the gradient cannot be calculated. 

Other optimization algorithms are stochastic algorithms, consisted 

of intelligent, heuristic and random methods. Stochastic 

algorithms have several advantages compared to other algorithms 

as follows: 

1)  Stochastic algorithms are generally easy to implement. 

2)  They can be used efficiently in a multiprocessor environment. 

3)  They do not require the problem definition function to be 

continuous. 

4)  They generally can find optimal or near-optimal solutions.  

Nowadays, artificial intelligence techniques have found many 

successful applications in science and engineering (for example 

see Refs. [1-10] for intelligent PID controller design). 

Evolutionary algorithms (EAs) are stochastic optimization 

methods that mimic the metaphor of natural biological evolution 

and/or the social behavior of species. Shuffled Frog Leaping 

(SFL) [11, 12] is one of the new EAs that has been proposed by 

Eusuff and Lansey for determining optimal discrete pipe sizes for 

new pipe networks and for network expansions [11]. It is based on 

evolution of memes carried by the interactive individuals and a 

global exchange of information among themselves. The SFL 

works based on memetic evolution (transformation of frogs) and 

information exchange in the population. Frogs which are the hosts 

of memes (consisting memotype like gene in chromosome in GA) 

search the particle with the highest amount of food in a swamp by 

improving their memes. This characteristic can be used in an 

intelligent manner in control systems. 

This paper proposes the MSFL technique as a new optimization 

algorithm. The proposed method is applied for determining the 

optimal values for some benchmark functions. The advantages of 

this methodology are that it is a simple method with less 

computation burden, high-quality solution and stable convergence 

specifications. 

The rest of this paper is organized as follows. In section 2, an 

overview of SFL algorithm is given. In Section 3, the modified 

version of SFL is introduced. Using some benchmark functions, 

the efficiency of the proposed MSFL is illustrated in Section 4. 

Finally, the paper ends with some conclusions in section 5.  

2. SFL ALGORITHM 
SFL algorithm, introduced by Eusuff and Lansey for water 

distribution system optimization, is a metaheuristic for solving 

optimization problems [11]. SFL is a population based 

cooperative search metaphor inspired by natural memetics. The 
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algorithm uses memetic evolution in the form of influencing of 

ideas from one individual to another in a local search. 

Conceptually, the local search is similar to particle swarm 

optimization. A shuffling strategy allows the exchange of 

information among local searchers, leading them toward a global 

optimum [11]. 

In SFL, the population consists of a set of frogs (solutions) 

partitioned into subsets, referred to as memeplexes. Different 

memeplexes are considered as different cultures of frogs, each 

performing a local search. Within each memeplex, the individual 

frogs hold ideas, that can be influenced by the ideas of other frogs, 

and evolve through a process of memetic evolution. After a 

defined number of memetic evolution steps, ideas are passed 

among memeplexes in a shuffling process [12]. The local search 

and the shuffling processes continue until some predefined 

convergence criteria are satisfied [11]. 

In general, a SFL works as follows. First, an initial population 

of P frogs is created randomly. Afterwards, the frogs are sorted in 

a descending order according to their fitness. Then, the entire 

population is divided into m memeplexes, each containing n frogs. 

In this process, the first frog goes to the first memeplex, the 

second frog goes to the second memeplex, frog m goes to the mth 

memeplex, and frog m+1 goes back to the first memeplex and so 

on. Within each memeplex, the frogs with the best and the worst 

fitnesses are identified as Xb and Xw, respectively. Also, the frog 

with the global best fitness is identified as Xg. Then, a process is 

applied to improve only the frog with the worst fitness (not all 

frogs) in each cycle. 

Accordingly, the position of the frog with the worst fitness is 

adjusted as follows [11]: 

Chang frog position: 

Di=rand × (Xb - Xg )                                                (1) 

New position: 

Xi+1 =Xi +Di  where  -Dmax ≤Di ≤ Dmax,                   (2) 

where rand is a random number between 0 and 1, and Dmax is the 

maximum allowed change in a frog’s position. If this process 

produces a better solution, it is replaced for the worst frog. 

Otherwise, the calculations in equations (1) and (2) are repeated 

but with respect to the global best frog (i.e. Xb is replaced by Xg). 

If no improvement is possible, then a new solution is randomly 

generated to replace the worst frog. Hence, the calculations 

continue for a specific number of iterations [11]. Accordingly, the 

main parameters of SFL are: number of frogs P; number of 

memeplexes; number of generation for each memeplex before 

shuffling; number of shuffling iterations; and maximum step size. 

