
International Journal of Computer Applications (0975 – 8887)

Volume 31– No.1, October 2011

46

A Regression-based Method for Software

Performance Engineering

Omid Bushehrian

Department of Computer Engineering and
Information Technology, Shiraz University of

Technology, Iran

Reza Ghanbari Baghnavi

 Department of Computer Engineering and
Information Technology, Shiraz University of

Technology, Iran

ABSTRACT

In this paper a statistical methodology for finding the optimal

deployment of distributed software objects over computational

nodes is presented. The optimal placement of a distributed

software objects, from the performance viewpoint, has a

significant impact on the performance of the software. In the

proposed methodology, a performance predictor function is

extracted from a dataset of simulation results using the

regression analysis. This performance predictor function then is

used by an optimization algorithm to find the optimal object

deployment. The key advantage of the proposed methodology

over using the traditional QN models is that solving the

predictor model obtained from the QN approach during the

optimization process many times, particularly when the search

space is huge, is prohibiting due to its time complexity.

Keywords: Software Performance Engineering; optimal

object deployment, simulation, Finite State Process

1. INTRODUCTION
Quantitative software performance evaluation is a common

practice during the early stages of the software development

aiming at satisfying QoS constraints such as response

time[17][14]. In distributed software, the optimized assignment

of objects and components over the computational nodes has a

significant impact on the software performance. For example,

assignment of two communicating objects on the same

computing node eliminates the network delay caused by

message passing between them while results in some

computational delay due to increasing the computational load

on that node. Finding the deployment of objects which results

in the lowest response time of the software scenarios is an

optimization problem and cannot be performed manually.

Automated tools usually apply heuristic search methods to

explore the search space and evaluate each deployment within

the search space from the performance viewpoint[3][13][7].

Therefore an analytical predictor model(function) is required

for fast evaluation of each deployment during the search. The

main shortcoming of using conventional Queuing Network

models in this optimization problem is the fact that automatic

generation and solving the multi-layer QN models

corresponding to each deployment during the search time is

very time consuming and complex. The main reason for this

costly model solution stems from the fact that the resulting

multi-layer QN are not product-form and therefore the

approximation algorithms have to be used for their solution

which are inherently iterative[14].

In this paper a regression analysis method is applied to extract

a performance predictor function, from a dataset of simulation

records, which can be solved very fast either when using a

heuristic or Linear Programming optimization method.

In our previous work[6], we studied the effect of input work

load to a use-case scenario, on the optimal deployment of

objects collaborating in that scenario. To illustrate this effect a

simple example is presented in Figure 1. There are two nodes,

two objects: server and worker and two resources: a high speed

link and a database. The server object need to acquire the high

speed link resource which is associated with Node1 and the

worker object requires some service form database which is

associated with Node2. Besides, the worker object provides

service to the server object and therefore there is a dependency

between them. Assume that the service demands corresponding

to the server and the worker objects, denoted by Ds and Dw

respectively, are Ds=1 ms and Dw=5 ms. First, the system is

lightly loaded with input workload equal to 150 request per

second(workload1=150 req/s). Therefore according to the

utilization Law [14] the values of server and worker

utilizations will be: Us= Ds × Xo= 1 × 0.15=15% and Uw=Dw ×

Xo= 5 × 0.15=75%, where X0 is the overall throughput of the

software. Therefore at this workload, the total utilization of

objects is less than 100% and hence the placement of two

objects on the same node has no computational delay(the delay

caused by sharing the same node with several objects) (Figure

1 top). By increasing the workload to 200 req/sec, the

utilization of server and worker objects will be 20% and 100%

respectively. Assuming that each node has one CPU installed

on it, at this workload the total utilization of objects exceeds

100% and therefore some computational delay is produced. By

moving the worker object to Node2, this computational delay

can be eliminated (Figure 1 bottom).

Figure 1. Two different deployments of objects. By

increasing the workload(load2>load1) moving the Worker

object to Node2 reduces the computational delay on Node1.