3. MODIFIED SHUFFLED FROG 

LEAPING ALGORITHM 
The main drawback of SFL algorithm is slow convergence, 

closely related to the lack of adaptive acceleration terms in the 

position updating formula. In equation (1), rand determines the 

movement step sizes of frogs through the Xb and Xw positions. In 

the standard SFL, these step sizes are random numbers between 0 

and 1 for all frogs.  

In each cycle, the value of the objective function is a criterion 

that presents the relative improvement of a frog movement with 

respect to the previous one. Thus the difference between the 

values of the objective function in consequent iterations can 

represent the frog acceleration. Therefore, position changing 

formulae turns to the following form. 

Di = rand × C × (f(Xb ) - f(Xw) ) × (Xb - Xw)           (3) 

New position: 

Xi+1 = Xi + Di                                                           (4) 

where C(0,Cmax] is a constant, Cmax is a case dependant upper 

limit, f(Xb) and f(Xw) are the best and the worst fitness functions 

that are found by the frogs in each memeplexs. Similar to the 

original SFL, if the process produces a better solution, the worst 

frog is replaced by the better one. Otherwise, the calculations in 

equations (3) and (4) are repeated with respect to the global best 

frog instead (i.e. Xg and f(Xg) replace Xb and f(Xb), respectively). 

If no improvement is possible, then a new solution is randomly 

generated to replace the worst frog. 

The proposed modification term, (f(Xb) - f(Xw)), called 

adaptive coefficient, causes an adaptive movement. In each 

iteration, the modification term defines the movement step size, 

adaptively. Therefore, the adaptive coefficient decreases/ 

increases the movement step size relative to being closer/farther 

from the optimum point, respectively. By means of this method, 

position changing can be updated adaptively instead of being 

fixed or changed linearly. Therefore, using the adaptive 

coefficient, the convergence rate of the algorithm will be 

increased rather than being performed by proportional large or 

short steps. So, the above modification accelerates the 

convergence of the algorithm. 

Another modification can be defined to help escaping from 

local optima and increasing the diversification ability of the 

algorithm (the other drawback of SFL). Similar to the mutation 

procedure in genetic algorithms, an extra process can be added to 

the algorithm as follows. When new positions are determined for 

each memeplex using equations (3) and (4), one frog of each 

memeplex is selected randomly and it is replaced by another 

random frog as a new solution. This process is repeated in each 

iteration, for all memeplexes. The new frog is named the 

superseding frog. Increasing exploitation and exploration power 

of the algorithm, the superseding frogs introduce new solutions 

that help to better diversification and escaping from local optima, 

without any extra function evaluation. 

Therefore, the two mentioned modifications are added to the 

standard SFL algorithm. This new version is called modified SFL 

(MSFL). The main characteristics of MSFL algorithm are: having 

adaptive movements, fast convergence, better diversification 

ability and escaping from local optima. Finally, the proposed 

MSFL is still a general optimization algorithm that can be applied 

to any real world continuous optimization problems. The 

pseudocode for MSFL algorithm is presented in Appendix A. 

4. SIMULATION RESULTS 
The efficiency of MSFL is tested using a set of benchmark 

functions (listed in Appendix B) and the results are compared to 

that of standard SFL. To avoid any misinterpretation of the 

optimization results, related to the choice of any particular initial 

parameters, we performed each test 50 times, starting from 

various randomly selected solutions, inside the hyper rectangular 

search domain specified in the usual literature.  

To evaluate the efficiency of the proposed MSFL algorithm, 

we retained the following criteria summarizing results from 50 

minimizations per function: the rate of successful minimizations 
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(RATESM), the average of the objective function evaluation 

numbers (AVERAGEOBJEN) and the average error 

(AVERAGEERROR). These criteria are defined precisely below. 

When at least one of termination tests is verified, MSFL stops 

and provides the coordinates of a located solution, and the 

objective function value “OBJN.O” of this solution. We compared 

this result with the known analytical minimum “OBJANAL” and 

we considered this result to be “successful” if the following 

inequality held: 

|OBJN.O - OBJANAL| < rel |OBJINIT| + abs, 

where rel =10-3, rel =10-5 and OBJINIT is an empirical 

average of the objective function value, calculated during 

typically 50 solutions, randomly selected inside the search domain 

before running the algorithm. The average of the objective 

function evaluation numbers is evaluated in relation to only the 

successful minimizations and it shows the convergence rate of the 

algorithm. In fact, this criterion measures the speed of the 

algorithm and shows whether it is fast or slow. The average error 

is defined as the average of OBJ gaps between the best successful 

solution found and the known global optimum. This criterion 

shows the accuracy of the algorithm in finding the global 

optimum.  

A population of 50 frogs, 5 memeplexes, and 5 iterations per 

memeplex were found suitable to obtain good solutions, for both 

SFL and MSFL algorithms. The maximum iteration of all 

experiments is considered equal to 500. Table 1 shows the results 

of MSFL and SFL method for test functions. 

As Table 1 shows, when the search space is more 

complicated, the rate of successful minimization is decreased. 

Though, MSFL has better successful minimization than SFL 

method. This means that MSFL can escape from local minima 

trap rather than SFL algorithm. MSFL and SFL algorithms, 

starting from the same point, are compared in Figure 1 for H6,4 

function. After 115 iterations, SFL is trapped into a local 

minimum (0.232, 0.413, 0.830, 0.373, 0.100, 0.999) and the value 

of function is equal to -1.509, while MSFL algorithm has escaped 

from local minima (H6,4 function has four local minima) and after 

170 iteration has achieved the global minima (0.201, 0.150, 0.476, 

0.275, 0.311, 0.675) and the value of function is equal to -3.322. It 

can be inferred, MSFL possesses escaping property from local 

optima because of superseding frogs. 

Comparing the average of the objective function evaluation 

numbers (Table 1.), as a criterion of algorithm speed, it can be 

seen that MSFL algorithm is faster than SFL. The high speed of 

MSFL method is achieved by adding adaptive terms to the 

position changing formula (Eqs. 3 and 4). Figure 2 shows a 

typical diagram of two algorithms convergence rates for SH 

function, starting from the same initial point. It is obvious that 

although both algorithms can find the optima, MSFL is faster than 

SFL dramatically. Therefore, in many real world applications that 

real time computations and less CPU time consumption are 

needed, MSFL can work better than SFL algorithm. For the 

successful minimizations, average errors of both algorithms are 

approximately similar and are less than 0.01, revealing that both 

algorithms have good accuracies in finding solutions. This 

accuracy is acceptable for many real world optimization 

problems. As a conclusion, the results shown in Table 1 indicate 

that MSFL algorithm not only has great advantage of fast 

convergence, but also it obtains both better and more robust 

results over standard SFL algorithm. 

 

Table 1.  Results of MSFL and SFL methods for test functions 

RATESM (%) AVERAGEOBJEN AVERAGEERROR 

Algorithm MSFL SFL MSFL SFL MSFL SFL 

Function    

SH 100 91 483 584 0.001 0.003 

H3,4 100 87 599 694 0.004 0.004 

S4,5 99 86 620 773 0.005 0.004 

S4,7 99 83 665 821 0.001 0.003 

S4,10 98 79 690 791 0.002 0.003 

R5 97 82 1202 1745 0.003 0.001 

Z5 97 83 1312 1678 0.002 0.002 

H6,4 96 81 1508 1982 0.0064 0.005 

R10 95 75 1917 2634 0.0053 0.007 

Z10 94 75 1902 2558 0.0077 0.008 

 
Figure 1. Convergence rate of MSFL and SFL algorithms for 

H6, 4 function 

 

5. CONCLUSIONS 
In this paper, a new modified SFL algorithm (MSFL) was 

proposed. Two major modifications were accomplished making 

MSFL possesses excellent properties, i.e., avoiding the premature 

convergence problem effectively, escaping from local optima, and 

also having good optimization performance and better 

diversification ability compared to the standard SFL algorithm. 

Different benchmarks were used to illustrate the mentioned 

advantages. 
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Figure 2. Convergence rate of MSFL and SFL algorithms for 

SH function 

 

6. APPENDICES 

6.1 Appendix A. The Pseudocode for MSFL 

Algorithm 
Begin; 

1. Set initial values such as size of the population, the number 

of memeplexes m, random population of P frogs, maximum 

number of iterations, etc; 

2. For each individual calculate objective value; 

3. Sort the population P in descending order of their objective 

values; 

4. Divide P into m memeplexes; 

5. For each memeplex: 

Do: 

Sort the frogs in descending order of their objective value; 

Determine the best and worst frogs; 

Improve the worst frog position using Eq. (4). 