 Server

Worker

 High Speed Link

DB

Node 1

Node 2

Work Load 1

Switch

Server Worker

Node 1 Node 2

Work Load 2

 High Speed Link

DB

Switch

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.1, October 2011

47

The important result from this example is the fact that, there is

no unique optimal deployment of objects; rather, corresponding

to each workload to the software, a different deployment of

objects will be optimal.

2. RELATED WORKS
Most researches in the field of performance engineering are

dedicated to the creating and analysis performance models for

an existing software deployment or configuration rather than

automatic optimization of them.

In[9], for optimizing the performance of a software in the

presence of simulation results a Response Surface Method is

presented and its usefulness for optimal capacity planning is

analyzed. However, the applicability of this method for more

complex optimization problems such as object deployment has

not been studied. One of the earliest works in the field of

deployment optimization is presented in [16]. In this paper, a

static task allocation method is proposed. However, the effect of

input workload of the use-case scenario in determination of the

optimal task allocation is not studied in this paper. In [3] two

optimization methods for the problem of object deployment are

used and compared: Binary Integer Programming and Genetic

algorithm. However in this paper only the minimization of the

communicational delay between components is considered (by

minimizing the number of transmitted messages between

components). In [5] a Linear Integer Programming-based

method for the problem of finding the optimal deployment of

components is used. In this paper the optimization objective is

to find a deployment for which the computing and network

delays are minimized. In [10] the optimal deployment of objects

is obtained by using a partitioning algorithm. This algorithm

partitions the object graph of the software such that the objects

with most communication are located on the same machine. [1]

is another paper that considers only minimization of the

“communicational delay” during the optimization of the

software architectural models using evolutionary methods and

ignores the concept of “computational delay”[6]. A multi-

criteria objective function is presented in this paper that

evaluates the data transmission reliability and communication

overhead of a deployment.

The most related work to ours is presented in [13]. In this paper

a multi-criteria genetic algorithm for optimizing the software

architecture for performance, cost and reliability is presented.

The genetic algorithm in this work evaluates different

architectural alternatives in the search space during the

generations, to find the one for which the value of objective

function is minimized. The evaluation of each solution

(architecture) within the population from the performance

viewpoint is performed by automatically generating a Layered

Queuing Network model corresponding to the solution and

analyzing it at runtime. However it is a very time consuming

and complex method particularly for softwares with many

components. On the contrary, our optimization model is

designed to predict the fitness of each solution very fast.

In overall, most previous works in the area of deployment

optimization problem either ignore the computational delay

resulted from placing the objects on the same machine in their

methods or ignore the fact that the input rate to the system

directly affect the optimal deployment of objects. In this paper

these two factors are considered in the proposed predictor

model.

3. THE REGRESSION BASED

METHODOLOGY

Figure 2 depicts the main steps of our regression-based

methodology for finding the optimal deployment of objects

collaborating in a use-case scenario u. The objective of this

methodology is to find the predictor function P(d, λ) that

estimates the response time of the use-case scenario u when the

inter-arrival time of the successive requests to this scenario

follows an exponential distribution with expected value λ and

the object distribution is like d. To achieve this a dataset

consisting of tuples: (d, λ, R) is collected by simulation in which

R is the response time corresponding to the deployment d when

the input load is λ(steps 1-5 in Figure 2). This data set then is

analyzed to find the predictor function P(d, λ)(step 6). The next

step is to use this function as the objective function of an

optimization algorithm to find the optimal deployment dopt

corresponding to a given input workload λ for which the value

of P(dopt, λ) is minimum(steps 7-8).

In the following subsections the steps presented in Figure 2 are

explained in detail. Before that, a case-study adopted from[7] is

presented here. This is a web application used in ISP companies

by which a customer can purchase an account for accessing

Internet. The main success scenario of the Purchase-Account

use-case is as follows:

“(1)The customer navigates to the purchase page. (2) The
system shows available Internet packages. (3) The customer
selects a package and confirms. (4) The system navigates to the
bank payment page. (5) The customer pays the package price.
(6) The system verifies the payment and creates an account in
AAA software and submits the created account to the
customer.”

Figure 2. The regression based verification steps

In this case study, in addition to the fact that the purchase
requests to the application is often high, the Accounting object
(in Figure 3) which provides access to the AAA(
Authentication, Authorization and Accounting) software is very
busy due to processing of many authentication requests from
different Access Points inside the company network. Therefore
it is observed that without the correct deployment of objects
over the available resources many user requests to the system
may fail at step (6) of the scenario. Therefore finding the
optimal deployment of objects corresponding to each input rate
to the system is crucial. The communication diagrams
corresponding to this scenario is shown in Figure 3. Note that
objects with the <<resource>> stereo-type represent resources
and have fixed location.

1.Build a General

Simulation Model

2.Pick an arbitrary

deployment d and input

rate λ

3.Specialize the

simulation model for

deployment d

4.Simulate the model

and Measure the

response time R

5.Record tuple (d, λ,R)

in the dataset

Enough

tupples in

dataset?

6.Analyze the dataset to

find the predictor relation

P(d, λ)

7.Build ILP model with P

as its objective function

No Yes

8.Solve the ILP model to

obtain the optimal

deployment dopt that

minimizes P(dopt, λ) for

a given rate λ

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.1, October 2011

48

Figure 3. Purchase-account scenario

Table 1. The performance attributes for communication
diagram presented on Figure 3

Method Description Demand(expone

ntially

distributed)
iis.Ack() OpenWorkLoad(expo

nentially distributed)

app.Create() Creates a new
Application Thread

15 ms

app.VerifyPayment() Uses the high speed

link associated with

Node1

60 ms

DB.readCustomerInfo

()

Reades the customer

information from DB

55 ms

acc.Create() Creates the

accounting thread

10 ms

Accounting.CreateAc

count()

Creates an account in

AAA server

90ms

s.Create() Creates the sale

thread

10 ms

DB.Exec() Records the current

Sale in the DB

55 ms

3.1 Building the General Simulation Model
At the first step of the algorithm, a general simulation model for
the scenario is built using the FSP language [4][12] considering
the service demands of the objects presented in Table 1. By
“general” we mean that, this model is deployment independent
and only considers objects and their behaviors. An FSP model
is a collection of concurrently executing processes. Each
process is indeed an abstract state machine which performs
some actions consecutively [12]. For transforming sequence or
communication diagrams into an FSP model, first we must
transform each object to a process.An algorithm for building an
FSP model from a scenario is presented in our previous paper
[8]. Therefore, in the simulation model, a process is defined
corresponding to each active object in the scenario like iis, DB
and Accounting (see Figure 4). Each object has to acquire the
CPU time on which it is deployed, when it is about to perform
some computation and then it has to release the CPU when the
computation is finished. To model this behavior, each process
emits a getcpu action prior to starting its computation and a
freecpu action after the computation is finished. These actions
are later synchronized with the corresponding actions of the
computing nodes on which they are deployed when the model is
specialized for a specific deployment (step 3 of the algorithm in
Figure 2).

Figure 4. The processes corresponding to active
objects

In addition to CPU, an object may also require a link to perform
a remote invocation to another object. Therefore, in the
corresponding process, prior to the remote invocation Ii, the
process has to emit a getlinki action to acquire the link and after
completing the invocation it has to emit the freelinki to release
the link. These actions are later synchronized with the
corresponding actions of the links when the model is specialized
for a specific deployment (step 3 of the algorithm in Figure 2).

In the communication diagram of the purchase-account
scenario, there are also three objects of type thread: app, s and
acc which should be modeled by the FSP language. In order to
model a multithread object in the FSP language, the method
presented in [8] is used. A multithreaded object objT is defined
as a process in FSP with T instances:

[0..T]:objT

Where, T is the size of thread pool corresponding to objT. By
this definition we say that there are T available threads for
object objT. In our model we chose T=100. To model creation
and starting a thread by the parent object objP, the createThread
action in the process objP has to be synchronized with the
starting actions of T instances of objT:

 [0..T].start/createThread

Where, start is the starting action of the objT process. To model
the computing nodes (each node has one CPU installed on it)
and network links, corresponding to each one a process is
defined in the FSP model as shown in Figure 5. In this Figure,
Li,j denotes the link between node i and node j.

Figure 5. The processes corresponding to
computing nodes and network links

The actions of the processes corresponding to the nodes and
links in Figure 5 should be synchronized with the correct
actions of the processes which are deployed on them. This step
is performed when the model is specialized for a specific
deployment.