Repeat for a specific number of iterations; 

End; 

6. In each memeplex, replace a frog with another random frog 

(superseding frog); 

7. Combine the evolved memeplexes; 

8. Sort the population P in descending order of their objective 

value; 

9. Check if termination condition is true then stop, otherwise 

go to step 3; 

End; 

6.2 Appendix B. Some Well-known 

Benchmark Functions of Optimization 

Problems 
 

6.2.1 Shubert (SH) (2 variables) 

SH(x1, x2) =  ]Jx)1jcos[(j
5

1j 1  
 × 

 ]Jx)1jcos[(j
5

1j 2  
 

Search domain: -10< xj <10, j=1, 2; 

760 local minima; 

18 global minimum; 

SH((x1, x2)*) = -186.7309; 

6.2.2 Hartmann (H3, 4) (3 variables) 

H3, 4(x1, x2, x3) = ])px(aexp[c
3

1j

2
ijjij

4

1j i  
 ; 

Search domain: 0< xj <1, j=1, 2, 3; 

4 local minima: Pi = (pi1, pi2, pi3) = ith local minimum 

approximation; 

H3, 4 (Pi)  -ci; 

1 global minimum: X*= (0.11, 0.555, 0.855); 

H3, 4 ((x1, x2, x3)*) = -3.86278; 

6.2.3 Shekel (S4, n) (3 variables) 

S4, n (X) = - 1
ii

T
i

n

1j
]c)aX()aX([ 


  

X = (x1, x2, x3, x4)
T; 

ai = (
1
ia ,

2
ia ,

3
ia ,

4
ia )T; 

3 functions were considered: S4, 5, S4, 7 and S4, 10; 

Search domain: 0< xj <10, j=1, 2, 3, 4; 

n local minima: ai = ith local minimum approximation; 

S4, n (ai
T)  -1/ci; 

1 global minimum for each function; 

S4, 5(X) = -10.1532, S4, 7(X) = -10.40294, S4, 10(X) = -10.53641 

Table 2. Test function parameters   

i ai
T
 ci 

1 4.0 4.0 4.0 4.0 0.1 

2 1.0 1.0 1.0 1.0 0.2 

3 8.0 8.0 8.0 8.0 0.2 

4 6.0 6.0 6.0 6.0 0.4 

5 3.0 7.0 3.0 7.0 0.4 

6 2.0 9.0 2.0 9.0 0.6 

7 5.0 5.0 3.0 3.0 0.3 

8 8.0 1.0 8.0 1.0 0.7 

9 6.0 2.0 6.0 2.0 0.5 

10 7.0 3.0 7.0 3.6 0.5 

 

6.2.4 Hartmann (H6, 4) (6 variables) 

H6, 4 (x1, x2, x3) =  ])px(aexp[c
6

1j

2
ijjij

4

1j i  
  

Search domain: 0< xj <1, j = 1,…, 6; 

4 local minima: Pi = (pi1,…, pi6) = ith local minimum 

approximation; 
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H6, 4 (Pi)  -ci; 

1 global minimum: X* = (0.201, 0.150, 0.476, 0.275, 0.311, 

0.657); 

H6, 4 ((x1, x2, x3)*) = -3.3223; 

6.2.5 Rosenbrock (Rn) (n variables) 

];)1x()xx(100[)X(R 2
j

2
1j

2
j

n

1jn    

Search domain: -5< xj <10, j = 1,…, n; 

Several local minima (exact number unspecified in usual 

literature); 

1 global minimum: X* = (1,…, 1); 

Rn (X*) = 0; 

6.2.6 Zakharov (Zn) (n variables) 

  4n

1j

2n

1j

n

1j

2
jn )jxj5.0()jxj5.0(x)x(Z  

  

Search domain: -5<xj<10, j = 1, …, n; 

Several local minima; 

 1 global minimum: X* = (1,…, 1); 

Zn (X*) = 0; 

 

Table 3. Test function parameters   

i aij ci pij 

1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673 

2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470 

3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547 

4 0.1 10.0 35.0 3.2 0.0381 0.5743 0.8828 
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Table 4.  Test function parameters   

i aij ci pij 

1 10.0 3.00 17.0 3.5 1.70 8.00 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886 

2 0.05 10.0 17.0 0.1 8.00 14.0 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991 

3 3.00 3.50 1.70 10 17.0 8.00 3.0 0.2348 0.1451 0.35522 0.2883 0.3047 0.6650 

4 17.0 8.00 0.05 10 0.10 14.0 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381 

 