3.2 The Simulation Model Specialization
Model specialization is the process of altering the general FSP
model, built for purchase-account scenario, according to a
specific object deployment d. To do this, the getcpu, freecpu,
getlink and freelink actions of the processes representing the
scenario objects, have to be synchronized with the

iis : IIS
app : Application

Thread

s : Sale
Thread

 : BankSystem

 : Accounting
<<Active>>

 : DB
<<resource>>

3: verifyPayment(TransId,ticket)

acc : Account
Thread

2: create(transId,ticket)

5: readCustomerInfo(ticket)

6: create(ticket)

8: create(transId,ticket)

7: CreateAccount()

9: exec(AddSale)

1: Ack(Transid,ticket)

 : HighSpeed
Link

<<resource>>
4: use

IIS = (request ->iis_getcpu -><?exp(1.0/15)?> createApp->iis_freecpu-

>iis_getlink1-><?exp(1.0/7)?>iis_freelink1->IIS).

DB=(getdb->db_getcpu-><?exp(1.0/55)?>freedb->db_freecpu->DB).

Accounting=(getAcc->accounting_getcpu-><?exp(1.0/90)?>finAcc-

>accounting_freecpu->Accounting).

N1=(getnode1->freenode1->N1).
N2=(getnode2->freenode2->N2).

N3=(getnode3->freenode3->N3).
N4=(getnode4->freenode4->N4).

L1,2=(get12->free12->L12).
L1,3=(get13->free13->L13).

L1,4=(get14->free14->L14).

L2,3=(get23->free23->L23).
L2,4=(get24->free24->L24).

L3,4=(get34->free34->L34).

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.1, October 2011

49

corresponding actions of the computing nodes and links
according to deployment d. For example consider the
deployment in which iis and app objects are located on node
number 1, DB, Accounting and s objects are located on node
number 4 and acc is located on node number 2. The required
synchronizations to specialize the general model for this
deployment are presented in Figure 6.

Similar statements have to be added to the specialized
model for synchronizing the getlink and freelink actions of the
underlying link processes to the upper layer remote invocations.

Figure 6. Action synchronization for a given
deployment in FSP language

3.3 Building the Dataset

After specializing the simulation model for an arbitrary
deployment d, the resulting model is simulated using the LTSA
tool [2] to measure the response time of the scenario for
different input loads. This experiment was repeated five times
for request inter-arrival times: 50, 100, 150, 200, 300ms and for
30 different deployments ended up with a dataset comprising
150 tuples. Since the general model is built once the
experiments are performed very fast. In order to add a tuple (d,
λ, R) to the dataset, deployment d should be represented by
numerical variables.

In this case-study, each deployment d itself is represented by
four decimal variables (n1,n2,n3,n4) corresponding to four
computing nodes N1 toN4. To calculate the values of these four
variables for a given deployment d, a vector vi is assumed
corresponding to each variable ni(i=1..4). The number of
elements in each vector vi is equal to the number of objects in
the case-study, which is seven, and the elements are used to
store binary values with default value 0. To compute the
decimal values of variables ni(i=1..4) corresponding to
deployment d, the jth element of the vector vi is set to 1 if object
oj is deployed on node Ni, otherwise it remains 0. Therefore,
corresponding to each variable ni(i=1..4) a binary string vi is
obtained. By converting this binary string to its equivalent
decimal number, the value of ni is obtained. For example
consider the following deployment of objects in this case-study
(Figure 3):

o1: iis is deployed on node N2

o2: app is deployed on node N3

o3: HighSpeedLink is deployed on Node1

o4: acc is deployed on Node1

o5: Accounting is deployed on Node1

o6 : s is deployed on Node2

o7: DB is deployed on Node4

The element values of vectors vi(i=1..4) are set as follows:

v1=0011100= (28)10

v2=1000010=(66)10

v3=0100000=(32)10

v4=0000001=(1)10

Therefore, the values of variables (n1,n2,n3,n4) corresponding to
this deployment is (28,66,32,1). These values along with the
values of input rate and response time, are added to the dataset
as a new tuple. A small part of resulting dataset is shown in
Table 2.

Table 2- Sample tuples in the collected dataset

n1 n2 n3 n4 Inter-
arrival
rate(ms)

Response
time

80 36 8 3 150 562

16 68 40 3 150 522

112 2 8 5 150 495

80 32 8 7 150 462

3.4 Analyzing the Dataset by SAS
By analyzing the dataset by the SAS tool[15], a significant
association between the value of response time: RT of a
deployment and the independent variables n1,n2n3,n4 and r was
found (P<0.01):

𝑅𝑇 =

843 − .8 ∗ 𝑛1 − .3 ∗ 𝑛2 + .2 ∗ 𝑛3 + .7 ∗ 𝑛4 − 1.99 ∗ 𝑟 (1)

3.5 Building the ILP model
To find the deployment which minimizes relation (1) for a
specific input rate value, we used the Integer Linear
Programming (ILP) method with the following constraint:

 𝑆𝑜, 𝑛 = 1𝑛=4
𝑛=1𝑜∈𝑂 (2)

Where So,n is a decision variable. The value of So,n equals 1
when the object o is deployed on node n , otherwise it is 0. The
objective of the ILP model is to minimize the value of RT in
relation (1). Therefore we used relation (1) as the objective
function of the ILP model reminding that the value of
independent variables ni should be computed in terms of
decision variables So,n as follows:

 𝑛𝑖 = 𝑣𝑖 𝑗 × 2
𝑗𝑗=6

𝑗=0 (3)

Where vi[j] is determined by the value of decision
variable So,n as explained earlier. The relation
between the R variable and each of the independent
variables in the dataset is assumed to be linear (see
relation 1). We obtained the optimal deployment
by solving the model presented using LINGO [11]
solver which is a tool for solving Linear,
Nonlinear, Quadratic and Integer optimization
models.

4. APPROXIMATION ERROR RATES
As explained before, for each input workload λ to the system an

optimal deployment dλ corresponding to the workload λ is

 db_getcpu/getnode4, //DB fixed

 db_freecpu/freenode4, // DB fixed

 accounting_getcpu/getnode4, // Accounting

 accounting_freecpu/freenode4, //Accounting

 iis_getcpu/getnode1, //iis

 iis_freecpu/freenode1, //iis

 [1..100].acc_getcpu/getnode2, //acc Thread

 [1..100].acc_freecpu/freenode2, //acc Thread

 [1..100].s_getcpu/getnode4, //sale Thread

 [1..100].s_freecpu/freenode4, //sale Thread

 [1..100].app_getcpu/getnode1, //app Thread

 [1..100].app_freecpu/freenode1, //app Thread

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.1, October 2011

50

obtained by the proposed regression-based model. To show that

dλ is the optimal deployment corresponding to workload value λ

with a good approximation we calculated the relative error

corresponding to the predicted response times by the regression

model. To achieve this, a simulation approach was chosen. An

FSP model for deployment dλ was generated. This model then

was simulated using the LTSA and the resulting response times

of this model were recorded. The simulation and predicted

results for optimal deployments dλ are presented in Table 3. It is

observed that the relative error in our experiments is less than

2.1%. In Table 3, the optimal deployment corresponding to

inter-arrival rate λ is represented by a string of seven numbers in

which the ith number indicates the node number on which object

oi is deployed. (Objects o1to o7 in our case study are as follows:

o1: iis, o2: app,o3: HighSpeedLink ,o4: acc ,o5: Accounting ,o6 : s

,o7: DB)
Table 3- The optimal deployments and their response

times

Optimal
Deployment(
dλ)

Inter
-
arriv
al

rate(
ms)

Predict
ed-
Respon
se time

Measured
Response
time(simula
tion)

Relati
ve
error(
%)

2,3,2,1,2,4,1 50 718.9 730 1.5

1,4,2,3,4,4,1 100 615.4 629 2.1

3,3,4,2,1,4,1 300 271.4 276 1.6

5. CONCLUSIONS AND FUTURE WORKS
In this study, a regression-based methodology for the fast

evaluation of different deployments of objects collaborated in a

software scenario from the performance perspective, is

presented. Since generation of conventional performance

models such as QN models corresponding to each object

deployment is a complex and time consuming task at runtime,

the presented model can be applied as an approximate

performance estimator in place of QN models in the

deployment optimization problems particularly when the

search space is huge.

As the future work for this research, we are trying to verify the

model by using larger software with more objects to be

deployed.

6. REFERENCES
[1] Aleti, A., Bjornander, S., Grunske L., & Meedeniya,

I.(2009). Archeopterix: An extendable tool for

architecture optimization of AADL models, International

workshop on Model-based Methodologies for Pervasive

and Embeded Software (MOMPES)

[2] Ayles, T., Field, A.J., & Magee, J.N.(2003).Adding

performance evaluation to the LTSA tool, Proc. 13th Int.

Conference on Computer Performance Evaluation:

Modeling Techniques and Tools, Lecture Notes in

Computer Science, LNCS 2794: Springer

[3] Bastarrica, M., Caballero, R., Demurjian, A., &

Shvartsman, A.(2001). Two optimization techniques for

component-based systems deployment, Proc. 13th Int.

Conference on Software Eng. and Knowledge Eng:

(SEKE2001)

[4] Bennett, A., & Field, J.(2004).Performance engineering

with the UML profile for schedulability, performance and

time: a Case-Study, Proc. 12th annual Int. Symposium on

Modeling, Analysis and Simulation of Computer and

Telecommunication Systems: IEEE

[5] Boone, B., Truck, F., & Dhoedt, B.(2008). Automated

deployment of distributed software components with fault

tolerance guarantees, Proc. 6th Int. Conference on

Software Engineering Research, Management and

Applications: IEEE

[6] Bushehrian, O., & Ghanbari, R.(2011). An INLP

Approach for Simulated-Based Automatic Objet

Deployment”, The 2011 IEEE Int. Symp. On Computer

Science and Software Engineeirng, Tehran, Iran:IEEE

[7] Bushehrian, O.(2011). The Application of FSP Models in

Automatic Optimization of Software Deployment, 18th

Inte. Conf. on Analytical and Stochastic Modelinf

Techniques and Applications(ASMTA 2011), Lecture

Notes in Computer Science, LNCS 6751, Venice,

Italy:Springer

[8] Bushehrian, O.,& Ghaedi, H.(2011). The Application of

FSP Models in Software Performance Engineering: A

Multi-Threaded Case-Study, Symposium on Computers

and Informatics(ISCI 2011), Malaysia: IEEE

[9] Chih-Chieh, H., & Devetsikiotis, M.(2007). An Automatic

Framework for Efficient Software Performance

Evaluation and Optimization, 40th Annual Simulation

Symposium (ANSS '07), USA: IEEE

[10] Deb, D., Fuad, M., & Oudshoom, M.J.(2006).Towards

autonomic distribution of existing object oriented

programs, Proc. of Conference on Autonomic and

Autonomous Systems (ICAS06): IEEE

[11] LINGO Users Guide, http://www.lindo.com

[12] Magee, J., & Kramer, J.(1999). Concurrency:State Models

and Java Programs, Chichester, England: John Wiley and

Sons

[13] Martens, A., Koziolek, H., Becker, S., & Reussner,

R.(2010). Automatically Improve Software Architecture

Models for Performance, Reliability and Cost Using

Evolutionary Algorithms, Proceedings of the first joint

WOSP/SIPEW international conference on Performance

engineering, USA

[14] Menasce, D.A., Almeida, V.A.F., & Dowdy, L.W.(2004).

Performance by Design: Computer Capacity Planning by

Example , ISBN 0-13-090673-5: Prentice Hall PTR.

[15] SAS Users Guid, http://www.sas.com

[16] Woodside, M.,& Monforton, G.(1993).Fast Allocation of

Processes in Distributed and Parallel Systems, IEEE

Trans. On Parallel and Distributed Sys., vol. 4, pp. 164-

174:IEEE

[17] Woodside ,M., Franks, G.,& Petriu D.(2007). The future

of software performance engineering, Int. Conference on

Software Engineering: IEEE.

http://www.lindo.com/
http://www.sas.com/

